

ForceField Manual

Amsterdam Modeling Suite 2021.1

www.scm.com

May 12, 2021

CONTENTS

1	Intro	duction	1
	1.1	Available force fields	1
	1.2	ForceField-GUI	1
	1.3	What's new in ForceField 2021	1
	1.4	What's new in ForceField 2020	2
		1.4.1 New features	2
	1.5	Force field setup for AMS applications	2
	1.6	Classical force fields	2
2	Atom	n typing behavior	3
	2.1	UFF	3
	2.2	Other forcefields	3
			_
3	Inpu	t via the AMS system block	5
	3.1		2
	3.2	Antechamber integration	1
4	Force	eField Engine Options	9
	4.1	Common options	9
		4.1.1 Type	9
		4.1.2 Non bonded screening	9
		4.1.3 Feedback	10
		4.1.4 Bonds usage	10
		4.1.5 Ewald summation	10
		4.1.6 Disabling energy terms	11
		4.1.7 Guessing or loading partial charges	12
		GuessCharges	12
		LoadCharges	13
	4.2	Non UFF options	14
	4.3	UFF options	14
5	Exan	nples	17
	5.1	Example: single point for aspirin with UFF	17
	5.2	Example: partial charges and total charge	18
	5.3	Example: load partial charges from another engine	26
	5.4	Example: load atom types from a previous run	28
	5.5	Example: using amber or tripos	31
	5.6	Example: calculate some simple properties for water	32
	5.7	Example: single point for ammonia with TRIPOS	33
6	Requ	ired citations	35

	6.1 External programs and libraries								
7	Parameter files 7.1 UFF parameters 7.1.1 User-modified force fields (expert option) 7.2 AMBER parameters 7.2.1 AMBER forcefield file 7.2.2 SCM forcefield file								
8	Poter	itial shapes	51						
9 10	Periodic ForceField 0 References								
11	Keywords 57 11.1 Links to manual entries 57 11.2 Summary of all keywords 57								
Inc	lex		63						

INTRODUCTION

As per 2020 UFF force fields and simple classical force fields are unified in the ForceField engine. This replaces the old UFF engine and the NewMM functionality from ADF.

1.1 Available force fields

The default force field is UFF, it requires no configuration. UFF (Universal Force Field) is a full periodic table force field that can be used to calculate single point energies, do geometry optimizations, calculate frequencies, etc. It is also the default pre-optimizer in the Graphical User interface (GUI) to clean up manually drawn structures. For details on the inner workings of the force field, see the 1992 paper by Rappe et al. [1 (page 55)]. By default UFF uses non-zero charges for water molecules only.

Other available force fields managed by this engine include Amber95, Tripos 5.2 and GAFF.

1.2 ForceField-GUI

Note that the graphical user interface UFF-GUI enables all users to set up force field calculations with a few mouse clicks. Most force fields require atom typing, and this needs to be done by hand. When using UFF, also for preoptimizing, it is important to remember that any force field method relies on a set of parameters. This means that even though UFF supports all elements up to Z=103, it might not generate the desired structures for uncommon oxidation states in metallic structures. If this is the case, you could add new parameters to UFF or attach dummy hydrogen atoms to the metal atom.

1.3 What's new in ForceField 2021

- The engine has been parallelized with MPI using force decomposition.
- The particle mesh Ewald method (implemented through the helPME library (https://github.com/andysim/helpme)) is now used for electrostatic interactions in 3D systems.
- The default non-bonded cutoff has been reduced to 15 Angstrom, a value more typical in the force-field community.
- The engine has been optimized to be on par with the industry standards. The total speed-up compared to version 2020 can be up to factor 500.

1.4 What's new in ForceField 2020

1.4.1 New features

- Periodic support (chains, slabs, and crystals) for all force field types
- Import force field parameters from amber ".dat" files

shell script without atom typing:

```
#!/bin/sh
# This is a shell script for the ForceField engine
# You should use '$AMSBIN/ams' instead.
$AMSBIN/ams <<eor
   # Input options for the AMS driver:
   Task GeometryOptimization
   System
      Atoms
        н 0.0 0.0 0.0
        Н 0.9 0.0 0.0
      End
   End
   # The input options for the ForceField, which are described in this manual,
   # should be specified in the 'Engine ForceField' block:
   Engine ForceField
      # the default one is UFF, requiring no options
   EndEngine
eor
```

1.5 Force field setup for AMS applications

When you do a geometry optimization of perform a MD calculation the details of the force field are determined only once and kept constant during the run. This applies to bond orders, partial charges, etc. In case of a polarizable force field (not currently supported) the charges are of course allowed to change.

1.6 Classical force fields

Most force fields require atom typing, as well as atomic charge specifications, see Examples (page 17).

ATOM TYPING BEHAVIOR

To use a classical forcefield each atom should be given a type, and a partial charge. The power of the UFF forcefield is that this atomtyping is done automatically. For other force fields the atomtyping for most systems still has to be done by hand, possibly with the help of an external program. Unlike UFF parameters, the available parameters for the other available force fields typically cover only a fraction of all chemical elements. Nonetheless, experimental atomtyping options are available for small organic molecules (GAFF), and for biological systems (AMBER).

2.1 UFF

Atom typing is the process of matching MM atom types to elements. For example, a Carbon atom becomes a C_1 , C_2 , C_3 or C_R , depending on the number (and type) of bonds it has to neighboring atoms. UFF is capable of finding a matching MM atom type on its own, but might not always succeed in doing so. When doing calculations with UFF, it is important to check the beginning of the output file, as the program will print the detected MM atom types there. You can also take matters into your own hands, and tell UFF what MM atom types you want it to use (see the section on Input and examples).

The atom typing in UFF is mostly controlled by the elements and mmatomtypes parameter files, however, some part of it is hidden in the code itself and is (at the moment) not accessible to users. This is done by UFF to differentiate between:

- Carbon: double-bonded sp2 carbon (C_2) vs aromatic carbon (C_R), if any of the orders are close to 2, it's C_2.
- Oxygen: having a bond to silicon gives O_3_z; otherwise, having bond order of 1.44 or higher gives O_R, provided that the partner is not a hydrogen. Otherwise, it's just an O_3.
- Sulfur: having a bond order greater than 1.3 gives aromatic S_R.

By default, zero charges are used, unless a water molecule is detected.

2.2 Other forcefields

Automatic atomtyping via an experimental integration of the Antechamber toolkit is available for the Generalized AMBER Force Field (GAFF) for small organic molecules. This option was introduced in the 2020 release of AMS, and is still considered experimental and disabled by default.

See also:

Antechamber integration for GAFF forcefields (page 7)

Some atomypping functionality for biological systems can be accessed via the GUI, using pdb files as input. A pdb file can be loaded into amsinput and then under the regions the residues can be found. Still, charges need to be set by hand.

Custom force field parameters can be provided as forcefield files. The two supported formats are ".ff" (originating from the ADF and QUILD programs) and the much more widely used amber ".dat" files.

THREE

INPUT VIA THE AMS SYSTEM BLOCK

While usually options for an AMS engine are defined in its engine block, for the ForceField engine three ingredients are defined via the AMS system block: bonds, atom types and (partial) charges.

Here are some logical options

- 1) Specify Everything: elements, coordinates, MM atom types, charges, and bonds
- 2) Specify elements, coordinates, and bonds (UFF only)
- 3) Specify elements and coordinates (UFF only, most convenient)

Currently, for most force fields, everything needs to be specified (option 1). UFF and GAFF allow the automatic determination of bonds and atom types (option 2 and 3). For GAFF this option is considered experimental as of the 2020 release and is disabled by default, see *Antechamber integration* (page 7) below. See also the *BondsUsage* (page 10) key on how bond information can be tweaked.

3.1 ForceField input example

1) Specify Elements, coordinates, MM Atom Types, Charges, and bonds:

```
$AMSBIN/ams << eor
Task GeometryOptimization
System
   Atoms
           1.36012328 -0.14520095
                                    0.60144543
                                                  ForceField.Type=C_3
       С
→ForceField.Charge=0.000000
       C 0.0000000 0.0000000
                                    0.00000000
                                                  ForceField.Type=C_2
→ForceField.Charge=0.000000
       Н 2.09833847 -0.46327872 -0.16560721
                                                  ForceField.Type=H_
→ForceField.Charge=0.000000
       Н 1.32657807 -0.90546800
                                   1.40917410
                                                  ForceField.Type=H_
→ForceField.Charge=0.000000
       н 1.67935140 0.82750664
                                   1.02977296
                                                  ForceField.Type=H
→ForceField.Charge=0.000000
                                                  ForceField.Type=H_
       H -0.83486863 0.30434056
                                   0.62258487
\rightarrow ForceField.Charge=0.000000
       0 -0.18030374 -0.22462371 -1.18585739
                                                  ForceField.Type=0_2
→ForceField.Charge=0.000000
   End
   BondOrders
        1 5 1.0
```

```
1 4 1.0

1 3 1.0

1 2 1.0

2 6 1.0

2 7 2.0

End

End

Engine ForceField

EndEngine

eor
```

The format in the bonds section is: atom A, atom B, bond order.

2) Specify Elements, coordinates, and bonds (UFF only):

If we leave out the MM atom types and charges, UFF will determine the MM atom types automatically from the bond information:

```
$AMSBIN/ams << eor
Task GeometryOptimization
System
   Atoms
       C 1.36012328 -0.14520095 0.60144543
       C 0.0000000 0.0000000 0.0000000
       Н 2.09833847 -0.46327872 -0.16560721
       Н 1.32657807 -0.90546800 1.40917410
       Н 1.67935140 0.82750664 1.02977296
       Н -0.83486863 0.30434056 0.62258487
       0 -0.18030374 -0.22462371 -1.18585739
   End
   BondOrders
        1 5 1.0
        1 4 1.0
        1 3 1.0
        1 2 1.0
        2 6 1.0
        2 7 2.0
   End
End
Engine ForceField
EndEngine
eor
```

3) Specify Elements and coordinates (UFF only):

The third input format is similar to the second, but without a Bonds section in System:

```
$AMSBIN/ams << eor
Task GeometryOptimization
System</pre>
```

Ator	ms			
	С	1.36012328	-0.14520095	0.60144543
	С	0.00000000	0.0000000	0.00000000
	Н	2.09833847	-0.46327872	-0.16560721
	Н	1.32657807	-0.90546800	1.40917410
	Н	1.67935140	0.82750664	1.02977296
	Н	-0.83486863	0.30434056	0.62258487
	0	-0.18030374	-0.22462371	-1.18585739
End				
End				
Engine 1 EndEngin	Foi ne	cceField		
eor				

The GUI generates inputs of the second or third type, depending on the "Use existing bonds" setting in the ForceField main tab. Note that to specify the MM Atom Types, the charges also need to be set. UFF has automatic bond guessing and a very simple automatic charge guessing only assigning charges to atoms of water molecules.

3.2 Antechamber integration

For the GAFF force field there is an experimental integration of the Antechamber toolkit (http://ambernd.org/antechamber/antechamber.html) for automatic atom typing. This allows the GAFF force field to be used with option 2 (only bonds and coordinates specified) and option 3 (coordinates only). As of the 2020 release of AMS, this option is still considered experimental and disabled by default. It can be enabled and configured from the input:

AntechamberIntegration Yes/No

AntechamberIntegration

Type Bool

Default value No

GUI name Automatic atom typing

Description EXPERIMENTAL: Use the Antechamber program to automatically determine atom types for the GAFF force field. This may run a geometry optimization with MOPAC under the hood in order to determine the charges (see keyword AntechamberTask), which might not work for very large systems.

AntechamberTask [GeometryOptimization | SinglePoint]

AntechamberTask

Type Multiple Choice

Default value GeometryOptimization

Options [GeometryOptimization, SinglePoint]

Description If antechamber is envoked to guess atomtypes and charges (GAFF force field), select the task for charge guessing with MOPAC

FORCEFIELD ENGINE OPTIONS

Details of the ForceField engine can be set via its input block. Some option are specific to UFF and others to other force fields.

4.1 Common options

These options apply to any force field.

4.1.1 Type

There are a few predefined force field types, that, if used, require no other input.

Type [UFF | Amber95 | GAFF | Tripos5.2 | UserDefined]

Туре

Type Multiple Choice Default value UFF Options [UFF, Amber95, GAFF, Tripos5.2, UserDefined] Description Type of force field to be used

4.1.2 Non bonded screening

The long range interaction (dispersion and Coulomb) are the most expensive to evaluate. This gives you the option to screen more aggressively the interaction.

NonBondedCutoff float

NonBondedCutoff

Type Float

Default value 15.0

Unit Angstrom

Description Distance beyond which the non-bonded pair interactions (Coulomb and Van der Waals) will be ignored. The interactions are smoothly damped starting from 0.9*NonBondedCutoff. Has no effect on the Coulomb term for periodic systems, as Ewald summation is used.

4.1.3 Feedback

If you want to know more about the details of the force field you should crank up the verbosity.

Verbosity [Silent | Normal | Verbose | VeryVerbose]

Verbosity

Type Multiple ChoiceDefault value SilentOptions [Silent, Normal, Verbose, VeryVerbose]Description Controls the verbosity of the engine.

4.1.4 Bonds usage

Bonds can be specified in the input, still you may not want to use those. Here are some options to control this.

BondsUsage [Input | None | Guess | Auto]

BondsUsage

Type Multiple Choice

Default value Auto

Options [Input, None, Guess, Auto]

Description Controls what bonds are used by the engine. The choice auto means: guess in case there are no bonds. Guessing only happens at the first MD step, or first geometry optimization step.

4.1.5 Ewald summation

For periodic systems the Ewald summation is performed for the Coulomb interaction. It has a couple of options:

```
EwaldSummation
Alpha float
Enabled Yes/No
GridSpacing float
RealSpaceCutoff float
Tolerance float
End
```

EwaldSummation

Type Block

Description Configures the details of the particle mesh Ewald (PME) summation of the Coulomb interaction.

Alpha

Type Float

Default value -1.0

Description This parameter shifts the workload from real space (smaller alpha) to reciprocal space (larger alpha). Using a larger [Alpha] without decreasing [GridSpacing] may increase the error in the reciprocal-space contribution. Set to zero to disable the reciprocal-space Ewald part. Negative value means the [Alpha] will be determined automatically from [Tolerance].

Enabled

Type Bool

Default value Yes

Description Set to false to use real-space pair summation instead of the Ewald, which is the default and the only option for molecules, 1D and 2D periodic systems.

GridSpacing

Type Float

Default value 0.5

Unit Angstrom

Description Grid spacing in the particle mesh Ewald method. Smaller grid spacing will make the reciprocal energy calculation more accurate but slower. Using a larger [Alpha] value may require a smaller GridSpacing to be accurate.

RealSpaceCutoff

Type Float

Default value 0.0

Unit Angstrom

Description Set the cutoff value for the real-space summation. Zero means the internal defaults will be used depending on the [Alpha] (if Alpha=0 then the cutoff will be set to 50 Bohr, otherwise to 20 Bohr).

Tolerance

Type Float

Default value 1e-10

Description Value of the error function that should be used to determine the cutoff radius for real-space Ewald summation. Larger values will make the real-space summation faster but less accurate.

4.1.6 Disabling energy terms

By default all force field energy terms are calculated, however, you can disable each one of them individually.

```
EnergyTerms
Angle Yes/No
Coulomb Yes/No
Dispersion Yes/No
Inversion Yes/No
Stretch Yes/No
Torsion Yes/No
End
```

EnergyTerms

Type Block

Description expert key, that allows you to disable specific energy terms.

Angle

Type Bool

Default value Yes

Description Whether to use angle (bend) energy.

Coulomb

Type Bool

Default value Yes

Description Whether to use coulomb energy.

Dispersion

Type Bool

Default value Yes

Description Whether to use dispersion energy.

Inversion

Type Bool

Default value Yes

Description Whether to use inversion energy.

Stretch

Type Bool

Default value Yes

Description Whether to use stretch energy.

Torsion

Type Bool

Default value Yes

Description Whether to use torsion energy.

4.1.7 Guessing or loading partial charges

The UFF forcefield has some very rudimentary partial charges guessing, only setting charges for atoms in water molecules. By default the partial charges in a force field calculation are zero. Essentially you will always need to specify atomic charges to make the results more realistic, either via the input or using one or the following options.

See also example *LoadCharges* (page 26), and *ChargedMolecules* (page 18).

GuessCharges

The simplest way is the use the GuessCharges key, that uses an engine that can calculate atomic charges. By default DFTB is used. DFTB is of course much more expensive than a forcefield, but if you run a MD calculation you can maybe afford a single DFTB calculation on the system.

GuessCharges Yes/No

GuessCharges

Type Bool

Default value No

Description Use another engine to calculate/guess the charges to be used by the force field.

If you want to control the engine use the GuessChargesConfig key.

```
GuessChargesConfig
EngineType string
End
```

GuessChargesConfig

Type Block

Description Guess charges to be used by the forcefield

EngineType

Type String

Default value dftb

Description Engine that can calculate or guess charges

LoadCharges

You have more control over the charge guessing, by loading the charges of another calculation. This way you can set any engine specific detail, such as the basis set, or functional.

You can load charges form a previous calculation to be used as force field charges.

```
LoadCharges
File string
Section string
Variable string
End
```

LoadCharges

Type Block

Description Load charges from a file to be used as forcefield charges

File

Type String

Description Name of the (kf) file

Section

Type String

Default value AMSResults

Description Section name of the kf file

Variable

Type String

Default value Charges

Description variable name of the kf file

4.2 Non UFF options

These options are relevant for non-UFF force fields:

AllowMissingParameters Yes/No

AllowMissingParameters

Type Bool

Default value No

Description When parameters are not found for bonds, angles, dihedrals, or inversions, the first entry in the database will be used.

CheckDuplicateRules Yes/No

CheckDuplicateRules

Type Bool

Default value Yes

Description The database could contain duplicate entries. For torsions this is a feature, and the potentials will be added. For all other terms this is no allowed, and if detected the program stops. One should fix the database or set the checking to false. As always the last entry will be used.

ForceFieldFile string

ForceFieldFile

Type String

Default value

GUI name Force field library

Description Path to the force field parameter file

4.3 UFF options

The following options are only relevant for the UFF force field:

```
UFF
AtomTypesFile string
Database string
ElementsFile string
Library [UFF | UFF4MOF | UFF4MOF-II]
End
```

UFF

Type Block

Description Option for the UFF force filed.

AtomTypesFile

Type String

Default value mmatomtypes_db

Description Expert option: Select the file that defines how UFF determines the atom types

Database

Type String

Default value general_db

Description Expert option: Select the file that defines the UFF parameters per atom type

ElementsFile

Type String

Default value elements_db

Description Expert option: Select the file that defines the elements known to UFF

Library

Type Multiple Choice

Default value UFF

Options [UFF, UFF4MOF, UFF4MOF-II]

GUI name Force field library

Description Selects the used parameter library.

EXAMPLES

The *\$AMSHOME/examples/forcefield* directory contains many different example files, covering various aspects. This is a selection of relevant examples showing what the engine input looks like.

We do not repeat here all functionality that is available from the AMS driver level, see the AMS Examples.

5.1 Example: single point for aspirin with UFF

Download SP_aspirin.run

```
#!/bin/sh
$AMSBIN/ams << eor
Task SinglePoint
Properties Gradients=yes
System
   Atoms
     С
             0.000000 0.000000 0.000000
     С
            1.402231 0.000000 0.000000
     С
            2.091015 1.220378 0.000000
     С
            1.373539 2.425321 0.004387
     С
           -0.034554 2.451759 0.016301
     С
           -0.711248 1.213529 0.005497
            -0.709522 3.637718 0.019949
     0
            -2.141910 1.166077 -0.004384
     С
     0
            -2.727881 2.161939 -0.690916
     С
            -0.730162 4.530447 1.037168
     С
                      4.031914 2.307663
            -0.066705
     Η
            -0.531323 -0.967191 -0.007490
     Η
             1.959047 -0.952181 -0.004252
     Н
            3.194073 1.231720 -0.005862
            1.933090 3.376356 -0.002746
     Н
            -2.795018 0.309504 0.548870
            -2.174822 2.832497 -1.125018
     Н
            -1.263773 5.613383 0.944221
     Н
            -0.337334 4.693941 3.161150
     Η
            1.041646 4.053111 2.214199
     Н
            -0.405932 3.005321 2.572927
   End
End
```

```
Engine ForceField
EndEngine
```

eor

5.2 Example: partial charges and total charge

This example shows you some ways to use partial atomic charges for ions. The atomic charges should add up to the total charge.

Download ChargedMolecules.run

```
#!/bin/sh
\# Here we consider a Butane molecule with the C in the end groups changed to N
# The ion has a charge of plus two.
# The (partial) atomic charges used in the forcefield need to add up to the total.
⇔charge
# There is explicit specification via the inut, Loading charges, and guessing charges
# Charges taken "manually" from a DFTB calc., specified via the System%Atoms block
export AMS_JOBNAME=C2H10N2++
rm -rf $AMS_JOBNAME.results
"$AMSBIN/ams" << eor
Task GeometryOptimization
Properties Charges=yes
GeometryOptimization
 Convergence Gradients=1.0e-6
End
System
   Atoms
       N -0.005073166519502884 0.008770355996886468 1.060120635725228 ForceField.
→Charge=-0.224106970135964811E+000
             c -0.003379615065181385 0.005774705419397744 -0.4323726711546611 .
↔ForceField.Charge=0.481803346892513140E-001
             C 0.7147029862216027 -1.238161594687982
                                                          -0.9787933548287219
→ForceField.Charge=0.481357488383262755E-001
             N 0.7166487936613554 -1.241183181538415
                                                          -2.471469363728673
↔ForceField.Charge=-0.224111043229265006E+000
             н -0.489254727061788 0.8470579056083724
                                                           1.393322418122902
↔ForceField.Charge=0.327048167700910608E+000
             H 0.9419603270459358 0.02859511576851682
                                                           1.443864570589139
→ForceField.Charge=0.312019677649949589E+000
```

```
H -0.4954439060007188 -0.801643243084588
                                                            1.443905390218997
→ForceField.Charge=0.312016700963803795E+000
             H 0.497012567535054 0.9247340386709353
                                                          -0.7538297483507286
↔ForceField.Charge=0.112420754799849087E+000
             H -1.049427360359161 0.0320094307806696
                                                          -0.7537906795101232
↔ForceField.Charge=0.112425859786873958E+000
             H 1.760678843023289 -1.264262738726653
                                                          -0.6572703272452628
↔ForceField.Charge=0.112415997624231642E+000
             H 0.2140471968077103 -2.156981931600252
                                                          -0.6574882069415752
→ForceField.Charge=0.112419970108937881E+000
             H 1.207324110469442 -0.4308282262683778
                                                          -2.854859298860555
→ForceField.Charge=0.312043881750391661E+000
             H -0.2304034502578771 -1.260970512043685
                                                          -2.855040966499596
↔ForceField.Charge=0.312048243703216099E+000
             H 1.200917269444972 -2.079821003490794
                                                          -2.803581935602674
↔ForceField.Charge=0.327042675749500744E+000
   End
   GuessBonds True
   Charge 2.0
End
Engine ForceField
EndEngine
eor
# Now the neutral molecule, to show it behaves differently
export AMS_JOBNAME=C2H10N2
rm -rf $AMS_JOBNAME.results
"$AMSBIN/ams" << eor
Task GeometryOptimization
Properties Charges=yes
GeometryOptimization
 Convergence Gradients=1.0e-6
End
System
   Atoms
       N -0.005073166519502884 0.008770355996886468 1.060120635725228 ForceField.
→Charge=-0.571011278205044492E+000
              C -0.003379615065181385 0.005774705419397744 -0.4323726711546611
↔ForceField.Charge=-0.628203646719944775E-001
              C 0.7147029862216027 -1.238161594687982 -0.9787933548287219
→ForceField.Charge=-0.628837746183146251E-001
              N 0.7166487936613554 -1.241183181538415
                                                           -2.471469363728673
↔ForceField.Charge=-0.571125568500377101E+000
              H -0.489254727061788 0.8470579056083724
                                                            1.393322418122902
↔ForceField.Charge=0.194366247283714433E+000
```

```
H 0.9419603270459358 0.02859511576851682
                                                             1.443864570589139
↔ForceField.Charge=0.194416030458134853E+000
              H -0.4954439060007188 -0.801643243084588
                                                            1.443905390218997
↔ForceField.Charge=0.194415295916033237E+000
              H 0.497012567535054 0.9247340386709353
                                                           -0.7538297483507286
↔ForceField.Charge=0.253223131130085044E-001
              H -1.049427360359161 0.0320094307806696
                                                           -0.7537906795101232
↔ForceField.Charge=0.253801306729796901E-001
              H 1.760678843023289 -1.264262738726653
                                                           -0.6572703272452628
→ForceField.Charge=0.253595653793994673E-001
              H 0.2140471968077103 -2.156981931600252
                                                          -0.6574882069415752
→ForceField.Charge=0.254060553518517668E-001
              H 1.207324110469442 -0.4308282262683778
                                                           -2.854859298860555
↔ForceField.Charge=0.194371032691725371E+000
              H -0.2304034502578771 -1.260970512043685
                                                          -2.855040966499596
↔ForceField.Charge=0.194368207022870332E+000
              H 1.200917269444972 -2.079821003490794 -2.803581935602674 ...
→ForceField.Charge=0.194436108106012751E+000
   End
   GuessBonds True
End
Engine ForceField
EndEngine
eor
# The remaining calculations are again on the +2 ion
# Charges obtained with GuessCharges, using by default dftb.
export AMS_JOBNAME=C2H10N2++.quessed
rm -rf $AMS JOBNAME.results
"$AMSBIN/ams" << eor
Task GeometryOptimization
Properties Charges=yes
GeometryOptimization
 Convergence Gradients=1.0e-6
End
System
   Atoms
       N -0.005073166519502884 0.008770355996886468 1.060120635725228
              C -0.003379615065181385 0.005774705419397744 -0.4323726711546611
              C 0.7147029862216027 -1.238161594687982
                                                          -0.9787933548287219
              N 0.7166487936613554 -1.241183181538415
                                                           -2.471469363728673
              H -0.489254727061788 0.8470579056083724
                                                            1.393322418122902
              H 0.9419603270459358 0.02859511576851682
                                                             1.443864570589139
              H -0.4954439060007188 -0.801643243084588
                                                             1.443905390218997
              H 0.497012567535054 0.9247340386709353
                                                           -0.7538297483507286
```

```
H -1.049427360359161 0.0320094307806696
                                                           -0.7537906795101232
              H 1.760678843023289 -1.264262738726653
                                                           -0.6572703272452628
              H 0.2140471968077103 -2.156981931600252
                                                           -0.6574882069415752
              H 1.207324110469442 -0.4308282262683778
                                                            -2.854859298860555
               H -0.2304034502578771 -1.260970512043685
                                                            -2.855040966499596
              H 1.200917269444972 -2.079821003490794
                                                            -2.803581935602674
    End
   GuessBonds True
   Charge 2.0
End
Engine ForceField
  GuessCharges True
EndEngine
eor
# Charges are now both specified on input and also Guessed
# The values on the input (ForceField.Charge) are on purpose unreasonable
# The Guessed charges have a higher priority and the input values are ignored
# The output is a bit confusing as unused ForceField.Charge is printed
export AMS_JOBNAME=C2H10N2++.inputandquessed
rm -rf $AMS JOBNAME.results
"$AMSBIN/ams" << eor
Task GeometryOptimization
Properties Charges=yes
GeometryOptimization
 Convergence Gradients=1.0e-6
End
System
   Atoms
       N -0.005073166519502884 0.008770355996886468 1.060120635725228
                                                                        ForceField.
→Charge=-1.224106970135964811E+000
              C -0.003379615065181385 0.005774705419397744 -0.4323726711546611
↔ForceField.Charge=0.481803346892513140E-001
               C 0.7147029862216027 -1.238161594687982
                                                       -0.9787933548287219
↔ForceField.Charge=0.481357488383262755E-001
              N 0.7166487936613554 -1.241183181538415
                                                           -2.471469363728673
↔ForceField.Charge=-0.224111043229265006E+000
               H -0.489254727061788 0.8470579056083724
                                                            1.393322418122902
↔ForceField.Charge=1.327048167700910608E+000
              H 0.9419603270459358 0.02859511576851682
                                                            1.443864570589139
→ForceField.Charge=0.312019677649949589E+000
              H -0.4954439060007188 -0.801643243084588
                                                             1.443905390218997
↔ForceField.Charge=0.312016700963803795E+000
              н 0.497012567535054 0.9247340386709353
                                                           -0.7538297483507286
↔ForceField.Charge=0.112420754799849087E+000
```

H -1.049427360359161 0.0320094307806696 -0.7537906795101232 →ForceField.Charge=0.112425859786873958E+000 H 1.760678843023289 -1.264262738726653 -0.6572703272452628 ↔ForceField.Charge=0.112415997624231642E+000 H 0.2140471968077103 -2.156981931600252 -0.6574882069415752 →ForceField.Charge=0.112419970108937881E+000 H 1.207324110469442 -0.4308282262683778 -2.854859298860555 ↔ForceField.Charge=0.312043881750391661E+000 H -0.2304034502578771 -1.260970512043685 -2.855040966499596 ↔ForceField.Charge=0.312048243703216099E+000 H 1.200917269444972 -2.079821003490794 -2.803581935602674 ↔ForceField.Charge=0.327042675749500744E+000 GuessBonds True Charge 2.0 Engine ForceField GuessCharges True EndEngine # Charges obtained with Load Charges from a DFTB calc. export AMS_JOBNAME=C2H10N2++.dftb rm -rf \$AMS JOBNAME.results "\$AMSBIN/ams" << eor Task SinglePoint Properties Charges=yes GeometryOptimization Convergence Gradients=1.0e-6

```
System
   Atoms
       N -0.005073166519502884 0.008770355996886468 1.060120635725228
              C -0.003379615065181385 0.005774705419397744 -0.4323726711546611
              C 0.7147029862216027 -1.238161594687982 -0.9787933548287219
              N 0.7166487936613554 -1.241183181538415
                                                           -2.471469363728673
              H -0.489254727061788 0.8470579056083724
                                                            1.393322418122902
              H 0.9419603270459358 0.02859511576851682
                                                            1.443864570589139
              H -0.4954439060007188 -0.801643243084588
                                                            1.443905390218997
              H 0.497012567535054 0.9247340386709353
                                                           -0.7538297483507286
              H -1.049427360359161 0.0320094307806696
                                                           -0.7537906795101232
```

(continues on next page)

(continued from previous page)

End

End

End

eor

```
H 1.760678843023289 -1.264262738726653
                                                            -0.6572703272452628
               H 0.2140471968077103 -2.156981931600252
                                                            -0.6574882069415752
               H 1.207324110469442 -0.4308282262683778
                                                             -2.854859298860555
               H -0.2304034502578771 -1.260970512043685
                                                             -2.855040966499596
               H 1.200917269444972 -2.079821003490794
                                                             -2.803581935602674
    End
   Charge 2.0
End
Engine DFTB
EndEngine
eor
loadChargeFile='C2H10N2++.dftb.results/dftb.rkf'
export AMS_JOBNAME=C2H10N2++.loaded
rm -rf $AMS_JOBNAME.results
"$AMSBIN/ams" << eor
Task GeometryOptimization
Properties Charges=yes
GeometryOptimization
 Convergence Gradients=1.0e-6
End
System
   Atoms
       N -0.005073166519502884 0.008770355996886468
                                                     1.060120635725228
              C -0.003379615065181385 0.005774705419397744 -0.4323726711546611
               C 0.7147029862216027 -1.238161594687982
                                                           -0.9787933548287219
              N 0.7166487936613554 -1.241183181538415
                                                            -2.471469363728673
               Н -0.489254727061788 0.8470579056083724
                                                             1.393322418122902
               H 0.9419603270459358 0.02859511576851682
                                                             1.443864570589139
               H -0.4954439060007188 -0.801643243084588
                                                             1.443905390218997
               H 0.497012567535054 0.9247340386709353
                                                            -0.7538297483507286
               H -1.049427360359161 0.0320094307806696
                                                            -0.7537906795101232
               H 1.760678843023289 -1.264262738726653
                                                            -0.6572703272452628
               H 0.2140471968077103 -2.156981931600252
                                                            -0.6574882069415752
               H 1.207324110469442 -0.4308282262683778
                                                            -2.854859298860555
               H -0.2304034502578771 -1.260970512043685
                                                            -2.855040966499596
               H 1.200917269444972 -2.079821003490794
                                                             -2.803581935602674
   End
    GuessBonds True
   Charge 2.0
End
Engine ForceField
  LoadCharges
```

```
File $loadChargeFile
  End
EndEngine
eor
# Charges are now both specified on input and also Guessed
# The values on the input (ForceField.Charge) are on purpose unreasonable
# The Guessed charges have a higher priority and the input values are ignored
# The output is a bit confusing as unused ForceField.Charge is printed
export AMS_JOBNAME=C2H10N2++.inputandloaded
rm -rf $AMS JOBNAME.results
"$AMSBIN/ams" << eor
Task GeometryOptimization
Properties Charges=yes
GeometryOptimization
Convergence Gradients=1.0e-6
End
System
   Atoms
       N -0.005073166519502884 0.008770355996886468 1.060120635725228 ForceField.
→Charge=-1.224106970135964811E+000
              C -0.003379615065181385 0.005774705419397744 -0.4323726711546611
↔ ForceField.Charge=0.481803346892513140E-001
              C 0.7147029862216027 -1.238161594687982
                                                         -0.9787933548287219
↔ForceField.Charge=0.481357488383262755E-001
              N 0.7166487936613554 -1.241183181538415
                                                         -2.471469363728673
↔ForceField.Charge=-0.224111043229265006E+000
              H -0.489254727061788 0.8470579056083724
                                                          1.393322418122902
→ForceField.Charge=1.327048167700910608E+000
              Н 0.9419603270459358 0.02859511576851682
                                                          1.443864570589139
↔ForceField.Charge=0.312019677649949589E+000
              H -0.4954439060007188 -0.801643243084588 1.443905390218997
→ForceField.Charge=0.312016700963803795E+000
              H 0.497012567535054 0.9247340386709353
                                                         -0.7538297483507286
↔ForceField.Charge=0.112420754799849087E+000
                                                         -0.7537906795101232
              H -1.049427360359161 0.0320094307806696
→ForceField.Charge=0.112425859786873958E+000
              H 1.760678843023289 -1.264262738726653
                                                         -0.6572703272452628
→ForceField.Charge=0.112415997624231642E+000
              H 0.2140471968077103 -2.156981931600252 -0.6574882069415752
↔ForceField.Charge=0.112419970108937881E+000
              H 1.207324110469442 -0.4308282262683778
                                                         -2.854859298860555
↔ForceField.Charge=0.312043881750391661E+000
              H -0.2304034502578771 -1.260970512043685
                                                         -2.855040966499596
→ForceField.Charge=0.312048243703216099E+000
              H 1.200917269444972 -2.079821003490794
                                                          -2.803581935602674
→ForceField.Charge=0.327042675749500744E+000
  End
```

```
GuessBonds True
   Charge 2.0
End
Engine ForceField
  LoadCharges
     File $loadChargeFile
  End
EndEngine
eor
# finally let us make on purpose an error (total charge incorrect), this calculation_
→is supposed to fail, and not print an energy
echo "The following error is intended"
export AMS_JOBNAME=C2H10N2++.inputerror
rm -rf $AMS_JOBNAME.results
"$AMSBIN/ams" << eor
Task GeometryOptimization
Properties Charges=yes
GeometryOptimization
 Convergence Gradients=1.0e-6
End
System
   Atoms
      N -0.005073166519502884 0.008770355996886468 1.060120635725228 ForceField.
C -0.003379615065181385 0.005774705419397744 -0.4323726711546611
→ForceField.Charge=0.481803346892513140E-001
                                                        -0.9787933548287219
              C 0.7147029862216027 -1.238161594687982
↔ForceField.Charge=0.481357488383262755E-001
              N 0.7166487936613554 -1.241183181538415
                                                        -2.471469363728673
↔ForceField.Charge=-0.224111043229265006E+000
              H -0.489254727061788 0.8470579056083724
                                                         1.393322418122902
↔ForceField.Charge=0.327048167700910608E+000
              H 0.9419603270459358 0.02859511576851682 1.443864570589139
↔ForceField.Charge=0.312019677649949589E+000
              H -0.4954439060007188 -0.801643243084588
                                                        1.443905390218997
→ForceField.Charge=0.312016700963803795E+000
              H 0.497012567535054 0.9247340386709353
                                                         -0.7538297483507286
→ForceField.Charge=0.112420754799849087E+000
              H -1.049427360359161 0.0320094307806696
                                                         -0.7537906795101232
↔ForceField.Charge=0.112425859786873958E+000
              H 1.760678843023289 -1.264262738726653
                                                         -0.6572703272452628
↔ForceField.Charge=0.112415997624231642E+000
                                                                     (continues on next page)
```

```
(continued from previous page)
```

H 0.2140471968077103 -2.156981931600252 →ForceField.Charge=0.112419970108937881E+000	-0.6574882069415752	
H 1.207324110469442 -0.4308282262683778	-2.854859298860555	L
H -0.2304034502578771 -1.260970512043685	-2.855040966499596	_
H 1.200917269444972 -2.079821003490794	-2.803581935602674	_
→ForceField.Charge=0.327042675749500744E+000 End		
GuessBonds True		
End		
Engine ForceField EndEngine		
eor		

5.3 Example: load partial charges from another engine

You can use *LoadCharges* (page 13) to load charges from another calculation. The key *GuessCharges* (page 13) is a simplified version of this, being more convenient, but less flexible.

Download LoadCharges.run

```
#!/bin/sh
# First we calculate the charges for a system
# Here we use the dftb engine, but any engine can be used for this purpose
export AMS_JOBNAME=CalculateCharges
rm -rf $AMS_JOBNAME.results
$AMSBIN/ams << eor</pre>
Task SinglePoint
Properties Charges=yes
System
  Atoms
     C 0.0 0.0 0.0
     0 1.13 0.0 0.0
     C 0.0 0.0 2.0
     0 1.13 0.0 2.0
   End
End
Engine DFTB
EndEngine
```

```
eor
# let us first optimize without charges
export AMS_JOBNAME=DoNotUseCharges
rm -rf $AMS_JOBNAME.results
$AMSBIN/ams << eor</pre>
Task GeometryOptimization
GeometryOptimization
  Convergence Step=1.0e-3
End
System
  Atoms
     C 0.0 0.0 0.0
     0 1.13 0.0 0.0
     C 0.0 0.0 2.1
     0 1.13 0.0 1.9
   End
End
Engine ForceField
EndEngine
eor
# Now that we have charges from our previous fancy calculation, let us use them for a_
→ UFF geometry optimization
\# * The name of the file depends on the engine used (in this case dftb.rkf)
# * The geometry does not need to be the same
export AMS_JOBNAME=LoadCharges
rm -rf $AMS_JOBNAME.results
$AMSBIN/ams << eor</pre>
Task GeometryOptimization
GeometryOptimization
  Convergence Step=1.0e-3
End
System
  Atoms
    C 0.0 0.0 0.0
     0 1.13 0.0 0.0
     C 0.0 0.0 2.1
     0 1.13 0.0 1.9
  End
End
Engine ForceField
  Verbosity Verbose
```

```
LoadCharges File=CalculateCharges.results/dftb.rkf
EndEngine
eor
# Finally let us use the charge guessing, by default dftb is used for charge guessing
export AMS_JOBNAME=GuessCharges
rm -rf $AMS_JOBNAME.results
$AMSBIN/ams << eor</pre>
Task GeometryOptimization
GeometryOptimization
  Convergence Step=1.0e-3
End
System
  Atoms
     C 0.0 0.0 0.0
     0 1.13 0.0 0.0
     C 0.0 0.0 2.1
     0 1.13 0.0 1.9
   End
End
Engine ForceField
  Verbosity Verbose
  GuessCharges True
EndEngine
eor
```

5.4 Example: load atom types from a previous run

You can load the atom types from another force field calculation.

Observe that this is done with the LoadForceFieldAtomTypes inside the System block, see the System definition section of the AMS manual.

```
Download LoadTypes.run
```

```
#!/bin/sh
# In this example we use the amber forcefield that cannot guess atom types
# First we "calculate" the types
# We do this by specifying them as atom attributes (ForceField.Type)
export AMS_JOBNAME=CalculateTypes
rm -rf $AMS_JOBNAME.results
```

\$AMSBIN /ams << eor Task GeometryOptimization						
Properties Charges=yes						
System						
C C	1.94807	3.58290	-0.58162	ForceField.Charge=0.0	ForceField.	
↔ Type=CT H	1.69949	4.49893	-1.05273	ForceField.Charge=0.0	ForceField.	
\rightarrow Type=HC	2.99455	3.17964	-0.86304	ForceField.Charge=0.0	ForceField.	
$rac{}{}$	0.94659	2.40054	-0.92364	ForceField.Charge=0.0	ForceField.	
rype cr C	1.94191	3.61595	1.09448	ForceField.Charge=0.0	ForceField.	
$N \rightarrow Type=N2$	-1.74397	-3.46417	0.31178	ForceField.Charge=-0.9530	ForceField.	
C ↔Tvpe=CA	-1.00720	-2.20758	0.33536	ForceField.Charge=0.8185	ForceField.	
C ↔Tvpe=CM	-1.66928	-1.00652	0.31001	ForceField.Charge=-0.5215	ForceField.	
C ↔Tvpe=CM	-0.92847	0.25653	0.34895	ForceField.Charge=0.0053	ForceField.	
N ⇔Type=N*	0.43971	0.26735	0.38232	ForceField.Charge=-0.0484	ForceField.	
N ⇔Type=NC	0.36409	-2.20477	0.28992	ForceField.Charge=-0.7584	ForceField.	
C ⇔Type=C	1.09714	-0.95413	0.22469	ForceField.Charge=0.7538	ForceField.	
H ⊶Type=H	-2.89781	-3.50815	0.31746	ForceField.Charge=0.4234	ForceField.	
Н ⇔Туре=Н	-1.21484	-4.49217	0.31721	ForceField.Charge=0.4234	ForceField.	
H ⊶Type=HA	-2.80940	-0.93497	0.30550	ForceField.Charge=0.1928	ForceField.	
H ⇔Type=H4	-1.55324	1.21497	0.33885	ForceField.Charge=0.1958	ForceField.	
C ⊶Type=CT	1.23309	1.44017	0.30994	ForceField.Charge=0.0066	ForceField.	
0 ⊶Type=0	2.58277	-1.01636	0.23914	ForceField.Charge=-0.6252	ForceField.	
H ⊶Type=H2	2.37276	1.25557	0.29984	ForceField.Charge=0.2902	ForceField.	
0 ⊶Type=OS	1.02358	2.43085	1.50880	ForceField.Charge=-0.2033	ForceField.	
Н ⇔Туре=НС	1.17136	1.95097	-1.87367	ForceField.Charge=0.0	ForceField.	
H ⇔Type=HC	-0.10600	2.77333	-0.80348	ForceField.Charge=0.0	ForceField.	
H ⇔Type=H1	1.62170	4.54039	1.51392	ForceField.Charge=0.0	ForceField.	
H ←Type=H1 End End	2.99608	3.28749	1.41345	ForceField.Charge=0.0	ForceField.	

```
Engine ForceField
 Type Amber95
EndEngine
eor
# Now we load the types from the previous result
# The result should be identical to the first calculation
export AMS_JOBNAME=LoadTypes
rm -rf $AMS_JOBNAME.results
$AMSBIN/ams << eor</pre>
Task GeometryOptimization
System
  Atoms
          1.94807 3.58290 -0.58162
    С
          1.69949 4.49893 -1.05273
    н
    Н
          2.99455 3.17964 -0.86304
    С
          0.94659 2.40054 -0.92364
    С
          1.94191 3.61595 1.09448
    Ν
         -1.74397 -3.46417 0.31178
         -1.00720 -2.20758 0.33536
    С
    С
         -1.66928 -1.00652 0.31001
    С
          -0.92847 0.25653 0.34895
          0.43971 0.26735 0.38232
    Ν
          0.36409 -2.20477 0.28992
    Ν
           1.09714 -0.95413 0.22469
    С
          -2.89781 -3.50815 0.31746
    Н
          -1.21484 -4.49217 0.31721
    Н
          -2.80940 -0.93497 0.30550
    Н
    н
          -1.55324 1.21497 0.33885
    С
          1.23309 1.44017 0.30994
    0
          2.58277 -1.01636 0.23914
    Н
          2.37276 1.25557 0.29984
    0
          1.02358 2.43085 1.50880
          1.17136 1.95097 -1.87367
    Н
          -0.10600 2.77333 -0.80348
    Н
          1.62170 4.54039 1.51392
    Η
           2.99608 3.28749 1.41345
    Η
  End
  LoadForceFieldCharges file=CalculateTypes.results
  LoadForceFieldAtomTypes file=CalculateTypes.results
End
Engine ForceField
  Type Amber95
  Verbosity Verbose
EndEngine
eor
```

5.5 Example: using amber or tripos

Download 2h2o.run

```
#! /bin/sh
AMS JOBNAME=amber95 $AMSBIN/ams << eor
Task SinglePoint
System
 Atoms
        0.0000 0.0000
                                0.0000
                                                                      ForceField.
  0
                                             ForceField.Type=OW

→Charge=-0.8340
  н -0.5220
                      0.2660
                                -0.7570
                                             ForceField.Type=HW
                                                                      ForceField.
\leftrightarrow Charge=0.4170
     н -0.5220
                      0.2660
                                0.7570
                                             ForceField.Type=HW
                                                                      ForceField.
\hookrightarrow Charge=0.4170
                      -3.2000
     0.0000
                                0.0000
                                             ForceField.Type=OW
                                                                      ForceField.
⇔Charge=-0.8340
        0.0570
                      -2.2440
                                 0.0000
                                             ForceField.Type=HW
                                                                      ForceField.
     H

→Charge=0.4170
     н 0.9110
                      -3.4950
                                0.0000
                                             ForceField.Type=HW
                                                                      ForceField.
\hookrightarrow Charge=0.4170
 End
 BondOrders
    1 2 1.0
       1 3 1.0
       4 5 1.0
       4 6 1.0
 End
End
Engine ForceField
 Type Amber95
EndEngine
eor
AMS_JOBNAME=tripos5.2 $AMSBIN/ams << eor
Task SinglePoint
System
 Atoms
     0
           0.0000
                      0.0000
                                0.0000
                                             ForceField.Type=0.3
                                                                    ForceField.
→Charge=-0.8340
        -0.5220
                      0.2660
                                -0.7570
                                             ForceField.Type=H
                                                                     ForceField.
     Η
\hookrightarrow Charge=0.4170
     Η
        -0.5220
                      0.2660
                                0.7570
                                             ForceField.Type=H
                                                                     ForceField.
→Charge=0.4170
     0.0000
                      -3.2000
                                0.0000
                                             ForceField.Type=0.3
                                                                    ForceField.
→Charge=-0.8340
     н 0.0570
                      -2.2440
                                0.0000
                                             ForceField.Type=H
                                                                     ForceField.
⇔Charge=0.4170
     Н
          0.9110
                      -3.4950
                                 0.0000
                                             ForceField.Type=H
                                                                     ForceField.
\hookrightarrow Charge=0.4170
```

```
End
BondOrders
1 2 1.0
1 3 1.0
4 5 1.0
4 6 1.0
End
End
End
Engine ForceField
Type Tripos5.2
EndEngine
eor
```

5.6 Example: calculate some simple properties for water

Download water_properties.run

```
#! /bin/sh
$AMSBIN/ams << eor</pre>
Task GeometryOptimization
Properties
 BondOrders Yes
 Charges Yes
 DipoleMoment Yes
NormalModes Yes
End
System
 Atoms
      0 0.0000 0.0000 0.0000 ForceField.Type=OW ForceField.Charge=-0.8340
      H -0.5220 0.2660 -0.7570 ForceField.Type=HW ForceField.Charge=0.4170
      H -0.5220 0.2660 0.7570 ForceField.Type=HW ForceField.Charge=0.4170
 End
 BondOrders
    1 2 1.0
       1 3 1.0
 End
End
Engine ForceField
 Type Amber95
 ForceFieldFile $AMSRESOURCES/ForceFields/amber95.ff
EndEngine
eor
echo "MM Charges:"
$AMSBIN/amsreport ams.results/forcefield.rkf -r "AMSResults%Charges"
```

5.7 Example: single point for ammonia with TRIPOS

```
Download Ammonia_Tripos.run
```

```
#!/bin/sh
#
# This is a technical example comparing analytical and numerical gradients for the
↔ Tripos forcefield
# The allowMissingParameters is a trick to run this molecule even though it is not.
\rightarrow fully supported by the definition file
#
for num in no yes
do
export AMS_JOBNAME=tripos3.num=$num
rm -rf $AMS JOBNAME.results
$AMSBIN/ams << eor</pre>
Task SinglePoint
Properties Gradients=yes
EngineDebugging IgnoreGradientsRequest=$num IgnorePreviousResults=true
NumericalDifferentiation NuclearStepSize=1.0e-4
System
 Atoms
         0.0000000 0.0000000
                                          0.26448000 ForceField.Charge=0.0
  Ν
→ForceField.Type=N.2
                                          -0.08816000 ForceField.Charge=0.0
  н -0.48379000
                          0.83795000
→ForceField.Type=H
  н -0.48379000
                          -0.83795000
                                           -0.08816000 ForceField.Charge=0.0
←ForceField.Type=H
  Н 0.96758000
                          -0.00000000
                                          -0.08816000 ForceField.Charge=0.0
↔ForceField.Type=H
 End
 BondOrders
       1 2 1.0
       1 3 1.0
        1 4 1.0
 End
End
Engine ForceField
Type Tripos5.2
 AllowMissingParameters yes
EndEngine
eor
done
```

REQUIRED CITATIONS

When you publish results in the scientific literature that were obtained with programs of the AMS package, you are required to include references to the program package with the appropriate release number, and a few key publications.

- For calculations with the UFF4MOF parameters: M.A. Addicoat, N. Vankova, I.F. Akter, and T. Heine, *An extension of the Universal Force Field to Metal-Organic Frameworks*, J. Chem. Theory Comput. 10, 880-891 (2013) (https://doi.org/10.1021/ct400952t)
- For calculations with the UFF4MOFII parameters: D.E. Coupry, M.A. Addicoat, and T. Heine, *An Extension of the Universal Force Field for Metal-Organic Frameworks*, J. Chem. Theory Comput. 12, 5215-5225 (2016) (https://doi.org/10.1021/acs.jctc.6b00664)

6.1 External programs and libraries

Click here for the list of programs and/or libraries used in the AMS package. On some platforms optimized libraries have been used and/or vendor specific MPI implementations.

SEVEN

PARAMETER FILES

The parameters of a forcefield are defined via one or more files, automatically set when using a standard type (page 9). One way to change it is to use a parametrization made by someone else, that works better for systems of your interest.

A far more advanced use is to tweak an existing file, or create a new one, possibly to improve the results for specific systems of interest. For such a project the PARAMS tool might be helpful.

Here we distinguish the UFF and the AMBER case.

7.1 UFF parameters

The parameter set used by UFF can be changed via the UFF (page 14) key block. Aside from the standard UFF forcefield, we ship two parameter sets for Metal-Organic Frameworks:

UFF4MOF parameters

We ship the extended parameter set for Metal-Organic Frameworks created by M.A. Addicoat et al. (2013). Select the UFF4MOF_general_db, UFF4MOF_elements_db and UFF4MOF_mmatomtypes_db files to use these parameters, and check that the proper atom types are detected for your system or set them manually. Please see [7 (page 55)] for details on the parameters.

UFF4MOFII parameters

We ship a second extended parameter set for Metal-Organic Frameworks created by D.E. Coupry et al. (2016). Select the UFF4MOFII_general_db, UFF4MOFII_elements_db and UFF4MOFII_mmatomtypes_db files to use these parameters, and check that the proper atom types are detected for your system or set them manually. Please see [8 (page 55)] for details on the parameters.

7.1.1 User-modified force fields (expert option)

Finding good UFF parameters can be a challenging task, and any results with modified parameters should be checked very carefully. SCM has no experience with this, and the parameters supplied for UFF have not been generated by us. Feel free to test new parameters, and feel free to let us know if you have a good working set for a specialized situation.

General parameters file

The general_db file (\$AMSHOME/atomicdata/UFF/general_db) contains all the parameters used to calculate the forces and energies. The format is:

MMAtomType, ri, phi, xi, di, psi, zmm, vsp3, vsp2, chi, nc.

The items in the list are:

• MMAtomType: name, max 5 characters

- ri: Valence Bond [Å]
- phi: Valence Angle [Degree]
- xi: Nonbond Distance [Å]
- di: Nonbond Energy [kcal/mol]
- psi: Nonbond scale [Number]
- zmm: Effective Charge [Charge]
- vsp3: sp3 Torsional Barrier [kcal/mol]
- vsp2: sp2 Torsional Barrier [kcal/mol]
- chi: Electronegativity
- nc: Number of directly attached atoms, aka coordination number. This is required for counting the number of possible dihedrals, and is defined only for the sp2 and sp3 centers (types 2, R, and 3)

The current set of parameters comes from the deMonNano program, and is a combination of published parameters and fitted data to fill in the gaps. The deMonNano documentation says the following about the parameters:

```
Implementation of the Universal Force Field (UFF) in deMonNano
As far as possible, UFF molecular mechanics forcefield in deMon
follows the published forcefield definition in [1]. In several
cases, the definitions and expressions in [1] are not consistent
with the published applications of the forcefield [1,5,6].
In those cases, an attempt was made to correct the errors and omissions,
using information from [2].
The following changed were made, compared to the published UFF
forcefield description (all equation and page numbers refer to [1]).
1. Sign error in Eq. 2 (equilibrium bond length) was corrected
  - electronegativity correction must be negative!
2. Equilibrium valence angle for 0_3_z was corrected from 146.0
  degree to 145.45 degree.
3. Bending periodicity (Eq. 10) for linear coordination was
  corrected from 1 to 2.
4. Sign errors were corrected in eqs. 13 and and unnumbered equation
   for the beta parameter (between eqs. 13 and 14).
5. The reference value of the UFF amide force constant, of 105.5
  kcal/mol/rad**2 (p. 10028) is wrong. The results are consistent
  with the force constant of 211.0 kcal/mol/rad**2.
6. Equilibrium torsional angle for a bond between a group-6A atom
   (oxygen ...) and an sp2 atom (90 degree) is wrong (p. 10028).
   It should be 0 degree.
7. The conditional for the special-case sp2-sp3 torsion (p. 10029)
   is wrong, and should be inverted - see [4].
8. The overall shape of the UFF torsional potential degenerates to
```

	a Heavyside function when one of the bond angles becomes linear, leading to failures in geometry optimization and force constant evaluation. The UFF torsional term was augmented with a smooth masking function, to avoid this.							
9.	. UFF inversion potential is not defined in [1] for group 5A elements (from phosphorus down). Taking the equilibrium inversion coordinate of 87 degree, and the suitable expressions for the cosine weights (see uff_get_inversion_shape in "uff_database.f90") appears to reproduce published UFF structures and energetics.							
The to ref	e following reproduce Fer to the	g atom types published UI \$deMon/examp	have been fully tested, and are believed FF forcefield results exactly. The examples ples/test.mm directory.					
<i>I</i>	tom type	Example	Description					
	A13	alme3tma	Trivalent aluminum					
	As3+3	asf3	Trivalent arsenic					
	B 2	bcl3	Planar (sp2) boron					
	B 3	b2h5nme2	Tetrahedral (sp2) boron, including					
	2_0	200100	charge transfer adducts and borohydrates					
	Br	bbr3	Univalent bromine					
	C 1	c2h2, co	Linear (sp) carbon					
	C_2	acetone	Planar tricoordinated (sp2) carbon					
	с <u>з</u>	c2h6	Tetrahedral (sp3) carbon					
	C_B	c4h6	Resonant, variable bond order (sp2) carbon.					
	C1	socl2	Univalent chlorine					
	F	sof2ncl	Univalent fluorine					
	- <u> </u> Ge3	geh3ogeh3	Tetrahedral (sp3) germanium					
	Н	h20	Normal, non-bridging hydrogen					
	нь	b2h5nme2	Bridging hydrogen, for use in boranes					
			(NOT SUITABLE FOR H-BONDS!)					
	I	bi3	Univalent iodine					
	N 1	ch3cn	Monocoordinated (sp) nitrogen, triple bond					
	N 2	ch3n2ch3	Dicoordinated (sp2) nitrogen, single-double bond					
	N 3	ch3nh2	Amine (sp3) nitrogen, three single bonds					
		b2h5nme2	Charged amine (sp3) nitrogen, four single bonds					
	_		(THIS IS NOT A STANDARD UFF TYPE!)					
	N_R	c5h5n	Resonant planar (sp2) nitrogen, for use in					
			aromatics and amides. For amides, use 1.41 bond order!					
	0_1	СО	Special "co" type, one triple bond.					
	0_2	acetone	One-coordinated (sp2) oxygen, one double bond.					
	0_3	h2o	Two-coordinated (sp3) oxygen, two single bonds					
	0_3_z	sih3osih3	Special two-coordinated oxygen, for use in Si-O bonds					
	O_R	c4h4o	Resonant planar (sp2) oxygen, also for use in nitro groups and such.					
	P_3+3	ph3	Pyramidal (sp3) phosphorus, three single bonds					
	P_3+5	p407	Tetrahedral hypervalent phosphorus					
	P_3+q	bh3ph3	Dative tetrahedral (sp3) phosphorus, watch for					
			the bond order!					
	S_3+2	ch3sch3	Bent two-coordinated sulfur (sp3), two single bonds					
	S_3+4	socl2	Pyramidal three-coordinated hypervalent sulfur					
	S_3+6	so2cl2	Tetrahedral four-coordinated hypervalent sulfur					

Se3+2 h2se Bent two-coordinated (sp3) selenium Si3 si4o4h8 Tetrahedral silicon
Additionally, parameter sets for the following atom types are believed be complete, and may be expected produce results identical to the published UFF data: Li, Na, K_, Rb, Cs (Note that UFF does not specify atomic charges - it is your responsibility to assign those, if charges are needed!)
For the remaining atom types, UFF definition [1] relies on an unpublished set of electronegativities [2]. In deMon, these values were replaced by Pauling electronegativities, scaled to fit published UFF electronegativities. This can be expected to produce small deviations in bond lengths and bond angles, compared to published UFF results.

If you wish to use other parameters, you should copy the general_db file, and rename it. This new file can also be placed outside of \$AMSHOME/atomicdata/UFF.

Elements file

The elements_db file holds all the elements known to UFF. Keep in mind that these are not the MMAtomTypes, but pure chemical elements. The table contains for every element: atomic number, symbol, minimal valence number, maximum valence number, minimal bond order, maximal bond order. The data in the elements_db is mainly used for cleaning up the Pauling bond orders guessed by UFF, and will probably not need to be modified.

MM Atom Types file

The mmatomtypes_db file contains the matching rules for assigning MM atom types to chemical elements, based on their valence number, and the number of neighbor (bonded) atoms. The current implementation of UFF is limited to 6 MM atom types per element. The table contains for every MM atom type: Number of the element it belongs to, the i-th type of this element, the valence number corresponding to this MM atom type, number of neighbors this MM atom type has, the name of this MM atom type. The naming convention follows the original UFF paper [1]:

A five-character mnemonic label is used to describe the atom types. The first two characters correspond to the chemical symbol; an underscore appears in the second column if the symbol has one letter (e.g., N_ is nitrogen, Rh is rhodium). The third column describes the hybridization or geometry: 1 = linear, 2 = trigonal, R = resonant, 3 = tetrahedral, 4 = square planar, 5 = trigonal bipyramidal, 6 = octahedral. Thus N_3 is tetrahedral nitrogen, while Rh6 is octahedral rhodium. The forth and fifth columns are used as indicators of alternate parameters such as formal oxidation state: Rh6+3 indicates an octahedral rhodium formally in the +3 oxidation state, e.g., Rh(NH3)_6^3+. H_b indicates a bridging hydrogen as in B2Hs O_3_z is an oxygen suited for framework oxygens of a zeolite lattice. P_3_q is a tetrahedral four-coordinate phosphorus used to describe organo-metallic coordinated phosphines.

You can copy the mmatomtypes_db and change it if you need to modify the atom typing behavior of UFF.

7.2 AMBER parameters

If you want to use a non-standard forcefield you can specify the ForceFieldFile (page 14).

Currently two formats are supported for non-uff forcefields. The first is the ADF/SCM related ".ff" format. The other is the much more widely used AMBER ".dat" format.

7.2.1 AMBER forcefield file

The format of the AMBER ".dat" files is described here http://ambermd.org/FileFormats.php#parm.dat. Currently the following features are not supported

- Parameter modification files
- The torsions have extra info about 1-4 scaling for nonbonded terms, ignored
- AMBER term 8: INPUT FOR H-BOND 10-12 POTENTIAL PARAMETERS
- AMBER term 9: INPUT FOR EQUIVALENCING ATOM SYMBOLS FOR THE NON-BONDED 6-12 PO-TENTIAL PARAMETERS

7.2.2 SCM forcefield file

An example of this is \$AFDHOME/atomicdata/ForceField/amber95.ff. It has a flexible format and is fully self documented. It is not used outside of the ADF/SCM context.

The file must contain the force field parameters and the MM potential for each kind of MM interaction. Although predefined force field files (AMBER and SYBYL) are provided, these force field files can be customized. For example, one may want to change a particular force constant, or one may need to introduce a new atom type, for instance a transition metal. This section provides a detailed description of the force field file.

Format

The force field file is keyword driven with each key block defining parameters for each molecular mechanics interaction type such as bond types, angle types, torsion types, ... etc. The key block begins with the keyword, such as "BONDS".

The lines that actually contain the parameters are sandwiched between two lines that contain "======". The lines between the keyword and the first line containing "======" are not read by the program. These lines are intended for the user to define the columns as shown below. There can be as many lines between the keyword and the first '=====' as needed.

Example:

Force Field Atom types

The force field atom types are the labels given to each atom in the real system, which determine all interaction parameters involving that atom.

There are some limitations to the force field label types that the user can specify:

- Labels can be a maximum of four characters long, with no spaces.
- The atom types are case sensitive.
- They can contain letters, numbers and other characters except ',' '.' or '=' and tabs.

Example of atom types that are not compatible with the program: C.3, C 3, C=3, C_sp3, *

Examples of atom types that are correct: C_3, C3, Csp3, and C*

Wild Cards

Wild cards can be specified with the asterisk, '*'. Wild cards can be specified for angles, torsions and out-of-plane bends. Please refer to the specific sections for the limitations.

CAUTION: When using wild cards, place the wild cards at the beginning of the data section, beginning with the parameters with the most wild cards and ending with those that posses the least wild cards.

Example:

•	C_3	•	100.310	111.000	two wild cards
•	C_3	C_3	100.310	111.000	one wild card
C_2	C_3	C_3	100.310	111.000	no wild cards

If this ordering is not followed, then the wild card parameters will over-ride the specific parameters.

Miscellaneous Notes

- Do not remove the '=====' separator lines.
- Units are in kcal/mol, Angstroms, degrees, amu unless otherwise specified
- Sections can be in any order; i.e. BENDS can come before BONDS.
- All keywords are case sensitive and most are in ALL-CAPS
- Input is all free format
- Blank lines will be ignored
- Comment lines can be added to parameter data sections by beginning the line with the '#' symbol.

Example:

```
H H 1.0080
HC H 1.0080
# example of comment line denoted with # mark.
H1 H 1.0080
H2 H 1.0080
```

A (partial) Example File

Here we provide an example force field file to illustrate the format of the file. Only a limited number of parameters are included. A detailed description of each section of the force field file is provided in the next section.

N_2 1 O_3 0	N 14. O 15.	0070 9990 ====		
BONDS Ebond	= 0.5*K(r-:	ro)**2		
Atoms pot i – j type	K R	NOTES		
C_2 C_2 1 C_2 C_3 1 C_3 C_3 1 C_3 N_2 1	1340.00 1 639.00 1 633.60 1 760.20 1	.335 WHITE_77 .501 WHITE_75 .540 * .440 *		
BENDS Ebend	= 0.5*k(a-a	ao)^2	_	
Atoms i - j - k	pot type 1	K theta	NOTES	
* C_2 * * C_3 * * C_ar * C_ar C_2 N_: C_3 C_3 C_	1 1 2 1 3 ar 1	78.79 120.00 65.66 109.50 78.79 120.00 131.31 120.00 78.79 109.50	WHITE_77 WHITE_77 * *	
TORSIONS				
Atoms i - j - k	po [;] 1 tyj	t pe k p 	er 	NOTES
* C_2 C_: * C_1 C_: C_2 C_2 C_: C_3 C_2 C_: H C_2 C_: * C_ar C_: * C_2 C_: * C_2 C_: C_3 C_3 C_: C_2 C_2 C_: C_3 C_3 N_: & C_3 C_3 C_: * C_3 C_3 C_: *	2 * 2 3 * 2 3 * 2 3 * 2 3 * 2 3 * 2 ar C_ar 2 3 C_2 2 3 C_3 2 3 C_3 0 3 C_2 2 2 C_2 1 2 N_2 1	12.5000 - 0.0000 0.1260 - 0.1260 0.2740 2.3500 - 0.1260 0.1260 0.1260 0.1260 - 0.5000 0.1260 - 0.5000 0.1500 0.5300 0.1000 0.0700	2.0 1.0 3.0 3.0 3.0 2.0 3.0 3.0 3.0 3.0 4 180.0 1 0.0 4 0.0 2 0.0	no torsion potential This and the next 3 lines are part of a multi-component Fourier potential '&' is a continuation marker
OUT-OF-PLANE				
Atoms i - j - k -	pot 1 type 1	 K NOTES ===		
* * C_2 * * N_2 H H N_2 C_3 H N_2	* 2 * 2 C_3 2 * 2	480 TRIPOS_85 120 TRIPOS_85 120 TRIPOS_85 120 TRIPOS_85		

Section by Section Description

FORCE_FIELD_SETTINGS Key block (required) This key block specifies various global options for the force field file, mostly concerned with the treatment of the non-bonded potentials.

- **ELSTAT_1-4_SCALE & VDW_1-4_SCALE** Most force fields scale the non-bonded interactions by a factor of 0.5 if the atoms are the terminal atoms of a defined torsion. This scaling factor, which is termed the 1-4 scaling factor, can also be different for the electrostatic potential and for the Van der Waals potentials and thus they are separately defined in the input.
- **VDW_DEFAULT_POTENTIAL** Only the Lennard Jones potential (option 1) is implemented. The Lennard Jones interaction energy between atoms A and B is defined as a function of the distance between atoms A and B (R^{AB}). The two parameters are D_0 and R_0 .

$$E_{VDW}(R^{AB}) = D_0 \left[\left(\frac{R_0}{R^{AB}} \right)^{12} - 2 \left(\frac{R_0}{R^{AB}} \right)^6 \right]$$

DIELECTRIC_CONSTANT This option is ignored.

BONDS Key block (required) This key block specifies the potential type and parameters for each kind of MM bond stretching interaction. An example is given below.

```
HC Zr 0 0.0 no potential found
```

The first two columns are the atom types (up to four characters long) and the third column is an integer specifying the potential type.

BOND potential type		constants required (in order)
0	no potential	none
	simple harmonic:	
1	E _b ^{ij} = 1/2 K (R _{ij} - R _o) ²	K, R _o
	AMBER95, Sybyl	

BENDS Key block (required) This key block specifies the potential type and parameters for each kind of MM bond angle interaction. An example is given below.

BEN	JDS						
Ato	oms		pot	k	ao	NOTES	
i -	- j	- k	type	(kcal/mol)	deg		
===							
*	CA	*	1	70.00	120.00	example of	f wild card
*	CA	CA	1	126.00	120.00		
CA	CA	N2	1	140.00	120.10	amber95 N	2-CA-CM
CA	CA	СТ	1	140.00	120.00	amber95	
===							

The first three columns specify the atom types and the fourth column is an integer specifying the potential type. The angle bend potential types are described in the table below with the additional constants required.

BEND		constants required (in
potential type		order)
0	no potential	none
	theta harmonic:	
1	$E_{\theta}^{ijk} = 1/2 \; K_{\theta} \; (\theta_{ijk} - \theta_{o})^{2}$	K_{θ}, θ_0 (θ in degrees)
	AMBER95, SYBYL	

Notice that wild cards can be specified for both terminal positions of the bend or just one as in the example above. It is important that the parameters be ordered from the least specific (those containing the most wild cards) to the most specific parameters.

TORSIONS Key block (required) This key block specifies the potential type and parameters for each kind of MM bond torsion interaction. For the bond stretching and bending potentials, only one potential has to date been implemented since both AMBER and SYBYL both use simple harmonic potentials. However, AMBER and SYBYL use different functional forms to represent the torsion potentials, each with their own set of parameters. The AMBER and SYBYL torsional potentials used in this program are defined in the table below.

TORSION		constants required (in
potential type		order)
0	no potential	none
	$AMBER: E_{tors} = \frac{K_{tor}}{N_{tors}} [1 + \cos(n\phi - \phi_o)]$	K _i , n _i (periodicity-
1		integer), φ _{o,i} (phase
		shift)
	SYBYL:	
2	$F = -\frac{1}{2}K \left[1 + \cos(n\phi)\cos(n\phi)\right]$	K, s
	$\sum_{tors} - \frac{1}{2} \kappa_{tor} \left[1 + \cos(n\varphi_o) \cos(n\varphi)\right]$	

Notice that the two potentials have a different number of parameters. For example, when the program reads 'potential type' number 1, it will expect three parameters K_i , n_i , $\phi_{o,i}$. Further notice that the AMBER torsional potential is a sum of Fourier components (this is what the index i refers to).

Atoms pot						per. s	shift		
— j	– k –	1		type	k	n	to	NOTES	
 *	===== CV	NB	*	1	2.4000	2	180.0	JCC,7,(1986),230	
*	CW	NA	*	1	1.5000	2	180.0	JCC,7,(1986),230	
S.					0.1000	3	0.0		
2	Ν	СТ	С	1	0.2000	2	180.0		
N	СТ	С	Ν	1	0.4000	4	180.0		
5.					1.3500	2	180.0		
5.					0.7500	1	180.0		
СТ	СТ	Ν	С	1	0.5000	4	180.0		

Below is an example of the TORSIONS key block, made up of AMBER force field types.

Most AMBER torsion potentials are not specific to all four atoms i-j-k-l, but only on the central two, j-k. Wild cards are specified with the '*' symbol as illustrated above. Again, the ordering is important. The parameters should be ordered from least specific (those containing the most wild cards) to most specific. The AMBER torsion potential can be composed of more than one Fourier component for a single torsion potential. Additional Fourier components are specified with the '&' continuation symbol as in the example above. At the moment, up to 6 Fourier components are allowed. Notice that the individual components need not be specified in any particular order. In the above example key block, there are only 5 torsional potentials defined, not 8. Two of the potentials are composed of more than one Fourier component as indicated by the '&' continuation line. Below is an example of the TORSIONS key block for the SYBYL force field. Notice that the potential types are all '2'. There are fewer parameters and no multi component potentials. Also, some potentials are defined with two or only one wild card.

TORSIONS								
Atoms i - j	– k –	1		pot type	k	per	NOTES	
* * C_2 C_3	C_ar S_3 C_2 C_2	S_3 S_3 C_3 C_3	* * * *	2 2 2 2	1.0000 0.0000 0.1260 0.1260	3.0 2.0 -3.0 3.0	* EXP WHITE_77 WHITE_77	

								(continued from previous page)
Н	C_2	C_3	*	2	0.2740	3.0	*	
*	C_ar	C_ar	C_ar	2	2.3500	-2.0	*	
*	C_2	C_3	C_2	2	0.1260	3.0	WHITE_77	
*	C_2	C_3	C_3	2	0.1260	3.0	WHITE_77	
*	C_2	C_3	Н	2	0.2740	3.0	WHITE_77	
*	C_3	C_3	Н	2	0.3200	3.0	MC_88	
0_2	C_2	C_3	C_3	2	0.7000	-3.0	JL_ES_	
0_co	C_2	C_3	C_3	2	0.7000	-3.0	MAC_1	
C_2	C_3	C_3	C_2	2	0.0400	3.0	WHITE_77	
C_2	C_3	C_3	C_3	2	0.1260	3.0	WHITE_77	
=====							===	

One can also mix different potential types within the same force field file, as illustrated below. In this example, three are three potentials. The first two are SYBYL type potentials whereas the last one is a multi component AMBER potential.

```
Н
   C_2
         C_3
                     2 0.2740
                                  3.0
               *
   C_ar C_ar C_ar 2 2.3500
                                  -2.0
*
Ν
   СТ
         С
               Ν
                     1 0.4000
                                  4
                                        180.0
δŧ
                        1.3500
                                  2
                                        180.0
6
                        0.7500
                                  1
                                        180.0
```

OUT-OF_PLANE Key block (required) This key block specifies the potential type and parameters for each kind of MM out of plane bend. This potential is sometimes referred to as the inversion potential or improper torsions (depending on the force field). The potential types currently supported are provided in the table below.

out-of-plane potential type	description	constants required (in order)
0	no potential	none
1	AMBER: E _{inv} = K [1 + cos(nφ-φ ₀)]	K, n, φ_0 (n=2, φ_0 = 180° for planar, n=3, φ_0 = 120° for tetrahedral)
2	SYBYL: E _{oopl} = K d ² d is the distance of the plane in Å	к

An example of the key block for the AMBER type potentials is given below. It is important to realize that the atom k is the **atom k is the central atom**. (We have adopted the somewhat odd standard of AMBER in this respect).

OUT-OF-PLANE									
Atoms i - j	– k –	1		pot type	К	to ======	NOTES		
* * * *	* 02 N2 CT	CA CA CA N	H4 H5 O2 N2 CT	1 1 1 1	1.10 1.10 10.50 10.50 1.00	180.0 180.0 180.0 180.0 180.0	bsd.on C6H6 nmodes bsd.on C6H6 nmodes JCC,7,(1986),230 JCC,7,(1986),230 JCC,7,(1986),230		
CK =====	CB =====	N* =====	CT ======	1 ======	1.00	180.0			

atom(s)	type	e emin	rmin	alpha	NOTES
CA		0860	3.81600	12.00	amber95
НА		0150	2.91800	12.00	amber95
Ni – HA	2	0480	2.7	12.00	NOTE potential type
Ni - CA	D	0480	2.7	12.00	default potential
=======================================					

VAN DER WAALS Key block (required) This key block specifies the potential type and parameters for each kind of MM van der Waals interaction between two atoms. A sample key block is shown below:

The van der Waals key block is somewhat different than the previous key blocks, because generally not every atom pair is defined with its own parameters. Rather, the parameters are assigned on a per atom basis and then special combination rules are used to construct the parameters for each atom pair combination. For this reason, the type is defined separately in the FORCE_FIELD_SETTINGS key block, although currently only the Lennard-Jones 6-12 potential is implement, although currently only the Lennard-Jones 6-12 potential is implemented

For each type of van der Waals interaction, the program first scans the key block for pair specific parameters. The three sample lines below specify pair-specific potentials. The two atom types must be separated by a hyphen with spaces between the hyphen and the atom type. Following the specification of the atom pair, the potential type is defined. If D or d is specified here, then this means to use the default potential type. Following the potential type are the parameters needed for that potential type (see above table).

```
CA - CA 1 0.0860 3.81600 12.00 amber95
Ni - HA 0
Ni - CA D 0.0480 2.7 12.00 default potential type
```

If a pair specific parameter can't be found, then the program looks for individual atom parameters corresponding to each of the atom types in the pair. The pair specific parameters are then constructed from combination of the two individual atom parameters using the following combination rules:

VDW potential type		
1	Lennard-Jones 12-6	$D_{ij} = (D_i^*D_j)^{1/2}, R_{ij} = (R_i^+R_j)/2$
2	Exponential-6 or Buckingham	$D_{ij} = (D_i^*D_j)^{1/2}, R_{ij} = (R_i^+R_j)/2 \zeta_{ij} = (\zeta_i^*\zeta_j)^{1/2}$
3	Purely Repulsive	$D_{ij} = (D_i^*D_j)^{1/2}, R_{ij} = (R_i^+R_j)/2 \zeta_{ij} = (\zeta_i^*\zeta_j)^{1/2}$

When individual atom parameters are not used, no potential type is specified since the default potential type is always used. An example is given below.

```
CA 0.0860 3.81600 12.00 amber95
HA 0.0150 2.91800 12.00 amber95
```

The ability to define pair specific parameters is especially useful for those force fields that have different combination rules than used in the program. For example, Jorgensen's TIP3P water force field uses geometric averages for both D_{ij} and R_{ij} .

MASSES & ATOM LABELS Key block (required) This key block specifies the default masses for each MM atom type and the element label for each MM atom type. The masses are not used by the engine.

A sample key block is shown below:

```
MASSES & ATOM LABELS
_____
Ni
        Ni
                  58.70
         С
                  12.011
СМ
         С
CA
                  12.011
СТ
         С
                   12.011
НC
         Η
                   1.0079
ΗA
         Η
                   1.0079
    _____
___
```

The first column is the MM atom type, the second is the corresponding atom element and the third column is the mass of the atom type. The atoms do not have to be specified in any particular order.

CHARGES Key block (optional) This key block specifies the parameters for the charges on the atoms by atom type. NOTE: Charges can also be specified on a per atom basis in the System block of the AMS input file.

EIGHT

POTENTIAL SHAPES

Setting the Verbosity (page 10) to Verbose the engine prints the potential formula and the parameters used.

The ForceField engine has a couple of potentials defined.

• Stretch: harmonic

$$V^{\rm stretch/harm} = \frac{1}{2} f_c (r - r_0)^2$$

• Angle: harmonic and cyclic

$$V^{\text{bend/harm}} = \frac{1}{2} f_c (\phi - \phi_0)^2$$
$$V^{\text{bend/cycl}} = f_c \sum_{m=0}^n c_m \cos(m\phi)$$

• Torsions: cyclic, possibly linearly combined. The same torsion occurs more than once in the printed table, and the energies are added.

$$V^{\text{torsion/harm}} = \frac{1}{2} f_c (\phi - \phi_0)^2$$
$$V^{\text{torsion/cycl}} = f_c \sum_{m=0}^n c_m \cos(m\phi)$$

• Inversions: either angle or distance based. The angle based one depends on the order of the three atoms connected to the central atom. UFF averages over the three permutations.

$$V^{\text{inversion/harm}} = \frac{1}{2} f_c (\phi - \phi_0)^2$$
$$V^{\text{inversion/cycl}} = f_c \sum_{m=0}^n c_m \cos(m\phi)$$
$$V^{\text{inversion/amber}} = f_c (1 + \cos(2\phi - \phi_0))$$
$$V^{\text{inversion/dist}} = f_c d^2$$

• Dispersion: Lennard-Jones. Neglect up to second neighbors, possibly scale contribution from third neighbors.

$$V^{\text{dispersion/LJ}} = d \left((x/r)^{12} - 2 * (x/r)^6 \right)$$

• Coulomb: Neglect up to second neighbors, possibly scale contributions from third neighbors.

In general which formula is used depends on the parameter files. Note that the scaling of the third neighbors contributions is only possible when using .ff parameter files.

NINE

PERIODIC FORCEFIELD

The forcefield engine can be used to optimize the geometries of periodic systems. When specifying bonds, via the System%Bondorders key block, one should also specify the bonds that pass through a cell boundary. The GUI does this automatically. You can also simply set the key System%GuessBonds to true, and then UFF-guessed bonds will be used.

When you are having charges, Ewald summation will be used to calculate the Coulomb interaction. Currently this will be fairly slow for 1D and 2D periodic systems, as the classical Ewald trick cannot be applied.

REFERENCES

- A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, and W. M. Skiff, UFF, a Full Periodic Table Force Field for Molecular Dynamics Simulations, Journal of the American Chemical Society 114, 10024-10035 (1992). (https://doi.org/10.1021/ja00051a040)
- 2. A.K. Rappe, W.A. Goddard III, *Charge Equilibration for Molecular Dynamics Simulations*, The Journal of Physical Chemistry 95, 3358-3363 (1991). (https://doi.org/10.1021/j100161a070)
- 3. M. O'Keeffe and N.E. Brese, *Atom sizes and bond lengths in Molecules and Crystals*, Journal of the American Chemical Society 113, 3226-3229 (1991). (https://doi.org/10.1021/ja00009a002)
- 4. S.L. Mayo, B.D. Olafson, W.A. Goddard III, *DREIDING: A Generic Force Field for Molecular Simulations*, The Journal of Physical Chemistry 94, 8897-8909 (1990). (https://doi.org/10.1021/j100389a010)
- C.J. Casewit, K.S. Colwell, A.K. Rappe, *Applications of a Universal Force Field to Main Group Compounds*, Journal of the American Chemical Society 114, 10046-10053 (1992). (https://doi.org/10.1021/ja00051a042)
- 6. C.J. Casewit, K.S. Colwell, A.K. Rappe, *Application of a Universal Force Field to Organic Molecules*, Journal of the American Chemical Society 114, 10035-10046 (1992). (https://doi.org/10.1021/ja00051a041)

For calculations with the UFF4MOF parameters:

 M.A. Addicoat, N. Vankova, I.F. Akter, and T. Heine, An extension of the Universal Force Field to Metal-Organic Frameworks, J. Chem. Theory Comput. 10, 880-891 (2013) (https://doi.org/10.1021/ct400952t)

For calculations with the UFF4MOFII parameters:

D.E. Coupry, M.A. Addicoat, and T. Heine, An Extension of the Universal Force Field for Metal-Organic Frameworks, J. Chem. Theory Comput. 12, 5215-5225 (2016) (https://doi.org/10.1021/acs.jctc.6b00664)

ELEVEN

KEYWORDS

11.1 Links to manual entries

forcefield:

- AllowMissingParameters (page 14)
- AntechamberIntegration (page 7)
- AntechamberTask (page 7)
- *BondsUsage* (page 10)
- CheckDuplicateRules (page 14)
- *EnergyTerms* (page 11)
- *EwaldSummation* (page 10)
- ForceFieldFile (page 14)
- GuessCharges (page 13)
- GuessChargesConfig (page 13)
- *LoadCharges* (page 13)
- NonBondedCutoff (page 9)
- *Type* (page 9)
- *UFF* (page 14)
- Verbosity (page 10)

11.2 Summary of all keywords

AllowMissingParameters

Type Bool

Default value No

Description When parameters are not found for bonds, angles, dihedrals, or inversions, the first entry in the database will be used.

AntechamberIntegration

Type Bool

Default value No

GUI name Automatic atom typing

Description EXPERIMENTAL: Use the Antechamber program to automatically determine atom types for the GAFF force field. This may run a geometry optimization with MOPAC under the hood in order to determine the charges (see keyword AntechamberTask), which might not work for very large systems.

AntechamberTask

Type Multiple Choice

Default value GeometryOptimization

Options [GeometryOptimization, SinglePoint]

Description If antechamber is envoked to guess atomtypes and charges (GAFF force field), select the task for charge guessing with MOPAC

APPLEnP

Type Block

Description Option for the APPLEnP force filed.

ThirdNeighborScaling

Type Float

Default value 0.8

Description Scaling factor for non-bonded interactions between atoms connected to 3rd order (via a dihedral).

BondsUsage

Type Multiple Choice

Default value Auto

Options [Input, None, Guess, Auto]

Description Controls what bonds are used by the engine. The choice auto means: guess in case there are no bonds. Guessing only happens at the first MD step, or first geometry optimization step.

CheckDuplicateRules

Type Bool

Default value Yes

Description The database could contain duplicate entries. For torsions this is a feature, and the potentials will be added. For all other terms this is no allowed, and if detected the program stops. One should fix the database or set the checking to false. As always the last entry will be used.

DoChargeCheck

Type Bool

Default value Yes

Description Check that the sum of atomic (partial) charges equals the total charge of the system.

EnergyTerms

Type Block

Description expert key, that allows you to disable specific energy terms.

Angle

Type Bool

Default value Yes

Description Whether to use angle (bend) energy.

Coulomb

Type Bool

Default value Yes

Description Whether to use coulomb energy.

Dispersion

Type Bool

Default value Yes

Description Whether to use dispersion energy.

Inversion

Type Bool

Default value Yes

Description Whether to use inversion energy.

Stretch

Type Bool

Default value Yes

Description Whether to use stretch energy.

Torsion

Type Bool

Default value Yes

Description Whether to use torsion energy.

EwaldSummation

Type Block

Description Configures the details of the particle mesh Ewald (PME) summation of the Coulomb interaction.

Alpha

Type Float

Default value -1.0

Description This parameter shifts the workload from real space (smaller alpha) to reciprocal space (larger alpha). Using a larger [Alpha] without decreasing [GridSpacing] may increase the error in the reciprocal-space contribution. Set to zero to disable the reciprocal-space Ewald part. Negative value means the [Alpha] will be determined automatically from [Tolerance].

Enabled

Type Bool

Default value Yes

Description Set to false to use real-space pair summation instead of the Ewald, which is the default and the only option for molecules, 1D and 2D periodic systems.

GridSpacing

Type Float

Default value 0.5

Unit Angstrom

Description Grid spacing in the particle mesh Ewald method. Smaller grid spacing will make the reciprocal energy calculation more accurate but slower. Using a larger [Alpha] value may require a smaller GridSpacing to be accurate.

RealSpaceCutoff

Type Float

Default value 0.0

Unit Angstrom

Description Set the cutoff value for the real-space summation. Zero means the internal defaults will be used depending on the [Alpha] (if Alpha=0 then the cutoff will be set to 50 Bohr, otherwise to 20 Bohr).

Tolerance

Type Float

Default value 1e-10

Description Value of the error function that should be used to determine the cutoff radius for real-space Ewald summation. Larger values will make the real-space summation faster but less accurate.

ForceFieldFile

Type String

Default value

GUI name Force field library

Description Path to the force field parameter file

ForceFieldPatchFile

Type String

Default value

GUI name Force field patch file

Description Path to the force field patch parameter file (additional parameters, missing from main file). Cannot be used when atomtypes are guessed.

GuessCharges

Type Bool

Default value No

Description Use another engine to calculate/guess the charges to be used by the force field.

GuessChargesConfig

Type Block

Description Guess charges to be used by the forcefield

EngineType

Type String

Default value dftb

Description Engine that can calculate or guess charges

LinearizationEnergyForRepulsion

Type Float

Default value 3.0

Unit Hartree

Description The Lennard Jones potential becomes extremely repulsive at short distances. The distance is determined where the potential reaches this threshold, for smaller distances a linear expression is used, reducing the repulsion.

LoadCharges

Type Block

Description Load charges from a file to be used as forcefield charges

File

Type String

Description Name of the (kf) file

Section

Type String

Default value AMSResults

Description Section name of the kf file

Variable

Type String

Default value Charges

Description variable name of the kf file

NonBondedCutoff

Type Float

Default value 15.0

Unit Angstrom

Description Distance beyond which the non-bonded pair interactions (Coulomb and Van der Waals) will be ignored. The interactions are smoothly damped starting from 0.9*NonBondedCutoff. Has no effect on the Coulomb term for periodic systems, as Ewald summation is used.

Туре

Type Multiple Choice

Default value UFF

Options [UFF, Amber95, GAFF, Tripos5.2, UserDefined]

Description Type of force field to be used

UFF

Type Block

Description Option for the UFF force filed.

AtomTypesFile

Type String

Default value mmatomtypes_db

Description Expert option: Select the file that defines how UFF determines the atom types

Database

Type String

Default value general_db

Description Expert option: Select the file that defines the UFF parameters per atom type

ElementsFile

Type String

Default value elements_db

Description Expert option: Select the file that defines the elements known to UFF

Library

Type Multiple Choice

Default value UFF

Options [UFF, UFF4MOF, UFF4MOF-II]

GUI name Force field library

Description Selects the used parameter library.

Verbosity

Type Multiple Choice

Default value Silent

Options [Silent, Normal, Verbose, VeryVerbose]

Description Controls the verbosity of the engine.

INDEX

Α

antechamber,7