
AMS Manual
Amsterdam Modeling Suite 2020

www.scm.com

May 12, 2021





CONTENTS

1 General 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 What’s new in the AMS driver? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 New in AMS2020.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 New in AMS2019.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 New in AMS2019.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Motivation and progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Input, execution and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Input, execution and output 7
2.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 General remarks on input structure and parsing . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.6 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.7 Including an external file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.8 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Shell script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Running AMS on compute clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Results directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Logfile ams.log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Binary output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Standard output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.5 AMS environment variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Driver level parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Python interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Pipe interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 AMSPipe protocol specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Low-level message encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Return messages and error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.2 AMS as a pipe master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.3 AMS as a pipe worker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Geometry, System definition 27
3.1 Geometry, Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

i



3.1.1 Modifying the geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Charge, atomic masses, input bond orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Homogeneous electric field and multipole charges . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Load a System from file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Atom attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 Force field related extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8.1 Load charges for a forcefield into regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8.2 Load forcefield atom types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Structure and Reactivity, Molecular Dynamics 39
4.1 Single point calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Bond energy calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Ground state energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Formation energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Atomization energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.4 Chemisorption energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.5 Atomic corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.6 Open shell systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.7 Impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Geometry optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Constrained optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Restraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Optimization under pressure / external stress . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Optimization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Quasi-Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
FIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
SCMGO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Limited-memory BFGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Conjugate gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.4 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Failure to converge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Restarting a geometry optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Transition state search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Linear Transit, PES scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.1 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Nudged Elastic Band (NEB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.2 Frozen atom constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.3 Optimizations and convergence criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.4 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.5 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Intrinsic Reaction Coordinate (IRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7.1 Method details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7.2 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.7.3 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8 Excited state optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.9 Molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.9.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.9.2 Constrained molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.9.3 (Re-)Starting a simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.9.4 Thermostats and barostats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Temperature and pressure regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

ii



4.9.5 Trajectory sampling and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.9.6 Lattice deformations (volume regimes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.9.7 Molecule Gun: adding molecules during simulation . . . . . . . . . . . . . . . . . . . . . . 92
4.9.8 Removing molecules during simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.9.9 Accelerated dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

The PLUMED library support in AMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Metadynamics for Conformer-Rotamer Ensemble Sampling (CREST-MTD) . . . . . . . . . . 99
Collective Variable-driven HyperDynamics (CVHD) . . . . . . . . . . . . . . . . . . . . . . 100
Temperature Replica Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Bond Boost Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.9.10 Non-equilibrium MD (NEMD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
T-NEMD for thermoconductivity: heat exchange . . . . . . . . . . . . . . . . . . . . . . . . 107

4.10 Grand Canonical Monte Carlo (GCMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.10.1 General info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.10.2 Method Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.10.3 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.10.4 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5 Gradients, Hessian, Stress tensor, Elasticity 121
5.1 Nuclear gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3 PES point character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4 Thermodynamics, gas phase Gibbs free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.5 Stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.6 Elastic tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.7 Numerical differentiation options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Vibrational Spectroscopy 131
6.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1.1 Where are the results? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.2 IR frequencies and normal modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.1 All vibrational Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Rescanning Imaginary modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.2 Symmetric Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.2.3 Mobile Block Hessian (MBH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2.4 Mode Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.5 Mode Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.6 Mode Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Input: Tracking methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Input: Selecting modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Input: Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.7 Selecting modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.2.8 Thermodynamics (ideal gas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Gibbs free energy change for a gas phase reaction . . . . . . . . . . . . . . . . . . . . . . . . 154
6.2.9 Moments of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2.10 Partial Vibrational Spectra (PVDOS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3 Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.4 (Resonance) Raman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

iii



6.4.1 Raman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.4.2 Resonance Raman: excited-state finite lifetime . . . . . . . . . . . . . . . . . . . . . . . . 160
6.4.3 Resonance Raman: VG-FC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.5 VROA: (Resonance) vibrational Raman optical activity . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.5.1 Engine ADF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.6 VCD: Vibrational Circular Dichroism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.6.1 Atomic polar tensor (APT) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.6.2 Analytical VCD in ADF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Vibrationally resolved electronic spectra 167
7.1 AH-FC: Adiabatic Hessian Franck-Condon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.1.1 FCF module: Franck-Condon Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Result: TAPE61 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.1.2 FCF example absorption and fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.1.3 FCF Example phosphorescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.2 VG-FC: Vertical Gradient Franck-Condon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Theory: Vibronic-Structure Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Theory: Vibronic-Structure Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Theory: Adiabatic excitation energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.2.2 Input: Vibronic-Structure all modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.2.3 Input: Vibronic-Structure Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Input: Restarting VST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2.4 Input: Vibronic-Structure Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2.5 Input: Excited State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.2.6 Input: Producing the spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8 Dipole moment, Polarizability, Bond orders 185
8.1 Charges, Dipole Moment, Polarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.2 Bond orders & Molecule detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9 Engines 189
9.1 Available engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.2 Summary of engine capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
9.3 External programs as engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.4 Toy engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.5 Engine add-ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.5.1 Dispersion corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.5.2 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.5.3 Non-isotropic external stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
9.5.4 Atom energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
9.5.5 Restraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10 Utilities 205
10.1 ChemTraYzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

10.1.1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
10.1.2 Graphical user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
10.1.3 Command line execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
10.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

10.2 Trajectory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
10.2.1 Radial Distribution Function (RDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

iv



Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

10.2.2 Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
10.2.3 Autocorrelation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

10.2.4 Diffusion Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
10.3 VCD Analysis: VCDtools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

10.3.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.3.2 General Coupled Oscillator Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.3.3 Available options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

11 Examples 219
11.1 Geometry optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

11.1.1 Example: Simple geometry optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
11.1.2 Example: Two-stage geometry optimization with initial Hessian . . . . . . . . . . . . . . . 219
11.1.3 Example: Periodic lattice optimization under pressure . . . . . . . . . . . . . . . . . . . . . 221
11.1.4 Example: Phase Transition Due To External Nonuniform Stress . . . . . . . . . . . . . . . 222
11.1.5 Example: Boron nitride optimization under external stress . . . . . . . . . . . . . . . . . . 223
11.1.6 Example: Graphene optimization under external stress . . . . . . . . . . . . . . . . . . . . 225
11.1.7 Example: Constrained optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

11.2 Transition state search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
11.2.1 Example: TS search starting from initial Hessian . . . . . . . . . . . . . . . . . . . . . . . 242
11.2.2 Example: PES scan and TS search for H2 on graphene . . . . . . . . . . . . . . . . . . . . 243

11.3 Nudged Elastic Band (NEB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
11.3.1 Nudged Elastic Band (NEB) Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

HCN isomerization reaction with NEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
H2 dissociation on graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Running multiple NEB calculations using PLAMS . . . . . . . . . . . . . . . . . . . . . . . 247

11.4 Intrinsic reaction coordinate (IRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
11.4.1 Example: IRC for HCN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
11.4.2 Example: TS and IRC for Claisen reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

11.5 PES scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
11.5.1 Example: Linear transit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
11.5.2 Example: 2D PES scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

11.6 Molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
11.6.1 Example: Simple MD for H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
11.6.2 Example: MD for a box of water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
11.6.3 Example: Lattice deformations in MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

11.7 Vibrational analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
11.7.1 Example: Mode Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
11.7.2 Example: Mode Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
11.7.3 Example: Vibronic-Structure Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

11.8 PES point properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
11.8.1 Example: Phonons for graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
11.8.2 Example: Phonons with isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
11.8.3 Example: User-defined Brillouin zone for phonon dispersion . . . . . . . . . . . . . . . . . 277
11.8.4 Example: Elastic tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

11.9 Pipe interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
11.9.1 Example: ASE calculator as a pipe worker . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
11.9.2 Example: AMS as a pipe worker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

12 Appendices 285
12.1 Extended XYZ file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

v



12.2 Developer options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
12.3 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

12.3.1 Schönfliess symbols and symmetry labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
12.3.2 Molecular orientation requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

13 Required citations 291
13.1 General references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
13.2 Feature references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

13.2.1 Frequencies, IR Intensities, Raman, VCD . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

14 External programs and Libraries 293

15 Keywords 295
15.1 Links to manual entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
15.2 Summary of all keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Index 373

vi



CHAPTER

ONE

GENERAL

1.1 Overview

AMS is the new driver program introduced in the 2018 release of the Amsterdam Modeling Suite. The job of AMS is
to handle all changes in the simulated system’s geometry, e.g. during a geometry optimization or molecular dynamics
calculation, using the so-called “engines” like ADF, BAND or DFTB for the calculation of energies and forces. In
summary, one might say that the AMS driver steers the engines across the potential energy surface.

Prior to the 2018 release of the Amsterdam Modeling Suite, what we now call engines used to be separate programs,
each with their own input and output files and formats. Starting with the 2018 release, the engines are only accessible
through the AMS driver program, that provides a unified interface to all of them.

1.2 What’s new in the AMS driver?

1.2.1 New in AMS2020.1

• ADF has been fully integrated as an AMS engine.

• New engines: MLPotential implementing several different type of machine learning (ML) potentials. A Hybrid
engine for combining other engines in QM/MM calculations. Enhanced ForceField engine (formerly UFF).

• Improvements to the Quasi-Newton geometry optimizer (page 47): Periodic systems can now be optimized in
delocalized coordinates. Better performance for systems made up of disconnected fragments.

• Geometry optimization can now be performed with frozen and equal strain constraints (page 46) for the lattice
degrees of freedom. This option is currently only available with the FIRE optimizer (page 50).

• Support for external electric fields (page 33): Homogeneous as well as multipole charges.

• Enhanced support for vibrational spectroscopy (page 129): (resonance) Raman, (resonance) vibrational Raman
optical activity, vibrational circular dichroism.

• The MD driver now supports time-dependent lattice deformations (page 89) as well as a method for accelerating
bonding reactions (Bond Boost method (page 105)).

• Reactive MD calculations with the AMS driver can now be analyzed with ChemTraYzer (page 205).

• It is now possible to selectively disable writing some parts of a MD trajectory (page 86) to save space.

• More trajectory analysis (page 206) options: autocorrelation functions (page 211) and diffusion coefficient
(page 215)

• The molecular composition analysis (page 186) can now be done with respect to an adsorption support region.

1

../ADF/index.html
../MLPotential/index.html
../Hybrid/index.html
../Hybrid/index.html
../ForceField/index.html


AMS Manual, Amsterdam Modeling Suite 2020

• The transition state search (page 55) task now allows the users to specify an approximate reaction coordinate
(TSRC).

• For the calculation of normal modes, the Mobile Block Hessian (page 134) method now allows to treat parts of
the system as rigid blocks.

• New coordinates for constrained geometry optimizations (page 44) and PES scans (page 58): Sum of distances
and difference of distances.

• Added the ability to include additional potential terms (i.e. springs) through the Restraints engine add-on
(page 201).

• A running AMS driver process can be used from Python through the new AMSWorker class in the PLAMS
library. The communication between PLAMS and the AMS driver happens via the new Pipe interface (page 21)
protocol.

• Introduced Regions (page 32) to simplify the input syntax for options that apply to a subset of atoms only.

• Symmetrization of systems from the input and the option to input a Z-matrix.

• Low frequencies contribution to thermodynamics properties (page 151) can be corrected using a free rotor
interpolation method.

1.2.2 New in AMS2019.3

• The Nudged elastic band method (NEB) (page 62) for finding minimum energy paths of transitions has been
added.

• The new PES point character property (page 122) can be used to quickly calculate a few of the lowest vibrational
modes of a system and to verify the success of a geometry optimization or transitions state search.

• Driver level parallelism (page 17) is now enabled and managed automatically, improving the performance and
scalability of many applications.

• A Mode Scanning (page 137) calculation can now be started automatically (page 133) for all modes within a
specific frequency range.

• Methods for the quick calculation of the vibrationally resolved electronic spectra (page 166): Vibronic-Structure
Refinement (page 178) and Vibronic-Structure Tracking (page 176).

• New geometry optimizer available: Limited-memory BFGS (page 53)

• Input keywords that expect lists of numbers can now be specified as ranges using a Python slice-like notation
(page 10). Input keywords that expect a single real number now also accept fractions (of integers).

• New option to include a non-isotropic external stress (page 199) for 1D,2D and 3D periodic systems. This can
be used to study structural deformation and mechanical properties of materials under non-isotropic stress.

• New add-on system (page 195) for manipulating and augmenting the results returned from the engines
(page 187):

1. Grimme’s D4 and D3 dispersion corrections can be used with any engine through the D4Dispersion and
D3Dispersion add-ons (page 196).

1.2.3 New in AMS2019.1

• Intrinsic Reaction Coordinate (IRC) Scan (page 69) in now available in the AMS driver for molecular and
periodic systems.

• Support for the Grand Canonical Monte Carlo (GCMC) (page 111) method has been added in the AMS driver.

2 Chapter 1. General

../plams/interfaces/amsworker.html
../plams/index.html


AMS Manual, Amsterdam Modeling Suite 2020

• Molecular composition analysis for molecular dynamics simulations (see tutorial)

• Collective Variable-driven Hyperdynamics (CVHD) (page 100)

• Molecule gun (page 92) and molecule sink (page 95) for molecular dynamics

• PLUMED library support (page 98) for MD analysis and a wide variety of free energy methods

• The initial symmetry of a system is enforced during geometry optimizations with the Quasi-Newton optimizer.

• Thermodynamic properties (page 151) (assuming an ideal gas) are automatically computed after normal modes
calculations.

• Partial vibrational density of states (PVDOS) (page 155) for normal modes.

• The system’s symmetry is used to accelerate numerical nuclear derivatives and to provide symmetry labels for
normal modes.

• The AMS driver starts up much faster, significantly speeding up scripting applications that launch AMS many
times.

• New tools for mode selective vibrational analysis:

1. Mode Scanning (page 137) (aka ADF’s ScanFreq)

2. Mode Refinement (page 138) (aka “Frequency range selection”)

3. Mode Tracking (page 141)

1.3 Motivation and progress

The Amsterdam Modeling Suite has grown substantially over the last decade, and in the 2017 release included pro-
grams implementing methods all the way from accurate density functional theory, through semi-empirical methods,
to fast reactive force fields. Many of these programs have originally been developed by academic groups and are now
maintained and expanded by SCM in collaboration with the original authors.

This rapid growth of the Amsterdam Modeling Suite had, however, led to a certain degree of unnecessary inhomogene-
ity within the suite: The input for the same task, e.g. a geometry optimization, differed quite a lot between the different
programs in the suite. While this problem was mostly hidden for users of the graphical interface, it constituted a bar-
rier for users of the new scripting frameworks such as PLAMS. Furthermore, the different programs produced rather
different output files for the same task, making the automated extraction of results unnecessarily difficult. Finally, and
most importantly, the rapid growth of the AMS suite had also led to a certain level of feature fragmentation, where
some features were available in one program but not the other: ADF, for example, was able to do a linear transit cal-
culation, while BAND was not. Constrained geometry optimization was supported in DFTB, but not in UFF. ReaxFF
could be used for Grand Canonical Monte Carlo simulations, but DFTB could not.

In order to overcome these issues and make the Amsterdam Modeling Suite more powerful and user friendly, we
introduced the AMS driver program with the 2018 release of the suite. The idea of this reorganization is to have
only a single program called the AMS driver that under the hood uses the so-called “engines” like ADF, BAND and
DFTB for the calculation of energies and gradients, where the engines are technically no longer separate programs
but just libraries used by the AMS driver. In this way much of the input and output of AMS is the same, no matter
which particular engine is used for a calculation. It also avoids the feature fragmentation, since any new feature in
the AMS driver can immediately be used with all engines in the suite. Furthermore, the AMS driver also allows
running external programs as an engine (page 191) providing energies and gradients, allowing end-users to perform
all calculations supported by AMS with virtually any atomistic modeling program they have access to and to visualize
the results in the graphical user interface of the Amsterdam Modeling Suite.

Converting all the programs of the Amsterdam Modeling Suite into engine libraries that are used by the AMS driver
was a big reorganization of the entire suite, which was spread out over multiple releases between 2018 and 2020. As
of the AMS2020 release, ADF itself has been integrated into the AMS driver, making the integration of all engines

1.3. Motivation and progress 3

../Tutorials/MolecularDynamicsAndMonteCarlo/BurningIsooctane.html


AMS Manual, Amsterdam Modeling Suite 2020

into the AMS driver finally complete. (The only exception is QuantumEspresso, which is integrated into the GUI, but
has no connection to the AMS driver in the 2020 release.)

As with any large reorganization, it is unavoidable that some things change. For GUI users this should not create
any issues, but users familiar with the existing command line and scripting interfaces will notice these changes and
their existing workflows might need to be adjusted to the new setup. We know that these kind of changes can be
disrupting for existing users, and where possible we try to keep backwards compatibility with previous versions, but
unfortunately this is not always possible. However, overall AMS provides a much more consistent and convenient
interface to command line and scripting users, and we believe that the new simplicity and expanded feature set of
AMS make transitioning to the new framework well worth the effort.

1.4 Input, execution and output

With the introduction of AMS in the 2018 release of the Amsterdam Modeling Suite, there were some changes in
the input and output files and formats used by our software. Users of the graphical interface should not notice these
changes, but people using the software from the command line or through the scripting frameworks need to be aware
of them.

This section contains the main changes. For a more complete description see:

• The extended Input, execution and output section (page 7).

Generally the input for AMS has the block and keyword structure that most programs in the Amsterdam Modeling
Suite have already been using. See the General remarks on input structure and parsing (page 9) section for more
details. The only new construct in the AMS input is a special Engine block, that selects which engine is used for the
simulation and also contains all the details of its configuration. This is probably best illustrated by an example. Let
us look at the following AMS input, which optimizes the geometry of the methane molecule and calculates its normal
modes of vibration at the optimized geometry:

$AMSBIN/ams << EOF
Task GeometryOptimization

GeometryOptimization
Convergence

Gradients 1.0e-4
End

End

Properties
NormalModes true

End

System
Atoms

C 0.00000000 0.00000000 0.00000000
H 0.63294000 -0.63294000 -0.63294000
H -0.63294000 0.63294000 -0.63294000
H 0.63294000 0.63294000 0.63294000
H -0.63294000 -0.63294000 0.63294000

End
End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1

(continues on next page)

4 Chapter 1. General



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

EndEngine
EOF

Note how DFTB is selected as the engine in the Engine DFTB line that opens the Engine block. All DFTB specific
configuration is contained within this engine block, which is terminated by EndEngine. The fact that we want to run
a geometry optimization with normal modes for methane and things like convergence criteria for the optimization are
of course completely independent from which engine is actually used to perform this calculation. Therefore they are
all found outside of the Engine block. In this sense, the AMS input is split up into the driver level input (everything
outside of the engine block) and the engine input, which is just a single Engine block. This separation makes it easy
to perform the same calculation at a different level of theory, by simply switching out the Engine block in the input.
We could, for example, repeat the same calculation at the DFT-GGA level using the Band engine:

Engine BAND
XC

GGA PBE
End

EndEngine

Engines like ADF and BAND that have many options and can calculate many properties, consequently also have a
large number of possible keywords in their input. In order to have a better structured documentation we have split off
the description of the engine inputs into separate engine specific manuals (page 187), while this AMS manual only
documents the driver level keywords outside of the Engine block. All the engine specific options are found in the
respective engine’s manual, which documents the keywords in its Engine block. In general all engines can be used
with all tasks in AMS. There are only a few rather obvious restrictions, for example that only engines which can handle
periodic systems can be used for the calculation of phonons.

The introduction of the Engine block is the only real change AMS brings to the input side of things. On the output
side there are a few more changes.

The first change to the output is that AMS does not put any of its output files into the present working directory,
as virtually all of the standalone programs in the suite did. Instead AMS creates a *.results directory, which
collects all result file associated with a job. Here * is replaced by the jobname, which is set with the AMS_JOBNAME
environment variable:

AMS_JOBNAME=methane $AMSBIN/ams << EOF

... see above ...

EOF

This would put all results related to our geometry optimization of methane into the newly created folder methane.
results. (The default name of the results folder is ams.results if AMS_JOBNAME is not set, see the environment
variables (page 16) section of this manual for documentation of all environment variables used by AMS.) In this way
users can easily run multiple jobs in the same directory without danger of clashing output files, which was a common
problem before the introduction of AMS. This new setup is also more consistent with the graphical user interface,
which already collected all files associated with a specific job into a dedicated results directory. Note that AMS will
by default not overwrite results directories if a job is rerun or another job is run with the same jobname.

Inside of the results directory users will always find the logfile ams.log, which is written during a running calculation
and can be used to monitor its progress. Furthermore the results directory contains binary result files in the KF format,
which can be opened and inspected with the KFBrowser GUI component.

• The main ams.rkf written by the AMS driver. It contains high level information about the trajectory that the
AMS driver took over the potential energy surface. For example, for a molecular dynamics simulation it would
contain the full trajectory. The format in which this information is written is independent from which engine
was used for a calculation.

1.4. Input, execution and output 5



AMS Manual, Amsterdam Modeling Suite 2020

• The engine specific main binary output file written by the engine (and partly by the AMS driver). This file
is kept for only one special point, e.g. the final geometry in a geometry optimization. For example, for ADF
this engine file is called adf.rkf (instead of TAPE21 in ADF<=2019), for BAND band.rkf, for DFTB
dftb.rkf. If a property, like vibrational modes, is tied to the special point on the potential energy surface, it
is stored in this file. Also all engine specific properties are written to this file, like orbitals in case of a quantum
mechanical engine.

• Additionally there might be a binary output file for every point on the potential energy surface that was visited
during the calculation.

• Other engine specific binary (and ASCII) output files written by the engine.

Having multiple different binary output files could be confusing for people that are used to the single result file that
was written by the standalone programs in ADF<=2017. After all, it brings up the question in which file the desired
property is stored. The general rule is: if the property is tied to a particular point on the potential energy surface, it is
stored in the engine output file belonging to that particular point. If the information depends on the entire trajectory
over the PES, it is found in the main ams.rkf written by the AMS driver.

6 Chapter 1. General



CHAPTER

TWO

INPUT, EXECUTION AND OUTPUT

2.1 Input

The input for AMS has a block and keyword structure. See the General remarks on input structure and parsing
(page 9) section for more details.

The input keys System (page 27), Task (page 8), and Engine (page 187), are obligatory. Most other input keys in AMS
are optional, like Properties (page 8). In the rest of this manual one can find all input keys for AMS.

The Engine specific input can be found in the respective Engine Manuals, for example, the manual for ADF, BAND,
DFTB, ForceField, MOPAC, and ReaxFF.

2.1.1 Example

The AMS input has a special Engine block, that selects which engine is used for the simulation and also contains
all the details of its configuration. This is probably best illustrated by an example. Let us look at the following AMS
input, which optimizes the geometry of the methane molecule and calculates its normal modes of vibration at the
optimized geometry:

$AMSBIN/ams << EOF
Task GeometryOptimization

GeometryOptimization
Convergence

Gradients 1.0e-4
End

End

Properties
NormalModes true

End

System
Atoms

C 0.00000000 0.00000000 0.00000000
H 0.63294000 -0.63294000 -0.63294000
H -0.63294000 0.63294000 -0.63294000
H 0.63294000 0.63294000 0.63294000
H -0.63294000 -0.63294000 0.63294000

End
End

Engine DFTB
(continues on next page)

7

../ADF/index.html
../BAND/index.html
../DFTB/index.html
../ForceField/index.html
../MOPAC/index.html
../ReaxFF/ReaxFFEngine.html


AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Model DFTB3
ResourcesDir DFTB.org/3ob-3-1

EndEngine
EOF

Note how DFTB is selected as the engine in the Engine DFTB line that opens the Engine block. All DFTB specific
configuration is contained within this engine block, which is terminated by EndEngine. The fact that we want to run
a geometry optimization with normal modes for methane and things like convergence criteria for the optimization are
of course completely independent from which engine is actually used to perform this calculation. Therefore they are
all found outside of the Engine block. In this sense, the AMS input is split up into the driver level input (everything
outside of the engine block) and the engine input, which is just a single Engine block. This separation makes it easy
to perform the same calculation at a different level of theory, by simply switching out the Engine block in the input.
We could, for example, repeat the same calculation at the DFT-GGA level using the Band engine:

Engine BAND
XC

GGA PBE
End

EndEngine

Engines like ADF or BAND that have many options and can calculate many properties, consequently also have a
large number of possible keywords in their input. In order to have a better structured documentation we have split off
the description of the engine inputs into separate engine specific manuals (page 187), while this AMS manual only
documents the driver level keywords outside of the Engine block. All the engine specific options are found in the
respective engine’s manual, which documents the keywords in its Engine block. In general all engines can be used
with all tasks in AMS. There are only a few rather obvious restrictions, for example that only engines which can handle
periodic systems can be used for the calculation of phonons.

2.1.2 Tasks

The key Task is described in more detail in the section Structure, Reactivity, and Molecular Dynamics (page 39).
The Task VibrationalAnalysis is described in more detail in the section Vibrational Spectroscopy (page 129) (Mode
Scanning, Mode Refinement, Mode Tracking, VG-FC Resonance Raman) and in the section Vibrationally resolved
electronic spectra (page 166) (VG-FC: Vertical Gradient Franck-Condon).

Below the possible arguments for Task are given.

Task [SinglePoint | GeometryOptimization | TransitionStateSearch | IRC | PESScan |
→˓NEB | VibrationalAnalysis | MolecularDynamics | GCMC]

2.1.3 Properties

The block key Properties is described in more detail in the section Gradients, Hessian, Stress tensor, Elasticity
(page 119), in the section Vibrational Spectroscopy (page 129), and in the section Dipole moment, Polarizability, Bond
orders (page 184).

Below the possible Properties are summarized.

Properties
BondOrders Yes/No
Charges Yes/No
DipoleGradients Yes/No
DipoleMoment Yes/No

(continues on next page)

8 Chapter 2. Input, execution and output



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

ElasticTensor Yes/No
Gradients Yes/No
Hessian Yes/No
Molecules Yes/No
NormalModes Yes/No
Other Yes/No
PESPointCharacter Yes/No
Phonons Yes/No
Polarizability Yes/No
Raman Yes/No
SelectedRegionForHessian string
StressTensor Yes/No
VCD Yes/No
VROA Yes/No

End

2.1.4 General remarks on input structure and parsing

• Most keys are optionals. Defaults values will be used for keys that are not specified in the input

• Keys/blocks can either be unique (i.e. they can appear in the input only once) or non-unique. (i.e. they can
appear multiple times in the input)

• The order in which keys or blocks are specified in the input does not matter. Possible exceptions to this rule are
a) the content of non-standard blocks b) some non-unique keys/blocks)

• Comments in the input file start with one of the following characters: #, !, :::

# this is a comment
! this is also a comment
:: yet another comment

• Empty lines are ignored

• The input parsing is case insensitive (except for string values):

# this:
UseSymmetry false
# is equivalent to this:
USESYMMETRY FALSE

• Indentation does not matter and multiple spaces are treaded as a single space (except for string values):

# this:
UseSymmetry false

# is equivalent to this:
UseSymmetry false

2.1.5 Keys

Key-value pairs have the following structure:

KeyName Value

Possible types of keys:

2.1. Input 9



AMS Manual, Amsterdam Modeling Suite 2020

bool key The value is a single Boolean (logical) value. The value can be True (equivalently Yes) or False (equiv-
alently No.). Not specifying any value is equivalent to specifying True. Example:

KeyName Yes

integer key The value is a single integer number. Example:

KeyName 3

float key The value is a single float number. For scientific notation, the E-notation is used (e.g. −2.5× 10−3 can be
expressed as -2.5E-3). The decimal separator should be a dot (.), and not a comma (,). Example:

KeyName -2.5E-3

Note that fractions (of integers) can also be used:

KeyName 1/3 (equivalent to: 0.33333333333...)

string key The value is a string, which can include white spaces. Only ASCII characters are allowed. Example:

KeyName Lorem ipsum dolor sit amet

multiple_choice key The value should be a single word among the list options for that key (the options are listed in
the documentation of the key). Example:

KeyName SomeOption

integer_list key The value is list of integer numbers. Example:

KeyName 1 6 0 9 -10

Note that one can also specify ranges of integers by specifying the interval and (optionally) the step size sepa-
rated by colons:

KeyName 1:5 (equivalent to: 1 2 3 4 5)
KeyName 2:10:2 (equivalent to: 2 4 6 8 10)
KeyName 20:10:-2 (equivalent to: 20 18 16 14 12 10)

Note also that ranges can be freely combined with individual numbers:

KeyName 1:5 10 20 (equivalent to: 1 2 3 4 5 10 20)

float_list key The value is list of float numbers. The convention for float numbers is the same as for Float keys.
Example:

KeyName 0.1 1.0E-2 1.3

Float lists can also be specified as a range with equidistant points, by specifying the interval’s boundaries (in-
clusive) as well as the number of desired subintervals separated by colons:

KeyName 1.0:1.5:5 (equivalent to: 1.0 1.1 1.2 1.3 1.4 1.5)

Range specifications can be freely combined with each other and single numbers:

KeyName 0.0 1.0:1.5:5 2.0:3.0:10

10 Chapter 2. Input, execution and output



AMS Manual, Amsterdam Modeling Suite 2020

2.1.6 Blocks

Blocks give a hierarchical structure to the input, grouping together related keys (and possibly sub-blocks). In the input,
blocks generally span multiple lines, and have the following structure:

BlockName
KeyName1 value1
KeyName2 value2
...

End

Headers

For some blocks it is possible (or necessary) to specify a header next to the block name:

BlockName someHeader
KeyName1 value1
KeyName2 value2
...

End

Compact notation

It is possible to specify multiple key-value pairs of a block on a single line using the following notation:

# This:
BlockName KeyName1=value1 KeyName2=value2

# is equivalent to this:
BlockName

KeyName1 value1
KeyName2 value2

End

Notes on compact notation:

• The compact notation cannot be used for blocks with headers.

• Spaces (blanks) between the key, the equal sign and the value are ignored. However, if a value itself needs to
contain spaces (e.g. because it is a list, or a number followed by a unit), the entire value must be put in either
single or double quotes:

# This is OK:
BlockName Key1=value Key2 = "5.6 [eV]" Key3='5 7 3 2'
# ... and equivalent to:
BlockName

Key1 value
Key2 5.6 [eV]
Key3 5 7 3 2

End

# This is NOT OK:
BlockName Key1=value Key2 = 5.6 [eV] Key3=5 7 3 2

Non-standard Blocks

A special type of block is the non-standard block. These blocks are used for parts of the input that do not follow the
usual key-value paradigm.

2.1. Input 11



AMS Manual, Amsterdam Modeling Suite 2020

A notable example of a non-standard block is the Atoms block (in which the atomic coordinates and atom types are
defined).

2.1.7 Including an external file

You can include an external ASCII file in the input with the @include directive:

@include FileName.in
@include "file name with spaces.in"

The file name should include the path, either absolute or relative to the run-directory. The content of the file is included
in the input at the point where the @include directive occurs. The @include directive may occur any number of
times in the input.

The @include feature makes it easy to pack your preferred settings in one file and use them in every run with
minimum input-typing effort.

Note: The @include directive has been added in the AMS2020.102 subrelease.

2.1.8 Units

Some keys have a default unit associated (not all keys have units). For such keys, the default unit is mention in the key
documentation. One can specify a different unit within square brackets at the end of the line:

KeyName value [unit]

For example, assuming the key EnergyThreshold has as default unit Hartree, then the following definitions are
equivalent:

# Use defaults unit:
EnergyThreshold 1.0

# use eV as unit:
EnergyThreshold 27.211 [eV]

# use kcal/mol as unit:
EnergyThreshold 627.5 [kcal/mol]

# Hartree is the atomic unit of energy:
EnergyThreshold 1.0 [Hartree]

Available units:

• Energy: Hartree, Joule, eV, kJ/mol, kcal/mol, cm1, MHz

• Length: Bohr, Angstrom, meter

• Angles: radian, degree

• Mass: el, proton, atomic, kg

• Pressure: atm, Pascal, GPa, a.u., bar, kbar

• Electric field: V/Angstrom, V/meter, a.u.

12 Chapter 2. Input, execution and output



AMS Manual, Amsterdam Modeling Suite 2020

2.2 Execution

2.2.1 Shell script

The AMS driver reads its input from standard input, i.e. what is called STDIN on Unix-like systems. Technically it
is possible to run AMS and type the input file in interactively. This is however highly impractical and most people
run AMS from a small shell script that contains the AMS text input and sends it directly to the AMS executable. For
example, the content of the file ‘example.run’ could be like:

#!/bin/sh

$AMSBIN/ams << EOF

... AMS text input goes here:

Block
Keywork value
OtherKeyword value

End

EOF

The shell script ‘example.run’ needs be executable, if it isn’t you will need to make it executable, e.g. chmod u+x
example.run. The ‘example.run’ file needs to be executed as a shell script, not as input to AMS.

./example.run >example.out

2.2.2 Running AMS on compute clusters

AMS is parallelized with MPI and can therefore be run in parallel on distributed memory machines, aka compute
clusters. See the installation manual for general documentation on how to set up and run all the programs from the
Amsterdam Modeling Suite on compute clusters. In this section we give some more advice that is specific to the AMS
driver and its engines.

Normally users use the login node to prepare their jobs and input files somewhere in their home directory, and also
want the results of their jobs to end up there. Quite often, compute clusters are set up such that the user’s home
directory is also mounted on the compute nodes, usually via NFS (Network File System). Before the introduction of
the AMS driver it was not recommended to cd to the home directory in the submission script and have the compute
nodes execute the job directly there. This was simply due to the fact that a lot of file I/O was done on temporary files
in the present working directory, which in this case would be on a slow network-mounted file system.

On the other hand, with AMS, switching to the home directory is the preferred way of running on a cluster where the
home directory is mounted on the compute nodes. Running in the home directory mounted over NFS does not come
with a performance penalty for AMS, but has many advantages. This is because AMS and its engines are already built
under the assumption that access to this directory is slow. Basically there are three directories that are used by the
AMS driver and its engines:

1. The starting directory, i.e. the present working directory at the time the AMS driver is started. This folder is
generally read-only for AMS, except for creating the results directory there at the beginning of a calculation.
Note that all relative paths in the AMS input, e.g. for loading results from previous calculations, are relative to
the starting directory. The starting directory is assumed to be on a slow filesystem, but since data is normally
only read once from there in the beginning of a calculation, this is in practice not a problem.

2. The results directory, where the results of a calculation as well as important intermediate steps (e.g. restart
files) are collected. It also contains the log file which can be used to monitor a running calculations. The results
directory is assumed to be on a slow filesystem, so AMS and its engines will be very careful not to do much disk

2.2. Execution 13

../Installation/Additional_Information_and_Known_Issues.html#running-mpi-jobs


AMS Manual, Amsterdam Modeling Suite 2020

I/O there. Generally something is only written to the results directory when AMS is sure that it should remain
on disk when the calculation finishes. The results directory can also contain some intermediate restart files, so
the contents of the result directory should be all that is needed in case the calculation crashes or is killed before
it finishes normally.

3. The scratch directory, the location of which is set with the $SCM_TMPDIR environment variable, see also the
installation manual. This directory should be put on a fast disk, e.g. an SSD in the compute node, as it will
be used to store temporary results on disk. Users do not really need to care or know about the temporary files
in the scratch directory. Normally, any files and directories created in the scratch directory are cleaned up at
the end of the calculation. In case of errors, AMS tries to copy anything useful (e.g. the text output of all the
different ranks) to the results directory in order to make finding the problem easier. However, for some kinds of
crashes (or if the SIGKILL signal is sent to AMS), the cleanup of the scratch directory might not be performed,
in which case users might want to manually check or remove the amstmp_* folders in the scratch directory.

With this setup there is no performance penalty for running directly on a network mounted home directory: Results
will just be put there immediately, instead of being copied there at the end of a calculation.

Normally all batch systems provide an environment variable that is set to the directory from which the job was sub-
mitted, which is then where one should cd in the run script:

#!/bin/sh

if [ -z "$PBS_O_WORKDIR" ]; then
# PBS batch system
cd "$PBS_O_WORKDIR"

elif [ -z "$SLURM_SUBMIT_DIR" ]; then
# Slurm batch system
cd "$SLURM_SUBMIT_DIR"

elif [ -z "..." ]; then
# add other batch systems as necessary ...
cd "..."

fi

export AMS_JOBNAME=myJob

$AMSBIN/ams << EOF

# Normal AMS text input, but with all paths
# relative to where the job was submitted from, e.g.:
LoadSystem previousJob.results/ams.rkf

EOF

With this runscript the AMS driver would make a myJob.results folder in the directory where the job was sub-
mitted from, and there is no need to copy results around manually in the run script. Furthermore this runscript always
produces exactly the same files in the same locations, no matter if it is run interactively or submitted to a compute
node through the batch system. Furthermore all paths in the input file can be specified relative to the location from
where the runscript is submitted (normally the folder in which the runscript is located). This removes the need to copy
or specify absolute paths to previous results, e.g. when restarting calculations. Finally, files useful for monitoring the
running calculation are also conveniently there and not hidden somewhere on the compute node.

2.3 Output

AMS produces two ASCII files: standard output and the ams.log file, and produces several binary output data files.
The ams.log file is a very concise summary of the calculation’s progress during the run. The binary output data files

14 Chapter 2. Input, execution and output

../Installation/Appendix_A_Environment_Variables.html#more-on-the-scm-tmpdir-variable


AMS Manual, Amsterdam Modeling Suite 2020

contain job characteristics and computational results produced by AMS and the Engine. Part of what is written to the
binary output files is also written in a human readable form to standard output.

2.3.1 Results directory

Note that AMS does not put any of its binary output files and the ams.log file into the present working directory,
as virtually all of the standalone programs in the suite did. Instead AMS creates a *.results directory, which
collects all result file associated with a job. Here * is replaced by the jobname, which is set with the AMS_JOBNAME
environment variable:

AMS_JOBNAME=methane $AMSBIN/ams << EOF

... see Input example before ...

EOF

This would put all results related to our geometry optimization of methane into the newly created folder methane.
results. (The default name of the results folder is ams.results if AMS_JOBNAME is not set, see the environment
variables (page 16) section of this manual for documentation of all environment variables used by AMS.) In this way
users can easily run multiple jobs in the same directory without danger of clashing output files, which was a common
problem before the introduction of AMS. This new setup is also more consistent with the graphical user interface,
which already collected all files associated with a specific job into a dedicated results directory. Note that AMS will
by default not overwrite results directories if a job is rerun or another job is run with the same jobname.

2.3.2 Logfile ams.log

Inside of the results directory users will always find the logfile ams.log, which is written during a running calculation
and can be used to monitor its progress.

The logfile ams.log is generated during the calculation and flushed after (almost) each message that is sent to it by
the program. Consequently, the user can inspect it and see what is going on without being delayed by potentially large
system I/O buffers. Each message contains date and time of the message plus additional info.

Be alert on error messages. Take them seriously: inspect the standard output carefully and try to understand what
has gone wrong. Be also alert to warnings. They are not necessarily fatal but you should understand what they are
about before being satisfied with the results of the calculation. Do not ignore them just because the program has not
aborted: in some cases the program may not be able to determine whether or not you really want to do what appears
to be wrong or suspicious. If you believe that the program displays erratic behavior, then the standard output file may
contain more detailed information. Therefore, in such case save the complete standard output file, together with the
logfile ams.log, in case we need these files for further analysis.

2.3.3 Binary output files

The results directory contains binary result files in the KF format, which can be opened and inspected with the KF-
Browser GUI component. KF stands for Keyed File: KF files are keyword oriented, which makes them easy to process
by simple procedures. KF files are Direct Access binary files.

• The main ams.rkf written by the AMS driver. It contains high level information about the trajectory that
the AMS driver took over the potential energy surface. For a geometry optimization it would for example
contains the history of how the systems geometry changed during the optimization as well as the final optimized
geometry. For a molecular dynamics simulation it would contain the full trajectory. The format in which this
information is written is independent from which engine was used for a calculation.

2.3. Output 15



AMS Manual, Amsterdam Modeling Suite 2020

• The engine specific main binary output file written by the engine (and partly by the AMS driver). This file is kept
for only one special point, e.g. the final geometry in a geometry optimization. The ADF engine writes adf.
rkf (instead of TAPE21 in older versions). The BAND engine writes band.rkf (instead of RUNKF in older
versions). The DFTB engine writes dftb.rkf. If a property, like vibrational modes, is tied to this special
point on the potential energy surface, it is stored in this file. Also all engine specific properties are written to the
main binary output file, like orbitals in case of a quantum mechanical engine.

Table 2.1: Engine specific main binary output file
Engine main file
ADF adf.rkf
BAND band.rkf
DFTB dftb.rkf
ForceField forcefield.rkf
MOPAC mopac.rkf
ReaxFF reaxff.rkf
External external.rkf

• Additionally there might be an engine specific binary output file for every point on the potential energy surface
that was visited during the calculation. Like the engine specific main binary output file they contain information
tied to a specific point on the potential energy surface. These engine output files all have the extension .rkf,
but their filename is usually somehow descriptive of the point on the PES that they correspond to. Note that one
does not always get an engine output file for every PES point that was visited during the calculation. For most
applications this would just be too much data.

• Other engine specific binary (and ASCII) output files written by the engine.

Having multiple different binary output files could be confusing for people that are used to the single result file that
was written by the standalone programs in ADF<=2017. After all, it brings up the question in which file the desired
property is stored. The general rule is: If the property is tied to a particular point on the potential energy surface, it
is stored in the engine output file belonging to that particular point. This includes the Hessian, stress tensor, elastic
tensor, normal modes of vibration, phonons, Raman intensities and other vibrational properties. If the information
depends on the entire trajectory over the PES, it is found in the main ams.rkf written by the AMS driver.

2.3.4 Standard output

The standard ouput file contains in a human readable form part of the job characteristics and computational results
produced by AMS and the Engine.

2.3.5 AMS environment variables

The behavior of AMS related to the output can be modified through a number of environment variables.

AMS_JOBNAME Sets the name of a job. This name is used to determine the name of the results folder AMS creates,
which is $AMS_JOBNAME.results or ams.results if this environment variable is not set.

AMS_RESULTSDIR If this environment variable is set, instead of creating a new results folder, AMS will use the set
directory as the results folder. Not that the directory set here will not be created by AMS and therefore has to
exist before starting AMS. Note that this environment variable can be used to prevent AMS from creating result
folders, by setting AMS_RESULTSDIR=.. This reproduces the pre-AMS behavior of putting all result files into
the directory from which a job is started.

AMS_SWITCH_LOGFILE_AND_STDOUT If this environment variable is set, AMS will redirect what is normally
printed on standard output to a file (ams.out) in the results directory. Instead the contents of the log file
(ams.log) will be printed to standard output while a job is running, allowing users to easily monitor the jobs

16 Chapter 2. Input, execution and output



AMS Manual, Amsterdam Modeling Suite 2020

progress. Note that the log file will still be created normally as if this environment variable was not set. This
environment variable is just a convenience feature for users that would always redirect their output into a file
and then use tail -f on the log file to monitor the running calculation.

This is an example run-script using the AMS_SWITCH_LOGFILE_AND_STDOUT and AMS_JOBNAME environment
variables:

#!/bin/sh

# By setting AMS_SWITCH_LOGFILE_AND_STDOUT, the (more compact)
# logfile will be printed to standard output while the full
# text output of the calculation is redirected to the file
# ams.out in the ams results folder

export AMS_SWITCH_LOGFILE_AND_STDOUT=true

# By default ams creates a folder 'ams.results' and puts the
# results of the calculation there. If we set AMS_JOBNAME, the
# results folder will instead be called $AMS_JOBNAME.results
# (in this case, 'H2_optimization.results')

AMS_JOBNAME=H2_optimization $AMSBIN/ams <<eor
System

Atoms
H 0 0 0
H 0 0 1

End
End
Task GeometryOptimization
Engine DFTB

Model GFN1-xTB
EndEngine

eor

2.4 Driver level parallelism

See also:

See also the GUI tutorial on the parallel scalability of the calculation of elastic tensors.

AMS is a parallel program using MPI for efficient execution on distributed memory machines, aka compute clusters.
For most jobs, the AMS driver part of a calculation is computationally not particularly costly and most of the execution
time is spent inside of the compute engines (page 187). Therefore the main parallelization of AMS is inside of the
engines, making sure that a good performance is obtained for tasks (page 39) such as molecular dynamics (page 75)
or geometry optimizations (page 41), which consist of a series of interdependent engine invocations: We need to have
completed step 𝑛 before we can continue with step 𝑛 + 1.

However, not all workloads are of this sequentially dependent type. Some jobs have a lot of independent work, that
can be done in parallel. This kind of trivial parallelizability can be exploited at the AMS driver level: Instead of having
all cores collaborate on a single PES point and then doing all needed PES points sequentially, we can just distribute
the available PES points over the all the available cores. Normally this leads to a better parallel scaling than the default
parallelization inside of the engines: Parallelizing the engines is relatively complicated and often requires a lot of
communication between cores. Parallelizing on the driver level on the other hand is very easy, and often the only
communication required is at the very end of the calculation, when results are collected.

Note that it is perfectly possible to combine both the in-engine parallelization and the driver level parallelism: At the
driver level we could split our e.g. in total 32 cores into 4 groups of 8 cores, and then have each group of 8 use the

2.4. Driver level parallelism 17

../Tutorials/OptimizingPerformance/ParallelElasticTensor.html


AMS Manual, Amsterdam Modeling Suite 2020

in-engine parallelization to collaborate on a specific calculation. This is especially useful if the total number of cores is
larger than then number of independent calculations we have to do. It might also be that we have a very large number
of calculations to do, but not enough memory to let every core work alone on its own calculation, as would be ideal
from a parallel scaling point of view.

Because of the two levels of parallelism – both at the driver and the engine level – we call this setup double paral-
lelization.

Starting with the AMS2019.3 release, driver level parallelism is used and configured automatically. That means
that the AMS driver will automatically parallelize at the driver level when it is possible and considered advanta-
geous. As such it should normally not be necessary for users to explicitly configure the driver level parallelism.

Driver level parallelism can be used for the calculation of the PES point properties (page 119) which are derivatives,
if these need to be done numerically:

• Numerical calculation of forces / nuclear gradients (page 121). With a double sided derivative this requires
6× 𝑛atoms independent calculations on geometries with one atom displaced along a cartesian coordinate.

• Numerical calculation of the stress tensor (page 125) for periodic systems. This requires up to 12 calculations
for a double sided derivative along the 6 strain directions, but might require less in case some of the strains are
symmetry equivalent.

• Numerical calculation of the Hessian (page 122) and normal modes of vibration. This is currently only sup-
ported for engines that calculate nuclear gradients analytically and done by numerically differentiating this first
(analytic) derivative. As such it requires 6 × 𝑛atoms independent calculations on geometries with one atom
displaced along a cartesian coordinate.

• Numerical calculation of the elastic tensor (page 126). This requires 84 independent geometry optimizations on
systems with differently strained lattices, with each optimization having a variable number of steps.

• Numerical calculation of phonons (page 155). This requires at most 6×𝑛atoms displacements, but might require
less in case some of the displacements are symmetry equivalent. Note that the displacements are done in a super
cell system, which for many engines will increase the memory requirements, but also improve the in-engine
parallel scalability.

• The forward and backward displacements along normal modes for the Mode Scanning (page 137), Mode Re-
finement (page 138), and Mode Tracking (page 141).

There are also tasks using driver level parallelism, e.g. Nudged Elastic Band (page 62), for which the calculations of
all the images is trivially parallel.

Details of the driver level parallelism, i.e. how much to parallelize at the driver level, are generally configured for the
above mentioned cases on an individual basis, because one might want a different grouping strategy for each case. For
each case there is a separate Parallel block somewhere in the input (e.g. ElasticTensor%Parallel for the
calculation of the elastic tensor), which has the following keywords:

Parallel
nGroups integer
nCoresPerGroup integer
nNodesPerGroup integer

End

Note that only one of them should be specified in the input, depending of course on what is the desired strategy for
parallelization.

nGroups n Splits all cores evenly into n groups. We recommend choosing n such that it divides the total number
of cores without a remainder.

nCoresPerGroup n Each group consists of n cores. As such nCoresPerGroup 1 results in the maximum
possible parallelism at the driver level. We recommend choosing n such that it divides the total number of cores
without a remainder.

18 Chapter 2. Input, execution and output



AMS Manual, Amsterdam Modeling Suite 2020

nNodesPerGroup n Makes groups from all cores within n nodes, e.g. nNodesPerGroup 1 would make every
cluster node into a separate group. Note that this option should only be used on homogeneous compute clusters,
where all used nodes have the same number of cores. Otherwise cores from different nodes will be grouped
together in very surprising and unintended ways, probably resulting in suboptimal performance.

The optimal grouping strategy and number of groups depends on the total number of cores used in the calculation, the
amount of independent tasks to be done in parallel, as well as the parallel scalability of the engine itself. In practice it
can be a bit tricky, which is why the grouping strategy is determined automatically since AMS2019.3.

However, sometimes it can be useful to configure the groups manually. Suppose, as an example, that we want to
calculate the elastic properties of a bulk material on a 32 core machine. The calculation of the elastic tensor (page 126)
should be done on a relaxed geometry, including relaxed lattice degrees of freedom. We therefore first perform a
geometry optimization, before calculating the elastic tensor. In AMS this can easily be done with the following input:

Task GeometryOptimization

GeometryOptimization
OptimizeLattice True

End

Properties
ElasticTensor True

End

But what is the most optimal parallel setup for this calculation? First we recognize that performing a lattice opti-
mization requires the calculation of the stress tensor (page 125) at every step of the optimization. Assuming that our
bulk system does not have any symmetries AMS can exploit, the numerical calculation of the stress tensor (assuming
the engine can not calculate it analytically) would require 12 independent strained calculations for every step in the
geometry optimization. Once the geometry optimization is converged, we have to perform 84 independent geometry
optimizations to determine the elements of the elastic tensor. In summary, the graph of dependencies between all these
tasks looks like this:

2.4. Driver level parallelism 19



AMS Manual, Amsterdam Modeling Suite 2020

How do we best parallelize this? For the main steps, e.g. GOStep1 there is no question: We have nothing to do
in parallel and all 32 cores work on it together to finish it as quickly as possible. For the numerical calculation of
the stress tensor we have 12 tasks that can be done in parallel by the 32 cores in our machine. Now 12 obviously
does not divide 32 without a remainder, so there is no way to split into equally sized groups and do all 12 strains
in parallel. The greatest common divisor of 12 and 32 is 4, so it’s probably best to split into 4 groups of 8 cores
each. This is done with nGroups 4. Each group would then do 3 of the 12 strained calculations sequentially, using
the in-engine parallelization to speed up the individual calculations. Once the stress tensor is computed in this way
all groups merge and all 32 cores work together on GOStep2. This splitting and merging now continues until the
geometry optimization is converged. For the elastic tensor we now have 84 tasks to perform in parallel, where each
task is a completely separate geometry optimization (without optimizing the lattice) of a strained system. 84 tasks is

20 Chapter 2. Input, execution and output



AMS Manual, Amsterdam Modeling Suite 2020

more than double the number of cores we have. In this case it is probably not too bad to just run as parallel as possible
at the driver level and make 32 “groups” of just one core to throw the 84 tasks at. This is easily done by setting
nCoresPerGroup 1 in the ElasticTensor block. Putting everything together we should add the following to
our input file in order to optimally utilize our machine for this example calculation:

NumericalDifferentiation
Parallel

nGroups 4
End

End

ElasticTensor
Parallel

nCoresPerGroup 1
End

End

2.5 Python interface

There is a complete Python interface to AMS, which allows users to set up and run arbitrary AMS jobs, and to
conveniently analyze the calculation results directly from Python. In this way AMS jobs can be automatized and
complex multi-stage workflows implemented.

The scripting framework is called PLAMS as in “Python Library for Automating Molecular Simulation”, which con-
veniently can also be read as “Python Layer for AMS”. It is documented in a separate manual:

• PLAMS introduction

• Running AMS through PLAMS

2.6 Pipe interface

AMS can interact with other programs using a custom communication protocol (page 21). This enables two indepen-
dent processes to communicate over a pair of data pipes (FIFOs), exchanging data in a highly efficient manner. One of
the processes is the “pipe master”, driving the calculation and sending the atoms, coordinates etc. to the other process
to perform calculations. The other process is the “pipe worker”, receiving requests from the master, performing the
requested calculations and returning the results such as energies and gradients.

For technical details on the AMSPipe protocol see:

2.6.1 AMSPipe protocol specification

The AMSPipe protocol is a remote procedure call protocol used for communication between two processes on the
same computer. One of these processes is the “pipe master”, submitting geometries and requests for calculations and
receiving the results. The other process is the “pipe worker”, which listens for calls from the master, executes the
requested calculations and returns their results.

Communication takes place over a pair of pipes, a “call pipe” (master to worker) and a “reply pipe” (worker to master).
Each pipe carries a sequence of messages, which are processed in order. Each message is an associative object (like a
JSON object or a Python dict) containing a single item. The key of this item denotes the name of the message, while
the value of this item is another object containing the payload.

2.5. Python interface 21

../plams/index.html
../plams/intro.html
../plams/interfaces/amssuite.html


AMS Manual, Amsterdam Modeling Suite 2020

Each message sent over the call pipe constitutes a method call. The name of the message is equal to the name of the
method being called, while the payload object contains any arguments. For methods without arguments, the payload
is an empty object.

Once the worker receives a call message, it will execute the specified method and potentially write a sequence of zero
or more messages to the reply pipe, containing the results of the calculation. After the execution of the method is
completed, the worker will write a “return” messages to the reply pipe, denoting the success or failure of the method
call.

Any method whose name starts with “Set” doesn’t send a “return” message. Instead, errors encountered during the
execution of a Set method are buffered by the worker to be returned the next time a “return” message is generated.
While an error is buffered, any further method calls are ignored by the worker and are not executed. Once a non-Set
call is seen by the worker, such a call will also be discarded without being executed, but a “return” message will be
immediately generated with the buffered error data. The buffered error will then be cleared and normal processing of
calls resumes.

As a special case, the “Exit” method may be called at any time and will be immediately executed by the worker,
terminating the protocol session. The “Exit” method never returns a “return” message, discarding any potentially
buffered error.

All values are always in atomic units: Hartree for energies, Bohr for distances, Hartree/Bohr for gradients etc.

Low-level message encoding

All messages are encoded using Universal Binary JSON. AMSPipe implementations MAY encode messages using
the UBJSON optimized container format (with explicit length and/or strong typing). Implementations MUST support
decoding UBJSON containers whether or not they’re written using optimized format.

UBJSON arrays in messages MUST NOT contain other arrays or objects. Multi-dimensional arrays MUST be flattened
on encoding (and unflattened on decoding as necessary). Flattening SHOULD preserve the original order of elements
in memory. All arrays MUST be accompanied by an additional integer array holding the original dimensions before
flattening. The name of this auxiliary array is equal to the name of the main array with a _dim_ suffix. The dimensions
are written in Fortran (column-major) order, so that the first value in the _dim_ array corresponds to the index that
changes the fastests when iterating over consecutive elements of the flattened array.

Arrays also MUST NOT contain elements of incompatible types. The elements of an array MUST be either all
integers, all real numbers, all Boolean, or all strings. UBJSON type “char” is equivalent to a UBJSON “string” of
length 1 (elements of type “char” and “string” MAY thus be mixed in an array). An empty array is equivalent to an
array that is not present at all.

When sending messages over stream transport mechanisms (such as UNIX pipes), each message MUST be prefixed
with a 32-bit native endian integer length.

Return messages and error handling

The “return” message consists of the following fields:

• “status” (integer): Zero for success or one of the error codes listed below.

• “method” (string, optional): Name of the method in which the error occurred.

• “argument” (string, optional): Name of the argument in error.

• “message” (string, optional): Human-readable error message.

The “status” field can have one of the following values:

0: success No error, method executed successfully.

22 Chapter 2. Input, execution and output



AMS Manual, Amsterdam Modeling Suite 2020

1: decode_error Message could not be decoded correctly (invalid UBJSON encoding or a violation of one of the
constraints above).

2: logic_error Programmer error, such as methods called in an incorrect sequence or with an invalid worker state.

3: runtime_error An error occurred during the execution of a method (outside of the AMSPipe protocol).

4: unknown_version (Only returned from “Hello”.) Requested protocol version is not supported by the worker.

5: unknown_method A method of the requested name is not supported by the worker.

6: unknown_argument The argument in “argument” is not known to the worker and couldn’t be processed. If
multiple arguments to given single call are unknown, “argument” will be set to the one at the lowest nesting
depth (if an argument contains nested objects). If multiple fields at the same nesting depth are unknown, the first
one in ASCII sort order will be returned.

7: invalid_argument An argument doesn’t have the correct type or dimensions, or it has an invalid value.

Methods

Hello(version)

• “version” (integer):

Attempt to activate a given version of the AMSPipe protocol. Only version 1 is defined at the moment.

Other methods (with the exception of “Hello” and “Exit”) MUST NOT be called until a Hello has completed success-
fully. Pipe masters SHOULD attempt a Hello with the highest supported protocol version and iterate downwards if an
unknown_version error is returned. Once a Hello has succeeded, it MUST NOT be called again during the lifetime of
a pipe session.

Exit()

Terminate the worker and disconnect both pipes. This method never returns.

The worker MAY also discard any remembered calculations.

SetCoords(coords)

• “coords” (real(3,:)):

Replace the Cartesian coordinates in the current chemical system. The number of atoms must match.

SetLattice(vectors)

• “vectors” (real(:,:)):

Replace the lattice matrix of the current chemical system. If “vectors” is absent or of dimensions (0,0), make the
system non-periodic.

SetSystem(atomSymbols, coords, totalCharge)

• “atomSymbols” (string(:)):

• “coords” (real(3,:)):

2.6. Pipe interface 23



AMS Manual, Amsterdam Modeling Suite 2020

• “totalCharge” (real):

Define a new chemical system.

Solve(request, keepResults, prevTitle)

• “request” (object):

– “title” (string): Unique string key identifying this calculation.

– “quiet” (bool): If true, the worker SHOULD keep any standard output from the calculation to a
minimum.

– “gradients” (bool): Calculate gradients on atoms.

– “stressTensor” (bool): Calculate the stress tensor.

– “elasticTensor” (bool):

– “hessian” (bool):

– “dipoleMoment” (bool):

– “dipoleGradients” (bool):

• “keepResults” (bool, default false): Remember worker state for future restart.

• “prevTitle” (string, optional): Title of a previously stored calculation to restart from.

Run a single point calculation on the current chemical system and return a “results” object if successful. If the
calculation fails with a runtime error, a “results” object MAY still be returned (possibly with just some of the requested
properties).

All Boolean fields in “request” default to false if not present. All non-Boolean fields in “request” except for “title” are
optional and their default values are worker-dependent. The master SHOULD NOT explicitly set any Boolean fields
in “request” to False. The worker MAY raise an unknown argument error if an unknown Boolean is set to False. The
worker SHOULD raise an unknown argument error as usual if an unknown Boolean is set to True or if an unknown
non-Boolean is set. Workers SHOULD raise these errors before performing any time-consuming calculations so that
the master can efficiently retry the call.

If “keepResults” is not specified or set to false, the worker will discard all data from the calculation after returning a
“results” object. If “keepResults” is set to true, the worker will remember any internal state related to the calculation.
This internal state can later be reused for restart by passing the “title” of the stored calculation as “prevTitle”. The
pipe master SHOULD call DeleteResults to discard the stored state as soon as it is no longer needed.

A “results” object consists of the following fields. Workers MAY include additional fields not listed here. A master
MUST NOT signal an error due to any fields it does not expect or understand.

• “results” (object):

– “messages” (string(:)): Runtime error or warning messages generated by the calculation.

– “energy” (real):

– “gradients” (real(3,:)):

– “stressTensor” (real(:,:)):

– “elasticTensor” (real(:,:)):

– “hessian” (real(:,:)):

– “dipoleMoment” (real(:,:)):

– “dipoleGradients” (real(:,:)):

24 Chapter 2. Input, execution and output



AMS Manual, Amsterdam Modeling Suite 2020

– “charges” (real(:)):

DeleteResults(title)

• “title” (string): Title of a previously remembered calculation.

Discard any worker state corresponding to a previously remembered calculation.

Forward and backward compatibility considerations

The AMSPipe protocol is designed to support combining new masters with old workers and vice versa. Major, in-
compatible changes in the protocol will be handled by increasing the protocol version number. Negotiating a suitable
protocol version is then handled by call(s) to Hello at the beginning of a pipe session.

The following requirements are in place to ensure that the protocol stays extensible within a single protocol version:

• Workers MUST raise an unknown_method error on any call to a method they don’t implement. If the method
name starts with Set, such an error will be buffered to be returned later. If the method name doesn’t start with
Set, a “return” message will be generated immediately.

• Workers MUST raise unknown_argument errors any time they encounter an argument to a known method that
they don’t know how to handle. The master SHOULD then retry the call without such an argument or choose
an alternative sequence of calls if possible.

• The master SHOULD ignore unexpected messages of unsupported type on the reply pipe.

Namely, the following changes are permitted without increasing the protocol version number:

• Adding new methods to the protocol.

• Adding new optional arguments to existing methods.

• Adding new fields to returned objects.

• Adding new reply message types.

2.6.2 AMS as a pipe master

The AMS driver can play the role of a pipe master, allowing users to combine the features of the AMS driver with
potentials implemented in external programs. Unlike a traditional external engine (page 191), the overhead introduced
by the pipe interface is entirely negligible, because the external program is only started once at the beginning of the
run and all communication is handled by an efficient binary protocol instead of text files. This mode is enabled by
using Engine Pipe in the input for the master.

Engine Pipe
WorkerCommand /path/to/pipe/worker

EndEngine

WorkerCommand

Type String

Description The command to execute to run the external worker. The command is executed in a
subdirectory of the results directory.

2.6. Pipe interface 25



AMS Manual, Amsterdam Modeling Suite 2020

All calculations requested by the driver will then be forwarded over the pipe to the worker for processing.

Note: AMS currently must be run in serial (NSCM=1) when serving as a pipe master.

A Python module implementing the worker side of the AMSPipe protocol is available in scm.amspipe. To facilitate
interfacing with various existing computational engines, this module provides the ASEPipeWorker class. This class
can wrap any ASE calculator object and make it serve as a pipe worker.

calculator = ase.calculators.lj.LennardJones()
# calculator.parameters = ...

engine = scm.amspipe.ASEPipeWorker(calculator=calculator)
engine.run()

See also:

Example: ASE calculator as a pipe worker (page 282)

2.6.3 AMS as a pipe worker

AMS can also serve as a pipe worker, allowing external drivers to take advantage of its engines (page 187). This
mode is enabled by using Task Pipe. No Geometry, System definition (page 27) is required on the input because
the system will be supplied by the pipe master.

Hint: For most users it will easiest to use this functionality through the new AMSWorker class in the PLAMS library.
This class hides all the details of the underlying AMSPipe protocol and provides users an easy way to get very fast
access to energies, gradients and other properties from any of the engines in the AMS driver. See the respective page
in the PLAMS manual for details.

See also:

Example: AMS as a pipe worker (page 284)

Additionally AMS can also be driven through the FlexMD library using AMSPipeForceJob:

forcejob = AMSPipeForceJob(mdmol)
forcejob.settings.engine = 'ReaxFF'
forcejob.settings.engineSettings = { 'ForceField': 'Glycine.ff' }

26 Chapter 2. Input, execution and output

../plams/interfaces/amsworker.html
../plams/index.html
../plams/interfaces/amsworker.html
../Scripting/FlexMD/FlexMD.html


CHAPTER

THREE

GEOMETRY, SYSTEM DEFINITION

The definition of the system to simulate, i.e. the positions and types of the nuclei, the total charge, and potentially
lattice vectors, is enclosed in the System block:

System header
Atoms header # Non-standard block. See details.

...
End
Lattice header # Non-standard block. See details.

...
End
FractionalCoords Yes/No
AllowCloseAtoms Yes/No
GeometryFile string
Symmetrize Yes/No
LatticeStrain float_list
SuperCell integer_list
Charge float
BondOrders # Non-standard block. See details.

...
End

End

3.1 Geometry, Lattice

The geometry of the system is specified with the Atoms and Lattice blocks.

System

Type Block

Recurring True

Description Specification of the chemical system. For some applications more than one system may
be present in the input. In this case, all systems except one must have a non-empty string ID
specified after the System keyword. The system without an ID is considered the main one.

Atoms

Type Non-standard block

Description The atom types and coordinates. Unit can be specified in the header. Default unit
is Angstrom.

Lattice

27



AMS Manual, Amsterdam Modeling Suite 2020

Type Non-standard block

Description Up to three lattice vectors. Unit can be specified in the header. Default unit is
Angstrom.

FractionalCoords

Type Bool

Default value No

Description Whether the atomic coordinates in the Atoms block are given in fractional coordi-
nates of the lattice vectors. Requires the presence of the Lattice block.

The Atoms block contains one line per atoms, similar to the lines found in an .xyz file: First the name of the element,
then three real numbers representing the coordinates of that atom in Angstrom. The following Atoms block shows
how one would define a water molecule:

System
Atoms

O 0.0 0.0 0.59372
H 0.0 0.76544 -0.00836
H 0.0 -0.76544 -0.00836

End
End

Note that it is possible to specify a different unit of length in the header of the block (that is in the line after the
keyword opening the block) by putting the name of the unit in [ and ] brackets. So the same water molecule could
also be specified as follows:

System
Atoms [Bohr]

O 0.0 0.0 1.12197
H 0.0 1.44647 -0.01580
H 0.0 -1.44647 -0.01580

End
End

It is also possible to specify the input geometry as a Z-Matrix, by putting the string Z-Matrix in the header of the
block:

System
Atoms Z-Matrix

C
H 1 1.089000
H 1 1.089000 2 109.4710
H 1 1.089000 2 109.4710 3 120.0000
H 1 1.089000 2 109.4710 3 -120.0000

End
End

Periodic systems require the specification of 1 (for chains), 2 (for slabs) or 3 (for bulk) lattice vectors in addition to
the nuclear coordinates. Every lattice vector is specified on a separate line of three numbers, representing the vectors
x,y and z-component. Note that for chain systems, the single lattice vector must point along the x-axis, while for slab
systems the two lattice vectors must be in the xy-plane. Consider the following input for graphene:

System
Atoms

C 0.0 0.0 0.0

(continues on next page)

28 Chapter 3. Geometry, System definition



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

C 1.23 0.71014 0.0
End
Lattice

2.46 0.0 0.0
1.23 2.13042 0.0

End
End

As with the Atoms block, the length unit in which the lattice vectors are given can be changed by specifying the
desired unit in the header of the block (enclosed in [ and ]). It is also possible to define a system given the fractional
coordinates of the atoms using the FractionalCoordinates keyword. The numbers in the Atoms block are then
interpreted as fractional coordinates according to the lattice vectors in the Lattice block. Note that for chain and
slab systems, the coordinates perpendicular to the periodic direction (z and y for chains, z for slabs) are of course still
in Angstrom (or alternatively the unit set in the header of the Atoms block). Using the FractionalCoordinates
keyword we could specify the geometry of table salt (NaCl) as follows:

System
Lattice

0.0 2.75 2.75
2.75 0.0 2.75
2.75 2.75 0.0

End
FractionalCoordinates True
Atoms

Na 0.0 0.0 0.0
Cl 0.5 0.5 0.5

End
End

Instead of specifying the geometry of the system directly in the input file it can also be read from an external file.

System

GeometryFile

Type String

Description Read the geometry from a file (instead of from Atoms and Lattice blocks). Sup-
ported formats: .xyz

Note that the GeometryFile key replaces both the Atoms and the Lattice blocks in the input. So if you specify
the GeometryFile keyword in the input, the Atoms and Lattice blocks must not appear there. At the moment
only the extended XYZ file format (page 285) is supported.

3.1.1 Modifying the geometry

Finally there are a number of keywords that modify the system geometry:

System

Symmetrize

Type Bool

Default value No

Description Whether to symmetrize the input structure. This might also rototranslate the struc-
ture into a standard orientation. This will symmetrize the atomic coordinates to machine

3.1. Geometry, Lattice 29



AMS Manual, Amsterdam Modeling Suite 2020

precision. Useful if the system is almost symmetric or to rototranslate a symmetric molecule
into a standard orientation.

LatticeStrain

Type Float List

Description Deform the input system by the specified strain. The strain elements are in Voigt
notation, so one should specify 6 numbers for 3D periodic system (order: xx,yy,zz,yz,xz,xy),
3 numbers for 2D periodic systems (order: xx,yy,xy) or 1 number for 1D periodic systems.

SuperCell

Type Integer List

Description Create a supercell of the input system (only possible for periodic systems). The
integer numbers represent the diagonal elements of the supercell transformation; you should
specify as many numbers as lattice vectors (i.e. 1 number for 1D, 2 numbers for 2D and 3
numbers for 3D periodic systems).

SuperCellTrafo

Type Integer List

Description Create a supercell of the input system (only possible for periodic systems)
�⃗�′𝑖 =

∑︀
𝑗 𝑇𝑖𝑗 �⃗�𝑗 . The integer numbers represent the supercell transformation 𝑇𝑖𝑗 : 1

number for 1D PBC, 4 numbers for 2D PBC corresponding to a 2x2 matrix (order:
(1,1),(1,2),(2,1),(2,2)) and 9 numbers for 3D PBC corresponding to a 3x3 matrix (order:
(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)).

PerturbCoordinates

Type Float

Default value 0.0

Unit Angstrom

Description Perturb the atomic coordinates by adding random numbers between [-
PerturbCoordinates,PerturbCoordinates] to each Cartesian component. This can be useful
if you want to break the symmetry of your system (e.g. for a geometry optimization).

PerturbLattice

Type Float

Default value 0.0

Description Perturb the lattice vectors by applying random strain with matrix elements between
[-PerturbLattice,PerturbLattice]. This can be useful if you want to deviate from an ideal
symmetric geometry, for example if you look for a phase change due to high pressure.

MapAtomsToUnitCell

Type Bool

Default value No

Description For periodic systems the atoms will be moved to the central cell.

These modifications are applied immediately after the system block is read. To the rest of AMS (and the input) it
looks exactly as if the modified system was specified explicitly in the System block input. That means that the
SuperCell keyword is not easily usable with input options that require the specification of atom indices, e.g. the
constraints (page 44) block. Note that the randomization of the coordinates is applied after a potential supercell
creation.

30 Chapter 3. Geometry, System definition



AMS Manual, Amsterdam Modeling Suite 2020

3.2 Symmetry

Symmetry can be used in AMS optimizations of molecules and of periodic structures.

In case of molecules at the start of an AMS calculation one can symmetrize an almost symmetric structure. In the
Appendix Symmetry (page 289) one can find molecular orientation requirements that AMS needs such that AMS can
use the (sub)symmetry of a molecule. If the system is symmetrized (and no symmetry is given in the System block
key) the molecular structure is rotranslated into this standard orientation. In the Appendix Symmetry (page 287) one
can also find Schönfliess symbols for molecular point groups and symmetry labels that are used in AMS for molecules
to label normal modes.

System header
Symmetrize Yes/No
Symmetry [...]

End

Symmetry
SymmetrizeTolerance float
Tolerance float

End

UseSymmetry Yes/No

System

Symmetrize

Type Bool

Default value No

Description Whether to symmetrize the input structure. This might also rototranslate the struc-
ture into a standard orientation. This will symmetrize the atomic coordinates to machine
precision. Useful if the system is almost symmetric or to rototranslate a symmetric molecule
into a standard orientation.

Symmetry

Type Multiple Choice

Default value AUTO

Options [AUTO, NOSYM, C(LIN), D(LIN), C(I), C(S), C(2), C(3), C(4), C(5), C(6), C(7),
C(8), C(2V), C(3V), C(4V), C(5V), C(6V), C(7V), C(8V), C(2H), C(3H), C(4H), C(5H),
C(6H), C(7H), C(8H), D(2), D(3), D(4), D(5), D(6), D(7), D(8), D(2D), D(3D), D(4D),
D(5D), D(6D), D(7D), D(8D), D(2H), D(3H), D(4H), D(5H), D(6H), D(7H), D(8H), I, I(H),
O, O(H), T, T(D), T(H), S(4), S(6), S(8)]

Description Use (sub)symmetry with this Schoenflies symbol. Can only be used for molecules.
Orientation should be correct for the (sub)symmetry. If used icw Symmetrize, the sym-
metrization will not reorient the molecule.

Symmetry

SymmetrizeTolerance

Type Float

Default value 0.05

Description Tolerance used to detect symmetry in case symmetrize is requested.

3.2. Symmetry 31



AMS Manual, Amsterdam Modeling Suite 2020

Tolerance

Type Float

Default value 1e-07

Description Tolerance used to detect symmetry in the system.

UseSymmetry

Type Bool

Default value Yes

Description Whether to use the system’s symmetry in AMS. Symmetry is recognized within a tol-
erance as given in the Symmetry key.

3.3 Regions

Some options of the AMS driver and its engines require specifying a subset of a system’s atoms. For example one
might want to freeze part of the system in a molecular dynamics calculation. We refer to these subsets of atoms as
“regions”. Atoms are assigned to regions by specifying the region names behind the atomic coordinates in the Atoms
block of the input:

System
Atoms

C 1.22110608 -0.00000000 1.65928963 region=ring_1
C 0.37734253 -1.16134090 1.65928963 region=ring_1
C 0.37734253 1.16134090 1.65928963 region=ring_1
C -0.98789557 -0.71774815 1.65928963 region=ring_1
C -0.98789557 0.71774815 1.65928963 region=ring_1
H 2.30849293 -0.00000000 1.64874914 region=ring_1
H 0.71336355 -2.19550724 1.64874914 region=ring_1
H 0.71336355 2.19550724 1.64874914 region=ring_1
H -1.86761001 -1.35689810 1.64874914 region=ring_1
H -1.86761001 1.35689810 1.64874914 region=ring_1
Fe 0.00000000 0.00000000 0.00000000
H 0.71336355 2.19550724 -1.64874914 region=ring_2
H 0.71336355 -2.19550724 -1.64874914 region=ring_2
C 1.22110608 -0.00000000 -1.65928963 region=ring_2
C 0.37734253 1.16134090 -1.65928963 region=ring_2
C 0.37734253 -1.16134090 -1.65928963 region=ring_2
C -0.98789557 0.71774815 -1.65928963 region=ring_2
C -0.98789557 -0.71774815 -1.65928963 region=ring_2
H 2.30849293 -0.00000000 -1.64874914 region=ring_2
H -1.86761001 1.35689810 -1.64874914 region=ring_2
H -1.86761001 -1.35689810 -1.64874914 region=ring_2

End
End

In the above example of a ferrocene molecule, we have created two separate regions for the two cyclopentadienyl
rings. The region names (ring_1 and ring_2 in the example above) can be freely chosen by the user. Note that an
atom can be in more than one region, in which case the region names should be separated by commas:

System
Atoms

...
Mg 0.0 0.0 0.0 region=metal_centers,mol_1

(continues on next page)

32 Chapter 3. Geometry, System definition



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

...
End

End

The region names given by the user can then be referred to for input keywords requiring the specification of a region.

Technically the region is handled as an atomic attribute (page 36).

3.4 Charge, atomic masses, input bond orders

AMS allows to set user-defined masses for particular atoms. This can be used to simulate isotopes of different atoms.
Masses are specified by adding the desired mass (in Dalton) at the end of the atom’s line. The following input shows
the system specification for a heavy water molecule:

System
Atoms

O 0.0 0.0 0.59372
H 0.0 0.76544 -0.00836 mass=2.014
H 0.0 -0.76544 -0.00836 mass=2.014

End
End

(Observe that the mass specified this way is an example of the atomic attributes (page 36) system.)

Finally the System block also contains the specification of the system’s total charge as well as optionally defined
bond orders, which might be needed by engines implementing force fields.

System

Charge

Type Float

Default value 0.0

GUI name Total charge

Description The system’s total charge in atomic units (only for non-periodic systems).

BondOrders

Type Non-standard block

Description Defined bond orders. May by used by MM engines.

Note that the specified bond orders are currently only used by the ForceField engine.

3.5 Homogeneous electric field and multipole charges

A homogeneous electric field and multipole charges can be requested at the AMS level. Currently this option is
supported by the engines ADF, BAND, DFTB, and MOPAC.

Homogeneous electric field:

3.4. Charge, atomic masses, input bond orders 33



AMS Manual, Amsterdam Modeling Suite 2020

System
ElectrostaticEmbedding

ElectricField ex ey ez
End

End

ElectrostaticEmbedding

ElectricField

Type Float List

Unit V/Angstrom

Description External homogeneous electric field with three Cartesian components: ex, ey, ez,
the default unit being V/. In atomic units: Hartree/(e bohr) = 27.211 V/bohr; the relation to
SI units is: 1 Hartree/(e bohr) = 5.14 . . . e11 V/m. Supported by the engines adf, band, dftb
and mopac. For periodic systems the field may only have nonzero components orthogonal
to the direction(s) of periodicity (i.e. for 1D periodic system the x-component of the electric
field should be zero, while for 2D periodic systems both the x and y components should be
zero. This options cannot be used for 3D periodic systems.

Point and multipole charges:

System
ElectrostaticEmbedding

MultipolePotential
Coordinates

x y z q py pz px
x y z q py pz px
...

End
End

End
End

ElectrostaticEmbedding

MultipolePotential

Type Block

Description External point charges (and dipoles).

ChargeModel

Type Multiple Choice

Default value Point

Options [Point, Gaussian]

Description The charges may represented as simple points (with a singular potential at the
charge location) or may represented by a spherical Gaussian distribution.

ChargeWidth

Type Float

Default value -1.0

Description A width parameter in a.u. in case a Gaussian charge model is chosen. A nega-
tive value means that the width will be chosen automatically.

34 Chapter 3. Geometry, System definition



AMS Manual, Amsterdam Modeling Suite 2020

Coordinates

Type Non-standard block

Description Positions (in ) and values of multipole charges, one per line. Each line describes
a singe point charge like: x y z q, or x y z q py pz px. Here x, y, z are the coordinates, q is
the charge (in atomic units of charge) and py, pz, px are the (optional) dipole components
(in atomic units, i.e. e/Bohr). Periodic systems are not supported.

Note: When running geometry optimizations (or other similar tasks) in combination with point charges, you should
be aware that the system might end up on top of the point charge(s), resulting in non-physical situations. You should
consider using constraints (page 44), restraints (page 201) or explicitly setting rigid motions (page 357) options.

3.6 Load a System from file

Instead of specifying the system to simulate in the System block of the input, it is also possible to read the system
used in a previous calculation from the binary .rkf result files of AMS. This is done with the LoadSystem block
in the input:

LoadSystem header
File string
Section string

End

LoadSystem

Type Block

Recurring True

Description Block that controls reading the chemical system from a KF file instead of the [System]
block.

File

Type String

Description The path of the KF file from which to load the system. It may also be the results
directory containing it.

Section

Type String

Default value Molecule

Description The section on the KF file from which to load the system.

Note that the LoadSystem block is mutually exclusive with the System block: The system either needs to be
specified in the input, or loaded from a previous results file.

Any .rkf file written by AMS should be suitable to load a system from. For engine output files (page 15) the
loaded geometry is just the one for which the engine was invoked when it wrote this file. For the main result file
(page 15) ams.rkf written by the AMS driver, which geometry is loaded depends on the task (page 39) that AMS
was performing when this file was written. Generally the ams.rkf file contains two systems:

• The input system corresponding just to the System block that was read in by AMS. This system is written to the
InputMolecule section on the ams.rkf, and can be loaded from there using the LoadSystem%Section

3.6. Load a System from file 35



AMS Manual, Amsterdam Modeling Suite 2020

keyword. This can be useful in order to repeat a previous AMS calculation for the same system, but with different
settings, e.g. a different engine.

• The system which was the result of a previous AMS calculation, e.g. a geometry optimization or transition state
search. This system is written to the Molecule section on the ams.rkf. What exactly is considered the
resulting geometry of a calculation depends in the task (page 39) of the previous calculation. (For tasks that do
not change the geometry (like a single point calculation) or where no configuration is particularly special (e.g.
a PES scan), the result system is normally just the same as the input system.)

3.7 Atom attributes

There is in general the possibility to add text after the coordinates of an atom, we call these atomic attributes. The text
should be of the form key=value, separated by spaces:

System
Atoms

O 0.0 0.0 0.59372 key1=1 key2=y
H 0.0 0.76544 -0.00836 file=ams.rkf
H 0.0 -0.76544 -0.00836

End
End

You can enter any arbitrary key/value list, but that will have no effect in general. Although there is one important
effect that atoms with different atomic attributes (even unrecognized ones) are considered different elements during
the symmetry detection.

The order in which keys are specified has no effect.

Examples of atomic attributes are the region, and mass.

3.8 Force field related extensions

For forcefield there are two dedicated atomic attributes (page 36), the ForceField.Type and ForceField.Charge. Obvi-
ously these attributes are ignored by all other engines, although it can reduce the symmetry of the system:

System
Atoms

O 0.0 0.0 0.59372 ForceField.Type=O ForceField.Charge=-0.1
H 0.0 0.76544 -0.00836 ForceField.Type=H ForceField.Charge=+0.05
H 0.0 -0.76544 -0.00836 ForceField.Type=H ForceField.Charge=+0.05

End
End

3.8.1 Load charges for a forcefield into regions

When you want to use a forcefield, the charges obtained by a previous calculation can be loaded into a specific region
(with the same molecule). Currently the order of the atoms has to be the same for this to work.

Once loaded, it is as if the user had typed in the ForceField.Charge attributes.

System

LoadForceFieldCharges

36 Chapter 3. Geometry, System definition



AMS Manual, Amsterdam Modeling Suite 2020

Type Block

Recurring True

Description This is a mechanism to set the ForceField.Charge attribute in the input. This infor-
mation is currently only used by the ForceField engine.

CheckGeometryRMSD

Type Bool

Default value No

Description Whether the geometry RMSD test should be performed, see MaxGeome-
tryRMSD. Otherwise only basic tests are performed, such as number and atom types. Not
doing the RMSD test allows you to load molecular charges in a periodic system.

File

Type String

Description Name of the (kf) file

MaxGeometryRMSD

Type Float

Default value 0.1

Unit Angstrom

Description The geometry of the charge producing calculation is compared to the one of the
region, and need to be the same within this tolerance.

Region

Type String

Default value *

Description Region for which the charges should be loaded

Section

Type String

Default value AMSResults

Description Section name of the kf file

Variable

Type String

Default value Charges

Description Variable name of the kf file

3.8.2 Load forcefield atom types

After you have done a forcefield calculation the atom types are stored. You can load those for a next calculation.

Once loaded, it is as if the user had typed in the ForceField.Type atom attributes.

System

LoadForceFieldAtomTypes

3.8. Force field related extensions 37



AMS Manual, Amsterdam Modeling Suite 2020

Type Block

Description This is a mechanism to set the ForceField.Type attribute in the input. This informa-
tion is currently only used by the ForceField engine.

File

Type String

Description Name of the (kf) file. It needs to be the result of a forcefield calculation.

38 Chapter 3. Geometry, System definition



CHAPTER

FOUR

STRUCTURE AND REACTIVITY, MOLECULAR DYNAMICS

4.1 Single point calculations

A single point calculation is the simplest task available in the AMS driver. It simply runs the engine (page 187) once
for the given geometry. In other words, the AMS driver does not explore the potential energy surface (PES), but simply
samples a “single point” of it.

A single point calculation is performed by selecting it with the Task keyword:

Task SinglePoint

Note that a single point calculation in AMS includes the calculation of PES point properties (page 119). Many of these,
such as the nuclear gradients and the Hessian, are derivatives at this PES point with respect to nuclear displacements.
These derivatives might be done numerically by the AMS driver, in which case it would technically run the engine
multiple times and sample PES points around the initial point. However, in AMS this is still considered a single point
calculation. Take for example the calculation of the normal modes of vibration of a molecule. This used to be a
separate task in the 2017 release of the DFTB program, but in AMS is just a single point calculation with a request for
normal modes:

Task SinglePoint

Properties
NormalModes True

End

See the manual section on PES point properties (page 119) for an overview of which properties can be calculated with
the SinglePoint task in AMS.

4.2 Bond energy calculations

The way to calculate bonding energies is always the same, regardless of the engine. It is about combining ground state
energies for several systems.

4.2.1 Ground state energy

Let system A have a ground state energy E(A)

The ground state energy of a system is obtained by a full relaxation with respect to the geometry coordinates and (if
relevant) to the electronic degrees of freedom. In case of periodic materials the lattice vectors need relaxation as well.

39



AMS Manual, Amsterdam Modeling Suite 2020

Electronic degrees of freedom are specific for the method underpinning the engine. A simple force field may have a
charge equilibration scheme , whereas more advanced engines such DFT- and DFTB-based ones have orbitals. The
electronic relaxation can become a non-trivial problem in case of open shell (page 41) systems.

4.2.2 Formation energy

Say we have a reaction of two molecules (A and B) forming a new one (C).

A + B -> C

The interaction energy follows from three ground state (page 39) calculations

E(bond) = E(C) - E(A) - E(B)

Let us look at a slightly more complicated reaction. The (metastable) material Octanitrocubane with the formula C8 (
NO 2 )8 can be formed from 8 CO2 molecules and four N2 molecules. The formation energy is

E(bond) = E(Octanitrocubane) - 8 E(CO2) - 4 E(N2)

the result being positive as this reaction is highly endothermic.

4.2.3 Atomization energies

Let us now look at atomization energies. For instance, the cohesive energy the NaCl crystal is

E(cohesive energy) = E(NaCl-crystal) - E(Na-atom) - E(Cl-atom)

(Atomization energies can also be calculated for molecules.)

For engines with electronic degrees of freedom, the tricky part here is how to calculate the atomic energies, in particular
E(Cl-atom), because they are open shell systems. See the notes on a atomic corrections (page 40).

Of course you need to weigh the atomic energies by how often they occur in the system (molecule or crystal).

4.2.4 Chemisorption energies

What is the adsorption energy of a molecule on a surface?

The main thing here is whether the “real” system has translational symmetry. For instance in an experiment this may
be the case and correspond to a certain coverage. This can be perfectly modeled in a periodic calculation

E(chemisorption) = E(mol@surface) - E(mol) - E(bare surface)

You need to choose the right super cell to get the correct coverage (how many adsorbed atoms per unit cell).

If the experiment is about the adsorption of a single molecule you need to try to converge the result with progressively
larger super cells.

The other main issue is that almost always in the experimental setup the surface is macroscopically thick. Therefore
the slab thickness is an issue to be tested. Fortunately, often less than 10 layers are needed.

4.2.5 Atomic corrections

Sometimes we need to calculate the ground state energy of a single atom. As there are no geometric variables, the only
degrees of freedom are electronic. In general atoms are open shell (page 41) systems. The idea is to let the engine run
without any restrictions imposed on the spin-polarization, or the symmetry of the orbitals.

One possible trick is to run two atoms quite far away (10-20 angstrom), thus reducing the exact spherical symmetry.

40 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Calculating atomic corrections can be very tricky, as there may be many nearly degenerate orbitals near the fermi level.
Also SCF convergence can be very difficult. There is not a single solution for all atoms.

4.2.6 Open shell systems

The idea is to let the engine run without any restrictions imposed on the spin-polarization, or the symmetry of the
orbitals.

Calculating open shell systems can be very tricky, as there may be many close lying states (of which the lowest is
searched for). Also SCF convergence can be very difficult.

From a theoretical point of view these states should ultimately be described by multi-determinantal wave functions,
lacking from methods such as DFT.

There may be no automatic way to find the absolute minimum. If possible try to avoid the need to do such calculations.

4.2.7 Impurities

Let’s say that we want to introduce a single impurity in a crystal. Currently we do not support such a method. But
using periodic boundary conditions (PBCs) we can approximate this.

Say we want to introduce a single Li atom in an Al crystal. This can be done by considering progressively larger super
cells.

First we make a 2x2x2 super cell, with 8 Al atoms, then we insert one Li, thus modeling an “impurity”, with a 1/8
Li/Al ratio, rather than a 1/infinity. With bigger super cells this approximation becomes better.

The insertion energy is then

E(8Al+Li) - E(8Al) - E(Li-atom)

See also the comments for Atomization energies.

4.3 Geometry optimization

A geometry optimization is the process of changing the system’s geometry (the nuclear coordinates and potentially the
lattice vectors) to minimize the total energy of the systems. This is typically a local optimization, i.e. the optimization
converges to the next local minimum on the potential energy surface (PES), given the initial system geometry specified
in the System block. In other words: The geometry optimizer moves “downhill” on the PES into the local minimum.

See also:

Examples (page 219) and diamond lattice optimization and phonons tutorial

Geometry optimizations are performed by selecting them as the Task. The details of the optimization can be config-
ured in the corresponding block:

Task GeometryOptimization

GeometryOptimization
Convergence

Energy float
Gradients float
Step float
StressEnergyPerAtom float

End

(continues on next page)

4.3. Geometry optimization 41

../../Tutorials/StructureAndReactivity/DiamondOptimizationAndPhonons.html


AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

MaxIterations integer
CalcPropertiesOnlyIfConverged Yes/No
OptimizeLattice Yes/No
KeepIntermediateResults Yes/No
PretendConverged Yes/No

End

GeometryOptimization

Type Block

Description Configures details of the geometry optimization and transition state searches.

Convergence

Type Block

Description Convergence is monitored for up to 4 quantities: the energy change, the Cartesian
gradients, the Cartesian step size, and for lattice optimizations the stress energy per atom.
Convergence criteria can be specified separately for each of these items.

Energy

Type Float

Default value 1e-05

Unit Hartree

GUI name Energy convergence

Description The criterion for changes in the energy. The energy is considered converged
when the change in energy is smaller than this threshold times the number of atoms.

Gradients

Type Float

Default value 0.001

Unit Hartree/Angstrom

GUI name Gradient convergence

Description Threshold for nuclear gradients.

Step

Type Float

Default value 0.01

Unit Angstrom

GUI name Step convergence

Description The maximum Cartesian step allowed for a converged geometry.

StressEnergyPerAtom

Type Float

Default value 0.0005

Unit Hartree

42 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Description Threshold used when optimizing the lattice vectors. The stress is considered
‘converged’ when the maximum value of stress_tensor * cell_volume / number_of_atoms
is smaller than this threshold (for 2D and 1D systems, the cell_volume is replaced by the
cell_area and cell_length respectively).

A geometry optimization is considered converged when all the following criteria are met:

1. The difference between the bond energy at the current geometry and at the previous geometry step is smaller
than Convergence%Energy.

2. The maximum Cartesian nuclear gradient is smaller than Convergence%Gradient.

3. The root mean square (RMS) of the Cartesian nuclear gradients is smaller than 2/3
Convergence%Gradient.

4. The maximum Cartesian step is smaller than Convergence%Step.

5. The root mean square (RMS) of the Cartesian steps is smaller than 2/3 Convergence%Step.

Note: If the maximum and RMS gradients are 10 times smaller than the convergence criterion, then criteria 4 and 5
are ignored.

Some remarks on the choice of the convergence thresholds:

• Molecules may differ very much in the stiffness around the energy minimum. Using the standard convergence
thresholds without second thought is therefore not recommended. Strict criteria may require a large number of
steps, while a loose threshold may yield geometries that are far from the minimum (with respect to atom-atom
distances, bond-angles etc. . . ) even when the total energy of the molecule might be very close to the value at
the minimum. It is good practice to consider first what the objectives of the calculation are. The default settings
in AMS are intended to be reasonable for most applications, but inevitably situations may arise where they are
inadequate.

• The convergence threshold for the coordinates (Convergence%Step) is not a reliable measure for the preci-
sion of the final coordinates. Usually it yields a reasonable estimate (order of magnitude), but to get accurate
results one should tighten the criterion on the gradients, rather than on the steps (coordinates). (The reason for
this is that with the Quasi-Newton based optimizers the estimated uncertainty in the coordinates is related to
the used Hessian, which is updated during the optimization. Quite often it stays rather far from an accurate
representation of the true Hessian. This does usually not prevent the program from converging nicely, but it
does imply a possibly incorrect calculation of the uncertainty in the coordinates.)

• Note that tight convergence criteria for the geometry optimization require accurate and noise-free gradients from
the engine. For some engines this might mean that their numerical accuracy has to be increased for geometry
optimization with tight convergence criteria, see e.g. the NumericalQuality keyword in the BAND manual.

The maximum number of geometry iterations allowed to locate the desired structure is specified with the
MaxIterations keyword:

GeometryOptimization

MaxIterations

Type Integer

GUI name Maximum number of iterations

Description The maximum number of geometry iterations allowed to converge to the desired
structure.

CalcPropertiesOnlyIfConverged

Type Bool

Default value Yes

4.3. Geometry optimization 43



AMS Manual, Amsterdam Modeling Suite 2020

Description Compute the properties requested in the ‘Properties’ block, e.g. Frequencies or
Phonons, only if the optimization (or transition state search) converged. If False, the proper-
ties will be computed even if the optimization did not converge.

PretendConverged

Type Bool

Default value No

Description Normally a non-converged geometry optimization is considered an error. If this
keyword is set to True, the optimizer will only produce a warning and still claim that the
optimization is converged. (This is mostly useful for scripting applications, where one might
want to consider non-converged optimizations still successful jobs.)

If the geometry optimization does not converge within this many steps it is considered failed and the iteration aborted,
i.e. PES point properties (page 119) block will not be calculated at the last geometry. The default maximum number of
steps is chosen automatically based on the used optimizer and the number of degrees of freedom to be optimized. The
default is a fairly large number already, so if the geometry has not converged (at least to a reasonable extent) within
that many iterations you should step back and consider the underlying cause rather than simply increase the allowed
number of iterations and try again.

While a geometry optimization aims to find a (local) PES minimum, it may occur that it ends up finding a saddle point
instead. The PESPointCharacter property keyword can be used to quickly calculate the lowest few Hessian
eigenvalues to determine what kind of stationary PES point the optimization found. More information on this feature
can be found on its Documentation Page (page 122).

For periodic systems the lattice degrees of freedom can be optimized in addition to the nuclear positions.

GeometryOptimization

OptimizeLattice

Type Bool

Default value No

Description Whether to also optimize the lattice for periodic structures. This is currently only
supported with the Quasi-Newton, FIRE, L-BFGS and SCMGO optimizers.

Finally the GeometryOptimization block also contains some technical options:

GeometryOptimization

KeepIntermediateResults

Type Bool

Default value No

Description Whether the full engine result files of all intermediate steps are stored on disk. By
default only the last step is kept, and only if the geometry optimization converged. This can
easily lead to huge amounts of data being stored on disk, but it can sometimes be conve-
nient to closely monitor a tricky optimization, e.g. excited state optimizations going through
conical intersections, etc. . . .

4.3.1 Constrained optimization

The AMS driver also allows to perform constrained optimizations, where a number of specified degrees of freedom
are fixed to particular values.

See also:

44 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Example demonstrating all supported constraints (page 227)

The desired constraints are specified in the Constraints block at the root level of the AMS input file:

Constraints
Atom integer
AtomList integer_list
FixedRegion string
Coordinate integer [x|y|z] float?
Distance (integer){2} float
Angle (integer){3} float
Dihedral (integer){4} float
SumDist (integer){4} float
DifDist (integer){4} float
BlockAtoms integer_list
Block string
FreezeStrain [xx] [xy] [xz] [yy] [yz] [zz]
EqualStrain [xx] [xy] [xz] [yy] [yz] [zz]

End

Atom atomIdx Fix the atom with index atomIdx at the initial position, as given in the System%Atoms block.

AtomList [atomIdx1 .. atomIdxN] Fix all atoms in the list at the initial position, as given in the
System%Atoms block.

FixedRegion regionName Fix all atoms in a region (page 32) to their initial positions.

Coordinate atomIdx [x|y|z] coordValue? Constrain the atom with index atomIdx (following the or-
der in the System%Atoms block) to have a cartesian coordinate (x, y or z) of coordValue (given in
Angstrom). If the coordValue is missing, the coordinate will be fixed to its initial value.

Distance atomIdx1 atomIdx2 distValue Constrain the distance between the atoms with index
atomIdx1 and atomIdx2 (following the order in the System%Atoms block) to distValue, given in
Angstrom.

Angle atomIdx1 atomIdx2 atomIdx3 angleValue Constrain the angle (1)–(2)–(3) between the atoms
with indices atomIdx1-3 (as given by their order in the System%Atoms block) to angleValue, given in
degrees.

Dihedral atomIdx1 atomIdx2 atomIdx3 atomIdx4 dihedValue Constrain the dihedral angle
(1)–(2)–(3)–(4) between the atoms with indices atomIdx1-4 (as given by their order in the System%Atoms
block) to dihedValue, given in degrees.

SumDist atomIdx1 atomIdx2 atomIdx3 atomIdx4 sumDistValue Constrain the sum of the dis-
tances R(1,2)+R(3,4) between the atoms with indices atomIdx1-4 (as given by their order in the
System%Atoms block) to sumDistValue, given in Angstrom.

DifDist atomIdx1 atomIdx2 atomIdx3 atomIdx4 difDistValue Constrain the difference be-
tween the distances R(1,2)-R(3,4) of the atoms with indices atomIdx1-4 (as given by their order in the
System%Atoms block) to difDistValue, given in Angstrom.

Note that the above constraints do not need to be satisfied at the beginning of the optimization.

BlockAtoms [atomIdx1 ... atomIdxN] Creates a block constraint (freezes all internal degrees of freedom)
for a set of atoms identified by the list of integers [atomIdx1 ... atomIdxN]. These atom indices refer
to the order of the atoms in the System%Atoms block.

Block regionName Creates a block constraint (freezes all internal degrees of freedom) for a all atoms in a region
(page 32) defined in the System%Atoms block. Example:

4.3. Geometry optimization 45



AMS Manual, Amsterdam Modeling Suite 2020

System
Atoms

C 0.0 0.0 0.0 region=myblock
C 0.0 0.0 1.0 region=myblock
C 0.0 1.0 0.0

End
End
Constraints

Block myblock
End

For lattice optimizations, the following constraints can be used on the lattice degrees of freedom:

FreezeStrain [xx] [xy] [xz] [yy] [yz] [zz] Exclusively for lattice optimizations: Freezes any lat-
tice deformation corresponding to a particular component of the strain tensor. Accepts a set of strain components
[xx, xy, xz, yy, yz, zz] to be frozen.

EqualStrain [xx] [xy] [xz] [yy] [yz] [zz] Exclusively for lattice optimizations: Accepts a set of
strain components [xx, xy, xz, yy, yz, zz] which are to be kept equal. The applied strain will be determined by
the average of the corresponding stress tensors components.

Note that in principle an arbitrary number of constraints can be specified and thus combined. However, it is the
user’s responsibility to ensure that the specified constraints are actually compatible with each other, meaning that it is
theoretically possible to satisfy all of them at the same time. The AMS driver does not detect this kind of problems,
but the optimization will show very unexpected results. Furthermore, for calculations involving block constraints the
following restrictions apply:

• There should be no other constrained coordinates used together with block constraints although this may work
in many situation.

• The user should absolutely avoid specifying other constraints that include atoms of a frozen block.

Restraints

Not all optimizers support constraints. An alternative is to use so-called restraints. These are not exact constraints, but
rather a number of springs that pull the system towards the preferred constraints, see Restraints (page 201).

4.3.2 Optimization under pressure / external stress

Pressure (page 198) or non-isotropic external stress (page 199) can be included in your simulation via the correspond-
ing engine addons (page 195).

4.3.3 Optimization methods

The AMS driver implements a few different geometry optimization algorithms. It also allows to choose the coordinate
space in which the optimization is performed:

GeometryOptimization
Method [Auto | Quasi-Newton | SCMGO | FIRE | L-BFGS | ConjugateGradients]
CoordinateType [Auto | Delocalized | Cartesian]

End

GeometryOptimization

Method

46 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Type Multiple Choice

Default value Auto

Options [Auto, Quasi-Newton, SCMGO, FIRE, L-BFGS, ConjugateGradients]

GUI name Optimization method

Description Select the optimization algorithm employed for the geometry relaxation. Currently
supported are: the Hessian-based Quasi-Newton-type BFGS algorithm, the experimental
SCMGO optimizer, the fast inertial relaxation method (FIRE), the limited-memory BFGS
method, and the conjugate gradients method. The default is to choose an appropriate method
automatically based on the engine’s speed, the system size and the supported optimization
options.

CoordinateType

Type Multiple Choice

Default value Auto

Options [Auto, Delocalized, Cartesian]

GUI name Optimization space

Description Select the type of coordinates in which to perform the optimization. ‘Auto’ au-
tomatically selects the most appropriate CoordinateType for a given Method. If ‘Auto’ is
selected, Delocalized coordinates will be used for the Quasi-Newton and SCMGO methods,
while Cartesian coordinates will be used for all other methods.

We strongly advise leaving both the Method as well as the Coordinate type on the Auto setting. There are many
restrictions as to which optimizer and coordinate type can be used together with which kind of optimization. The
following (roughly) sketches the compatibility of the different optimizers and options:

Optimizer Constraints Lattice opt. Coordinate types
Quasi-Newton All, except strain constraints Yes All
FIRE Fixed coordinates, strain constraints Yes Cartesian
SCMGO No Yes Delocalized
L-BFGS No Yes Cartesian
Conjugate gradients No No Cartesian

Furthermore for optimal performance the optimizer should be chosen with the speed of the engine: a faster engine
in combination should use an optimizer with little overhead (FIRE), while slower engines should use optimizers that
strictly minimize the number of steps (Quasi-Newton, SCMGO). This is all handled automatically by default, and we
recommend changing Method and Coordinate only in case there are problems with the automatic choice.

The following subsections list the strengths and weaknesses of the individual optimizers in some more detail, motivat-
ing why which optimizer is chosen automatically under which circumstances.

Quasi-Newton

This optimizer implements a quasi Newton approach123, using the Hessian for computing changes in the geometry so
as to reach a local minimum. The Hessian itself is typically approximated (page 49) in the beginning and updated in
the process of optimization. It uses delocalized coordinates by default both for molecules and periodic systems. The

1 L. Versluis and T. Ziegler, The determination of Molecular Structure by Density Functional Theory, Journal of Chemical Physics 88, 322
(1988) (https://doi.org/10.1063/1.454603)

2 L. Versluis, The determination of molecular structures by the HFS method, PhD thesis, University of Calgary, 1989
3 L. Fan and T. Ziegler, Optimization of molecular structures by self consistent and non-local density functional theory, Journal of Chemical

Physics 95, 7401 (1991) (https://doi.org/10.1063/1.461366)

4.3. Geometry optimization 47

https://doi.org/10.1063/1.454603
https://doi.org/10.1063/1.454603
https://doi.org/10.1063/1.461366
https://doi.org/10.1063/1.461366


AMS Manual, Amsterdam Modeling Suite 2020

molecular part is based mainly on the work by Marcel Swart4. Cartesian coordinates are used in the presence of an
external electric field and/or frozen atom constraints.

The Quasi-Newton (QN) optimizer supports all types of constraints and can be used for both molecular and periodic
systems, including lattice optimizations. For cases where the optimization can be performed in delocalized coordi-
nates, the number of steps taken to reach the local minimum is usually smaller than when optimizing in Cartesian ones.
For fast compute engines (page 187), the overhead of the QN optimizer can become a bottleneck of the calculation,
thus a more light-weight optimizer such as FIRE (page 50) may give an better overall performance. In principle, a
QN optimization in delocalized coordinates may run out of memory for a very large system (say over 1000 atoms)
because of the SVD step. However, since it is going to be used for a moderate-to-slow engine we still recommend
sticking to it for the benefit of fewer steps. Because of these properties the QN optimizer is the default in AMS for all
kinds of optimizations with moderate and slow engines, such DFTB and ADF. It is also used as the optimizer back-end
for the PES scan task (page 58), the transition state search (page 55) as well as the calculation of the elastic tensor
(page 126).

Details of the Quasi-Newton optimizer are configured in a dedicated block:

GeometryOptimization
Quasi-Newton

MaxGDIISVectors integer
Step

TrustRadius float
End
UpdateTSVectorEveryStep Yes/No

End
End

GeometryOptimization

Quasi-Newton

Type Block

Description Configures details of the Quasi-Newton geometry optimizer.

MaxGDIISVectors

Type Integer

Default value 0

Description Sets the maximum number of GDIIS vectors. Setting this to a number >0 en-
ables the GDIIS method.

Step

Type Block

Description

TrustRadius

Type Float

Description Initial value of the trust radius.

UpdateTSVectorEveryStep

Type Bool

Default value Yes
4 M. Swart and F.M. Bickelhaupt, Optimization of strong and weak coordinates, International Journal of Quantum Chemistry 106, 2536 (2006)

(https://doi.org/10.1002/qua.21049)

48 Chapter 4. Structure and Reactivity, Molecular Dynamics

https://doi.org/10.1002/qua.21049


AMS Manual, Amsterdam Modeling Suite 2020

GUI name Update TSRC vector every step

Description Whether to update the TS reaction coordinate at each step with the current
eigenvector.

The Quasi-Newton optimizer uses the Hessian to compute the step of the geometry optimization. The Hessian is
typically approximated in the beginning and then updated during the optimization. A very good initial Hessian can
therefore increase the performance of the optimizer and lead to faster and more stable convergence. The choice of the
initial Hessian can be configured in a dedicated block:

GeometryOptimization
InitialHessian

File string
Type [Auto | UnitMatrix | Swart | FromFile | Calculate |

→˓CalculateWithFastEngine]
End

End

GeometryOptimization

InitialHessian

Type Block

Description Options for initial model Hessian when optimizing systems with either the Quasi-
Newton or the SCMGO method.

File

Type String

GUI name Initial Hessian from

Description KF file containing the initial Hessian (or the results dir. containing it). This
can be used to load a Hessian calculated in a previously with the [Properties%Hessian]
keyword.

Type

Type Multiple Choice

Default value Auto

Options [Auto, UnitMatrix, Swart, FromFile, Calculate, CalculateWithFastEngine]

GUI name Initial Hessian

Description Select the type of initial Hessian. Auto: let the program pick an initial model
Hessian. UnitMatrix: simplest initial model Hessian, just a unit matrix in the optimization
coordinates. Swart: model Hessian from M. Swart. FromFile: load the Hessian from the
results of a previous calculation (see InitialHessian%File). Calculate: compute the initial
Hessian (this may be computationally expensive and it is mostly recommended for Transi-
tionStateSearch calculations). CalculateWithFastEngine: compute the initial Hessian with
a faster engine.

While there are some options for the construction of approximate model Hessians, the best initial Hessians are often
those calculated explicitly at a lower level of theory, e.g. the real DFTB Hessian can be used the initial Hessian for
an optimization with the more accurate BAND engine. Using the CalculateWithFasterEngine keyword can
be used to automatically chose a fast engine at a lower level of theory. What the lower level of theory is depends on
the main engine used in the calculation: DFTB with the GFN1-xTB model is used as the lower level of theory for
relatively slow engines, e.g. DFT based engines. For semi-empirical engines like DFTB or MOPAC, the lower level
of theory is currently UFF. If more control over the lower level engine is needed, the initial Hessian can be calculated
with a user defined engine and then loaded from file, see this example (page 219).

4.3. Geometry optimization 49



AMS Manual, Amsterdam Modeling Suite 2020

FIRE

The Fast Inertial Relaxation Engine5 based optimizer has basically no overhead per step, so that the speed of the
optimization purely depends on the performance of the used compute engine (page 187). As such it is a good option
for large systems or fast compute engines, where the overhead of the Quasi-Newton optimizer would be significant.
Note that is also supports fixed atom constraints (page 45) and coordinate constraints (page 45) (as long as the value
of the constrained coordinate is already satisfied in the input geometry), as well as lattice optimizations (with strain
constraints).

FIRE is selected as the default optimizer for fast compute engines if it is compatible with all other settings of the
optimization (i.e. no unsupported constraints or coordinate types).

Note: FIRE is a very robust optimizer. In case of convergence problems with the other methods, it is a good idea to
see if the optimization converges with FIRE. If it does not, it is very likely that the problem is not the optimizer but
the shape of the potential energy surface . . .

The details of the FIRE optimizer are configured in a dedicated block. It is quite easy to make the optimization
numerically unstable when tweaking these settings, so we strongly recommend leaving everything at the default values.

GeometryOptimization
FIRE

AllowOverallRotation Yes/No
AllowOverallTranslation Yes/No
MapAtomsToUnitCell Yes/No
NMin integer
alphaStart float
dtMax float
dtStart float
fAlpha float
fDec float
fInc float
strainMass float

End
End

GeometryOptimization

FIRE

Type Block

Description This block configures the details of the FIRE optimizer. The keywords name corre-
spond the the symbols used in the article describing the method, see PRL 97, 170201 (2006).

AllowOverallRotation

Type Bool

Default value Yes

Description Whether or not the system is allowed to freely rotate during the optimization.
This is relevant when optimizing structures in the presence of external fields.

AllowOverallTranslation

Type Bool

Default value No
5 E. Bitzek, P. Koskinen, F. Gähler, M. Moseler and P. Gumbsch, Structural Relaxation Made Simple, Physical Review Letters 97, 170201

(2006) (https://doi.org/10.1103/PhysRevLett.97.170201)

50 Chapter 4. Structure and Reactivity, Molecular Dynamics

https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.97.170201


AMS Manual, Amsterdam Modeling Suite 2020

Description Whether or not the system is allowed to translate during the optimization. This
is relevant when optimizing structures in the presence of external fields.

MapAtomsToUnitCell

Type Bool

Default value No

Description Map the atoms to the central cell at each geometry step.

NMin

Type Integer

Default value 5

Description Number of steps after stopping before increasing the time step again.

alphaStart

Type Float

Default value 0.1

Description Steering coefficient.

dtMax

Type Float

Default value 1.0

Unit Femtoseconds

Description Maximum time step used for the integration.

dtStart

Type Float

Default value 0.25

Unit Femtoseconds

Description Initial time step for the integration.

fAlpha

Type Float

Default value 0.99

Description Reduction factor for the steering coefficient.

fDec

Type Float

Default value 0.5

Description Reduction factor for reducing the time step in case of uphill movement.

fInc

Type Float

Default value 1.1

Description Growth factor for the integration time step.

4.3. Geometry optimization 51



AMS Manual, Amsterdam Modeling Suite 2020

strainMass

Type Float

Default value 0.5

Description Fictitious relative mass of the lattice degrees of freedom. This controls the
stiffness of the lattice degrees of freedom relative to the atomic degrees of freedom, with
smaller values resulting in a more aggressive optimization of the lattice.

SCMGO

The SCMGO optimizer is a new implementation of a Quasi-Newton style optimizer working in delocalized coordi-
nates. In the 2020 release of the Amsterdam Modeling Suite it is still considered experimental and therefore never
selected automatically. However, for molecules and fully connected periodic systems it already shows a quite good
performance, and could be a reasonable alternative to the classic Quasi-Newton (page 47) optimizer.

GeometryOptimization
SCMGO

ContractPrimitives Yes/No
NumericalBMatrix Yes/No
Step

TrustRadius float
VariableTrustRadius Yes/No

End
logSCMGO Yes/No
testSCMGO Yes/No

End
End

GeometryOptimization

SCMGO

Type Block

Description Configures details SCMGO.

ContractPrimitives

Type Bool

Default value Yes

Description Form non-redundant linear combinations of primitive coordinates sharing the
same central atom

NumericalBMatrix

Type Bool

Default value No

Description Calculation of the B-matrix, i.e. Jacobian of internal coordinates in terms of
numerical differentiations

Step

Type Block

Description

TrustRadius

52 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Type Float

Default value 0.2

Description Initial value of the trust radius.

VariableTrustRadius

Type Bool

Default value Yes

Description Whether or not the trust radius can be updated during the optimization.

logSCMGO

Type Bool

Default value No

Description Verbose output of SCMGO internal data

testSCMGO

Type Bool

Default value No

Description Run SCMGO in test mode.

Note that SCMGO also supports different initial Hessians, and uses the same options for the initial Hessian as the
Quasi-Newton optimizer, see above (page 49).

Limited-memory BFGS

AMS also offers an L-BFGS based geometry optimizer. It usually converges faster than FIRE (page 50), but does
not support constrained optimizations. For periodic systems it can be quite good for lattice optimizations. The new
implementation has not been thoroughly tested yet, therefore never selected automatically. For large systems and fast
engines you may want to disable symmetry: simply the detection of (non-existing) symmetry may be a huge overhead.

GeometryOptimization
HessianFree

Step
MaxCartesianStep float
MinRadius float
TrialStep float
TrustRadius float

End
End

End

GeometryOptimization

HessianFree

Type Block

Description Configures details of the Hessian-free (conjugate gradients or L-BFGS) geometry
optimizer.

Step

Type Block

Description

4.3. Geometry optimization 53



AMS Manual, Amsterdam Modeling Suite 2020

MaxCartesianStep

Type Float

Default value 0.1

Unit Angstrom

Description Limit on a single Cartesian component of the step.

MinRadius

Type Float

Default value 0.0

Unit Angstrom

Description Minimum value for the trust radius.

TrialStep

Type Float

Default value 0.0005

Unit Angstrom

Description Length of the finite-difference step when determining curvature. Should be
smaller than the step convergence criterion.

TrustRadius

Type Float

Default value 0.2

Unit Angstrom

Description Initial value of the trust radius.

Conjugate gradients

AMS also offers a conjugate gradients based geometry optimizer, as it was also implemented in the pre-2018 releases
of the DFTB program. However, it is usually slightly slower than FIRE (page 50), and supports neither lattice nor
constrained optimizations. It is therefore never selected automatically, and we do not recommend using it. Like L-
BFGS, the conjugate gradients optimizer is also configured in the HessianFree block, see L-BFGS section above
for details.

4.3.4 Troubleshooting

Failure to converge

First of all one should look how the energy changed during the latest ten or so iterations. If the energy is decreasing
more or less consistently, possibly with occasional jumps, then there is probably nothing wrong with the optimization.
This behavior is typical in the cases when the starting geometry was far away from the minimum and the optimization
has a long way to go. Just increase the allowed number of iterations, restart from the latest geometry and see if the
optimization converges.

If the energy oscillates around some value and the energy gradient hardly changes then you may need to look at the
calculation setup.

54 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

The success of geometry optimization depends on the accuracy of the calculated forces. The default accuracy settings
are sufficient in most cases. There are, however, cases when one has to increase the accuracy in order to get geometry
optimization converged. First of all, this may be necessary if you tighten the optimization convergence criteria. In
some cases it may be necessary to increase the accuracy also for the default criteria. Please refer to the engine manuals
(page 187) for instructions on how to increase the accuracy of an engine’s energies and gradients. Often this is done
with the NumericalQuality keyword in the engine input.

A geometry optimization can also fail to converge because the underlying potential energy surface is problematic, e.g.
it might be discontinuous or not have a minimum at which the gradients vanish. This often indicates real problems
in the calculation setup, e.g. an electronic structure that changes fundamentally between subsequent steps in the
optimization. In these cases it is advisable to run a single point calculation at the problematic geometries and carefully
check if the results are physically actually sensible.

Finally it can also be a technical problem with the specific optimization method (page 46) used. In these cases switch-
ing to another method could help with convergence problems. We recommend first trying the FIRE (page 50) opti-
mizer, as it is internally relatively simple and stable.

Restarting a geometry optimization

During a running optimization the system’s geometry is written out to the AMS driver’s output file ams.rkf after
every step (in the Molecule section). This means that crashed or otherwise canceled geometry optimizations can
be restarted by simply loading the last frame from there using the LoadSystem keyword, see its documentation
(page 33) in the system definition section of this manual:

LoadSystem File=my_crashed_GO.results/ams.rkf

This can of course also be used to continue an optimization but e.g. with tighter convergence criteria or a different
optimizer, as it essentially starts a new geometry optimization from the previous geometry, and does not propagate
any information internal to the optimizer (e.g. the approximate Hessian for the Quasi-Newton optimizer or the FIRE
velocities) to the new job. As such it might take a few more steps to convergence than if the original job had continued,
but allows for additional flexibility.

4.4 Transition state search

A transition state (TS) search is very much like a geometry optimization (page 41): the purpose is to find a stationary
point on the potential energy surface, primarily by monitoring the energy gradients, which should vanish. The dif-
ference between a transition state and a minimum is that at the transition state the Hessian has a negative eigenvalue:
We are at a saddle point, not a minimum, with the “negative” mode connecting the two basins on the potential energy
surface.

See also:

• Examples (page 219)

• Tutorial Transition state search and characterization of a Ziegler Natta Catalyst

• Tutorial PES scan, transition state search and Intrinsic Reaction Coordinate

• Tutorial Tips and Tricks for Transition State Searches for Click Reactions

A transition state search in AMS is performed by selecting the corresponding task:

Task TransitionStateSearch

Due to the similarities between energy minimization and transition state search, the TransitionStateSearch
task in AMS is actually implemented as a special kind of geometry optimization using the quasi-Newton (page 47)

4.4. Transition state search 55

../../Tutorials/StructureAndReactivity/ZN-PES-Scan_TST.html
../../Tutorials/StructureAndReactivity/PESScanAndTS.html
../../Tutorials/StructureAndReactivity/TipsAndTricksForTS.html


AMS Manual, Amsterdam Modeling Suite 2020

optimizer. As such all the settings and keywords described on the geometry optimization manual page (page 41) also
apply to transition state searches.

In a geometry optimization with a quasi-Newton based optimizer the Hessian is used to make a reasonably sized step
in the “downhill” direction on the potential energy surface, as the goal is simply to minimize the energy. A transition
state search is a bit different: In the first step a normal mode is picked along which the energy is to be maximized,
while it is minimized along all other directions. Normally the mode with the lowest eigenvalue is picked, since we
know that there should be exactly one negative eigenvalue at the TS geometry, but one can also choose an approximate
reaction coordinate, see ReactionCoordinate. If the initial geometry is sufficiently close to the transition state,
i.e. we are close to the saddle, the lowest mode is normally the correct one to follow in order to get to the ridge of the
saddle. Alternatively a different mode can also be selected manually.

TransitionStateSearch
ModeToFollow integer
ReactionCoordinate

Angle string
Dihedral string
Distance string

End
End

TransitionStateSearch

Type Block

Description Configures some details of the transition state search.

ModeToFollow

Type Integer

Default value 1

Description In case of Transition State Search, here you can specify the index of the normal
mode to follow (1 is the mode with the lowest frequency).

ReactionCoordinate

Type Block

Description Specify components of the transition state reaction coordinate (TSRC) as a linear
combination of internal coordinates (distances or angles).

Angle

Type String

Recurring True

Description The TSRC contains the valence angle between the given atoms. Three atom
indices followed by the weight.

Dihedral

Type String

Recurring True

Description The TSRC contains the dihedral angle between the given atoms. Four atom
indices followed by the weight.

Distance

Type String

56 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Recurring True

Description The TSRC contains the distance between the given atoms. Two atom indices
followed by the weight.

This selection happens only in the first step. Subsequent steps will attempt to maximize along the mode that resembles
most (by overlap) the previous maximization direction.

Practice shows that transition states are much harder to find than a minimum. For a large part this is due to the much
stronger anharmonicities that usually occur near the TS, which threaten to invalidate the quasi-Newton methods to
find the stationary point. For this reason it is good advice to be more cautious in the optimization strategy when
approaching a transition state:

• We recommend starting the transition state search with an intial geometry that is already close to the transition
state. One can use a potential energy surface scan (page 58) along something resembling the reaction coordinate
to get a rough idea where the transition state is. This geometry can then be used as an initial geometry for the
transitions state search.

• It is strongly recommended to manually supply a good initial Hessian for the transition state search. Otherwise
the first step of the search might not be taken in the correct direction and subsequent steps will attempt to keep
steering in the wrong direction. In AMS this is easily possible by loading a Hessian from a previous calculation,
see the initial Hessian section (page 49) of this manual. A good way to obtain a reasonable Hessian is to
compute it explicitly with one of the fast engines (i.e. at a lower lever of theory) and read that Hessian as the
initial Hessian for the transition state search at a higher level of theory. This approach is demonstrated in the
Examples (page 219) and the PES scan and transition state search tutorial.

• When no accurate initial Hessian is available, it may be a good idea to specify an approximate normal mode vec-
tor using the ReactionCoordinate input block. A reaction coordinate is a linear combination of distances
and/or valence and dihedral angles:

TransitionStateSearch
ReactionCoordinate

Distance i j fac
Distance i j fac
Angle i j k fac
Dihedral i j k l fac

End
End

Here, i, j, k, and l are atom indices, and the fac is the factor with which the internal coordinate enters the
linear combination.

One should be careful when specifying more than one bond or angle as a transition state reaction coordinate
(TSRC). For example, suppose atom 2 is located between atoms 1 and 3. Then the following ReactionCoordinate
block:

TransitionStateSearch
ReactionCoordinate

Distance 1 2 1.0
Distance 2 3 -1.0

End
End

means that the TSRC consists of two distances: R(1-2) and R(2-3). The positive direction of the TSRC is
defined as an increase of the R(1-2) and a decrease of the R(2-3). In other words, this TSRC corresponds to
atom 2 moving along the R(1-3) axis.

• When the method converges it is usually a good idea to verify that the found geometry is indeed a transition
state. This can be done by performing a frequency analysis and checking whether the Hessian has exactly

4.4. Transition state search 57

../../Tutorials/StructureAndReactivity/PESScanAndTS.html


AMS Manual, Amsterdam Modeling Suite 2020

one negative eigenvalue (represented by a mode with a negative frequency). Doing so is expensive however.
Since we are really only interested in the lowest two normal modes calculating the full Hessian is however not
necessary and one can use the faster PES point characterization instead. This uses a Davidson-type algorithm to
obtain the lowest few normal modes without constructing the full Hessian. The user is referred to the PES point
characterization (page 122) documentation page for further details.

4.5 Linear Transit, PES scan

The PES scan task in AMS allows users to scan the potential energy surface of a system along one or multiple degrees
of freedom, while relaxing all other degrees of freedom. If only one coordinate is scanned, this kind of calculation is
usually just called a linear transit. However, since AMS allows scanning of multiple coordinates, and linear transit is
just a special case of such a calculation, the task is always called a PES scan in AMS.

A linear transit may be used for instance to sketch an approximate path over the transition states between reactants and
products. From this a reasonable guess for the Transition State can be obtained which may serve as starting point for
a true transition state search for instance.

See also:

• Examples (page 219)

• Tutorial Transition state search and characterization of a Ziegler Natta Catalyst

• Tutorial PES scan, transition state search and Intrinsic Reaction Coordinate

The PES scan task is enabled by selecting it with the Task keyword:

Task PESScan

The PESScan block configures all details of the scan:

PESScan
CalcPropertiesAtPESPoints [True | False]
FillUnconvergedGaps [True | False]
ScanCoordinate

nPoints integer
Coordinate integer [x|y|z] (float){2}
Distance (integer){2} (float){2}
Angle (integer){3} (float){2}
Dihedral (integer){4} (float){2}
SumDist (integer){4} (float){2}
DifDist (integer){4} (float){2}

End
End

The PESScan block needs to contain at least one ScanCoordinate block specifying which coordinate to scan,
and how many points (keyword nPoints) to sample along this coordinate. By default, 10 points are sampled along
each scanned coordinate (including the start and end point of the scan). The coordinate descriptors are very similar
to the constraint descriptors (page 44) in the Constraints block used by the geometry optimization task, but are
followed by two values delimiting the start and end of the coordinates, instead of just a single value:

Coordinate atomIdx [x|y|z] startValue endValue Moves the atom with index atomIdx (follow-
ing the order in the System block) along the a cartesian coordinate (x, y or z), starting at startValue and
ending at endValue (given in Angstrom).

Distance atomIdx1 atomIdx2 startDist endDist Scans the distance between the atoms with index
atomIdx1 and atomIdx2, starting from startDist and ending at endDist, both given in Angstrom.

58 Chapter 4. Structure and Reactivity, Molecular Dynamics

../../Tutorials/StructureAndReactivity/ZN-PES-Scan_TST.html
../../Tutorials/StructureAndReactivity/PESScanAndTS.html


AMS Manual, Amsterdam Modeling Suite 2020

Angle atomIdx1 atomIdx2 atomIdx3 startAngle endAngle Scans the angle (1)–(2)–(3) between
the atoms with indices atomIdx1-3, as given by their order in the System%Atoms block. The scanned
angle starts at startAngle and ends at endAngle, given in degrees.

Dihedral atomIdx1 atomIdx2 atomIdx3 atomIdx4 startAngle endAngle Scans the dihedral
angle (1)–(2)–(3)–(4) between the atoms with indices atomIdx1-4, as given by their order in the
System%Atoms block. The scanned dihedral starts at startAngle and ends at endAngle, given in de-
grees.

SumDist atomIdx1 atomIdx2 atomIdx3 atomIdx4 start end Scans the sum of the distances
R(1,2)+R(3,4) between the atoms with indices atomIdx1-4, as given by their order in the System%Atoms
block. The values to be scanned start at start and end at end, given in Angstrom.

DifDist atomIdx1 atomIdx2 atomIdx3 atomIdx4 start end Scans the difference between the dis-
tances R(1,2)-R(3,4) of the atoms with indices atomIdx1-4, as given by their order in the System%Atoms
block. The values to be scanned start at start and end at end, given in Angstrom.

Note that multiple of these coordinate descriptors can be combined within a single ScanCoordinate block. This
combines the individual coordinates into one compound coordinate, i.e. all coordinates will transit together through
their respective ranges. In this way the symmetric stretch in water could be scanned by specifying the following single
ScanCoordinate block (assuming that the oxygen atom is the first in the System%Atoms block):

ScanCoordinate
Distance 1 2 0.8 1.1
Distance 1 3 0.8 1.1

End

A multidimensional PES scan can be performed by specifying multiple ScanCoordinate blocks in the input. To
scan the space spanned by the bending and symmetric stretch modes in water, one would use the following scan
coordinates:

ScanCoordinate
Distance 1 2 0.8 1.1
Distance 1 3 0.8 1.1

End
ScanCoordinate

Angle 2 1 3 90 130
End

In principle an arbitrary number of ScanCoordinate blocks can be combined to specify the scanned configuration
space. However, the total number of sample points is the product of the number of points along all coordinates, and
hence grows quickly with the number of dimensions. Furthermore, only 1D (linear transit) and 2D PES scans can
be visualized in the GUI. We therefore suggest sticking with <=2 dimensional PES scans. (Note that it is possible to
constrain additional degrees of freedom through the Constraints block. This could be used to sample a few points
along a third dimension “manually”, while still being able to see the surfaces in the GUI.)

By default the engine result files for the individual PES points are not saved on disk, as this can easily lead to huge
amounts of data to be stored. This behavior can be changed with the PESScan%CalcPropertiesAtPESPoints
keyword:

PESScan

CalcPropertiesAtPESPoints

Type Bool

Default value No

Description Whether to perform an additional calculation with properties on all the sampled
points of the PES. If this option is enabled AMS will produce a separate engine output file

4.5. Linear Transit, PES scan 59



AMS Manual, Amsterdam Modeling Suite 2020

for every sampled PES point.

Note that this performs a full single point calculation on every sampled PES point, including the calculation of any
PES point properties (page 119) selected in Properties block.

4.5.1 Troubleshooting

Technically all PES scan calculations are conducted as a series of geometry optimizations with constraints for the
scanned coordinates, where the value of the constraint varies slowly through the scanned range. In this way every
sampled point on the potential energy surface corresponds to a particular set of constraints. As with any geometry
optimization, it can happen that an optimization towards a particular point on the potential energy surface does not
converge. This is the most common problem encountered during PES scan calculations.

Since PES scans are implemented as a series of geometry optimizations, they are influenced by the settings used for
the geometry optimizer, e.g. its convergence thresholds and the maximum number of steps before an optimization
is considered to have failed. The optimizer is configured in the GeometryOptimization block, see the page on
geometry optimization (page 41) in the AMS manual. Note that PES scans always use the Quasi-Newton (page 47)
optimizer.

While tweaking the geometry optimizer’s settings can sometimes help with convergence problems, these problems can
also be easily caused by errors in the user input.

A very common problem is that the geometry in the input, i.e. the System block, is incompatible with the starting
values of the scanned coordinates. This would for example be the case if one wants to scan a dihedral angle from 0
to 90 degrees, but the actual angle on the input geometry is close to 90 degrees. In this case it would be better to flip
the scanned range from 90 to 0 degrees, so that the input geometry already close to the first sampled point on the PES.
Otherwise the optimization for the first point has to cross a very long distance on the PES, making convergence much
harder. AMS automatically detects this and prints a warning. We generally advise preparing the input geometry for
a PES scan by first running a geometry optimization with constraints set to lower bound of the scanned coordinate
intervals.

For multidimensional PES scans the order in which the PES points are visited depends on the order in which the
scanned coordinates are specified, i.e. the order of the ScanCoordinate blocks in the input. Generally, the order
in which the PES points are visited is such that the coordinate which was specified in the first ScanCoordinate
block varies slowest. This is illustrated in the following figure:

60 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Here the scan starts at point 1(1,1) at the bottom left corner of the PES and first moves along the entire range of the
2nd scan coordinate, before taking a step along the 1st coordinate to point 6(2,1). The same PES points could be
visited in a different order (and under different names) if the order of the two ScanCoordinate blocks is reversed
in the AMS input:

Depending on the shape of the scanned potential energy surface a particular order of visiting the PES points might be
easier or harder for the optimizer, and convergence problems can sometimes be fixed by simply changing the order
of the scanned coordinates. In the example above, it might be that scanning along the “vertical” direction is “harder”
than scanning along the “horizontal” direction. In this case one should use the scan order from the first picture, which
has only three “vertical” steps (whereas the other scan order has 15).

4.5. Linear Transit, PES scan 61



AMS Manual, Amsterdam Modeling Suite 2020

Note that AMS has a little safe-guard built in to help with PES scan convergence issues: If the optimization towards
a particular PES point did not succeed in the initial attempt, AMS will later try again, but starting from a different
(converged) point close to unconverged one. This “PES gap filling” happens at the very end of the calculation, af-
ter the initial scan has been completed. This gap filling step is enabled by default, but can be controlled with the
PESScan%FillUnconvergedGaps keyword:

PESScan

FillUnconvergedGaps

Type Bool

Default value Yes

Description After the initial pass over the PES, restart the unconverged points from converged
neighboring points.

4.6 Nudged Elastic Band (NEB)

The Nudged Elastic Band (NEB) method1 can be used to find a reaction path and the transition state between a reactant
and a product state.

Fig. 4.1: Pictorial representation of a reaction path computed with NEB

At the beginning of a NEB calculation, the geometry of the initial and final systems are optimized to minimize their
energy (unless the OptimizeEnds (page 64) option is set to False).

Then, a rough approximation of the reaction path is build: a set of images is created by performing a linear interpo-
lation between the initial and final systems. Optionally, an intermediate system can be provided, in which case the
interpolation is performed between the initial and intermediate systems, and then between the intermediate and final
systems.

1 G. Henkelman, B.P. Uberuaga and H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy
paths, Journal of Chemical Physics 113, 9901 (2000) (https://doi.org/10.1063/1.1329672)

62 Chapter 4. Structure and Reactivity, Molecular Dynamics

https://doi.org/10.1063/1.1329672


AMS Manual, Amsterdam Modeling Suite 2020

Finally, a reaction path is found by performing a simultaneous optimization of all the images. In the NEB method the
images are not independent from each other. The force on each image depend on its neighboring images: at each step
the forces parallel to the reaction path are eliminated and a so-called spring force is added that tries to keep each image
in the middle between its neighbors. This does not let images slide to the initial or final reaction state and ensures that
they are evenly distributed along the reaction path.

During the NEB path optimization, a climbing image algorithm is used to drive the highest-energy image in the path
to the transition state (unless the Climbing (page 64) option is set to False).

Be aware that NEB is a computationally expensive method, typically involving hundreds if not thousands of energy
and gradients evaluations.

See also:

• Nudged Elastic Band (NEB) Examples (page 247)

• GUI Nudged Elastic Band tutorial

4.6.1 Input

A NEB calculation in AMS is triggered by setting the Task to NEB:

Task NEB

The NEB method requires two or three input systems. The first, unnamed system is used as the initial system and
the system called final is used as a final system. These two systems are mandatory. This is an example of system-
definitions for a HCN isomerization reaction:

Task NEB

# This is the initial system:
System

Atoms
C 0.0000 0.0000 0.0000
N 1.1800 0.0000 0.0000
H 2.1960 0.0000 0.0000

End
End

# This is the final system (note the header 'final' in the next line):
System final

Atoms
C 0.0000 0.0000 0.0000
N 1.1630 0.0000 0.0000
H -1.0780 0.0000 0.0000

End
End

Optionally, a third system, called intermediate, can be used to provide a better approximation for the transition
state. The intermediate system will be placed in the middle of the chain. When providing three input systems it may be
a good idea to optimize the ends in advance and set OptimizeEnds (page 64) to False to prevent creating an unbalanced
reaction path.

Note that not only the atomic coordinates, but also the lattice parameters and the charge (if non-zero) must be set for
all input systems.

Important: The order in which atoms are specified in the System%Atoms blocks must be the same for the initial
and final systems (if you provide an intermediate system, you must use a consistent atom-ordering for that too). The

4.6. Nudged Elastic Band (NEB) 63

../../Tutorials/StructureAndReactivity/NEB.html


AMS Manual, Amsterdam Modeling Suite 2020

order of the atoms must be consistent because the images-interpolation algorithm maps the n-th atom of the initial
system to the n-th atom of the final system.

All NEB-specific options are specified in the NEB input block:

NEB
Climbing Yes/No
ClimbingThreshold float
Images integer
InterpolateInternal Yes/No
InterpolateShortest Yes/No
Iterations integer
Jacobian float
MapAtomsToCell Yes/No
OldTangent Yes/No
OptimizeEnds Yes/No
OptimizeLattice Yes/No
Parallel

nCoresPerGroup integer
nGroups integer
nNodesPerGroup integer

End
ReOptimizeEnds Yes/No
Restart string
Skewness float
Spring float

End

All keys of the NEB block have reasonable defaults or are optional. Thus, in principle, the NEB block can be omitted
altogether. These are the main options:

NEB

Images

Type Integer

Default value 8

GUI name Number of images

Description Number of NEB images (not counting the chain ends). Using more images will
result in a smoother reaction path and can help with convergence problems, but it will also
increase the computation time.

Iterations

Type Integer

GUI name Maximum number of iterations

Description Maximum number of NEB iterations. The default value depends on the number of
degrees of freedom (number of images, atoms, periodic dimensions).

Spring

Type Float

Default value 1.0

Unit Hartree/Bohr^2

GUI name Spring value

64 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Description Spring force constant in atomic units.

Skewness

Type Float

Default value 1.0

GUI name Skewness

Description Degree of how much images are shifted towards or away from the TS, which may
help tackle problems with a long reaction path (for example involving a loose adsorption
complex) without needing too many images. A value greater than 1 will make sure that
images are concentrated near the transition state. The optimal value depends on the path
length, the number of images (larger [Skewness] may be needed for a longer path and fewer
images). Technically [Skewness] is equal to the ratio between the optimized distances to the
lower and the higher neighbor image on the path.

Climbing

Type Bool

Default value Yes

GUI name Climb highest image to TS

Description Use the climbing image algorithm to drive the highest image to the transition state.

ClimbingThreshold

Type Float

Default value 0.0

Unit Hartree/Bohr

GUI name CI force threshold

Description Climbing image force threshold. If ClimbingThreshold > 0 and the max perpen-
dicular force component is above the threshold then no climbing is performed at this step.
This entry can be used to get a better approximation for the reaction path before starting the
search for the transition state. A typical value is 0.01 Hartree/Bohr.

InterpolateInternal

Type Bool

Default value Yes

GUI name Interpolate in Internal coordinates

Description The initial NEB image geometries are calculated by interpolating between the initial
and the final state. By default, for non-periodic systems the interpolation is performed in
Internal coordinates but the user can choose to do it in the Cartesian ones. For periodic
systems the interpolation is always done in Cartesian coordinates.

InterpolateShortest

Type Bool

Default value Yes

GUI name Interpolate across cell boundary

Description Allow interpolation across periodic cell boundaries. Set to false if an atom is in-
tended to move more than half across the simulation box during reaction.

4.6. Nudged Elastic Band (NEB) 65



AMS Manual, Amsterdam Modeling Suite 2020

OptimizeEnds

Type Bool

Default value Yes

GUI name Optimize reactants/products

Description Start the NEB with optimization of the reactant and product geometries.

Restart

Type String

GUI name Restart from

Description Provide an ams.rkf file from a previous NEB calculation to restart from. It can be
an unfinished NEB calculation or one performed with different engine parameters.

ReOptimizeEnds

Type Bool

Default value No

GUI name Re-optimize reactants/products

Description Re-optimize reactant and product geometries upon restart.

The following keys are related to solid-state NEB (SS-NEB):

NEB

OptimizeLattice

Type Bool

Default value No

GUI name Optimize lattice

Description Turn on the solid-state NEB (SS-NEB).

Jacobian

Type Float

GUI name Jacobian value

Description Scaling factor used to convert the lattice strain to a NEB coordinate value. De-
fault value: sqrt(N)*(V/N)^(1/d), where V - lattice volume (area for 2D, length for 1D), N -
number of atoms, and d - number of periodic dimensions.

MapAtomsToCell

Type Bool

Default value Yes

GUI name Map atoms to cell

Description Translate atoms to the [-0.5,0.5] cell before every step. This option cannot be dis-
abled for SS-NEB.

At each iteration, the images may be computed in parallel. The parallel execution is normally configured completely
automatically, but users can override the automatic parallelization using the keys in the Parallel block.

NEB

Parallel

66 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Type Block

Description Options for double parallelization, which allows to split the available processor
cores into groups working through all the available tasks in parallel, resulting in a better
parallel performance. The keys in this block determine how to split the available processor
cores into groups working in parallel.

nCoresPerGroup

Type Integer

Description Number of cores in each working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

GUI name Cores per task

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

The following keys modify other aspects of the NEB and should, in principle, be left to their defaults:

NEB

OldTangent

Type Bool

Default value No

GUI name Use old tangent

Description Turn on the old central difference tangent.

4.6.2 Frozen atom constraints

It is possible to perform NEB with part of the system frozen, using any of the following keys of the Constraints block
or a combination thereof:

Constraints

Atom

Type Integer

Recurring True

Description Fix the position of an atom. Just one integer referring to the index of the atom in
the [System%Atoms] block.

AtomList

Type Integer List

Recurring True

4.6. Nudged Elastic Band (NEB) 67



AMS Manual, Amsterdam Modeling Suite 2020

Description Fix positions of the specified atoms. A list of integers referring to indices of atoms
in the [System%Atoms] block.

FixedRegion

Type String

Recurring True

Description Fix positions of all atoms in a region.

Note: the frozen atom constraints will be enforced both during the geometry optimizations of the initial and final
systems and during the NEB optimization.

4.6.3 Optimizations and convergence criteria

The NEB path is optimized using a limited-memory BFGS (l-BFGS) method where the system being optimized is a
union of all NEB images with their respective molecular and spring forces.

The NEB convergence thresholds are defined in the GeometryOptimization%Convergence block (page 42). NEB is
considered converged when the following criteria are satisfied:

• the change in the highest image energy must be less than [GeometryOptimization%Convergence%Energy]

• the max atomic force component for the highest image must be less than [GeometryOptimiza-
tion%Convergence%Gradients]

• the max atomic force component for all other images must be less than ten times the [GeometryOptimiza-
tion%Convergence%Gradients] value.

If the optimization of the initial NEB end point fails to converge, you can try using the FIRE optimization method
(page 46).

4.6.4 Output

Results are printed to the text output and stored in the binary result file ‘ams.rkf’. In the ‘ams.rkf’ file, NEB calculation
results are stored in the History section just like in a normal geometry optimization. The NEB section of the RKF file
contains additional, NEB-specific, information.

The NEB reaction path can be visualized using the AMSmovie GUI module.

4.6.5 Troubleshooting

• In case the geometry optimization of the initial and final systems fails: try using the FIRE optimization method
(page 46)

• In case the optimization of the NEB path does not converge:

– make sure that the order in which the atoms are defined is consistent between the initial and final systems
(see the important note in the NEB input section (page 63))

– try increasing the number of NEB images (page 64)

– try tweaking the TrustRadius (page 53) or TrialStep (page 53) options (see Limited-memory BFGS
(page 53))

– try specifying an intermediate system

68 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

4.7 Intrinsic Reaction Coordinate (IRC)

The path of a chemical reaction can be traced from the transition state (TS) to the products and/or reactants using
the Intrinsic Reaction Coordinate (IRC) method12. The method assumes that the starting geometry is a fair ap-
proximation of the TS. A minimum energy profile (MEP) is defined as the steepest-descent path on the potential
energy surface from the transition state down towards a local minimum. An IRC path is defined similarly but in the
mass-weighted coordinates3, which means that instead of the steepest descent direction it follows that of the maximum
instantaneous acceleration. This makes IRC somewhat related to the Molecular Dynamics method. The energy profile
is obtained as well as the length and curvature properties of the path, providing the basic quantities for an analysis of
the reaction path.

See also:

Examples (page 219) and the PES scan, TS and IRC tutorial

4.7.1 Method details

Calculation of an IRC path consists of two nested loops, the so-called outer and inner loops. The outer loop runs over
IRC points and the inner loop is over geometry optimization steps for the given IRC point. The first IRC point starts
from the transition state geometry, which is a saddle point, in one of the two possible downhill directions. Each IRC
point after that starts from the optimized geometry of the previous point. At the start of every step, the pivot point

1 L. Deng, T. Ziegler and L. Fan, A combined density functional and intrinsic reaction coordinate study on the ground state energy surface of
H2 CO, Journal of Chemical Physics 99, 3823 (1993) (https://doi.org/10.1063/1.466129)

2 L. Deng and T. Ziegler, The determination of Intrinsic Reaction Coordinates by density functional theory, International Journal of Quantum
Chemistry 52, 731 (1994) (https://doi.org/10.1002/qua.560520406)

3 C. Gonzalez and H.B. Schlegel, Reaction Path Following In Mass-Weighted Internal Coordinates J. Phys. Chem. 94, 5523-5527 (1990)
(https://doi.org/10.1021/j100377a021)

4.7. Intrinsic Reaction Coordinate (IRC) 69

../../Tutorials/StructureAndReactivity/PESScanAndTS.html
https://doi.org/10.1063/1.466129
https://doi.org/10.1002/qua.560520406
https://doi.org/10.1002/qua.560520406
https://doi.org/10.1021/j100377a021


AMS Manual, Amsterdam Modeling Suite 2020

is determined, which is a point at the Step/2 distance in the direction opposite to the gradient. When working in the
mass-weighted coordinates, this direction corresponds to the acceleration of the corresponding atom. The final point
of the given IRC step corresponds to the energy minimum point at the same distance (Step/2) from the pivot point
further downhill. More precisely, the coordinates of the target point are optimized during the inner loop to minimize
projection of the gradient on the hypersphere of radius Step/2 around the pivot point. The angle between the (pivot-
start) and (pivot-final) vectors determines the curvature of the reaction path. If this angle becomes smaller than 90
degrees then the IRC scan is considered to have reached vicinity of an endpoint and the program switches to energy
minimization (options for this energy minimization can be specified in the Geometry Optimization (page 41) block.).
If the angle is between 90 and 120 degrees then the current IRC step is canceled and a new one is started from the
same starting point with half the initial Step parameter. In all other cases the optimized geometry becomes a starting
point for the next IRC step. By default, when the forward path is completed the backward one is started from the same
TS geometry. When both forward and backward paths are complete, a summary of the whole reaction path is printed
to the output.

4.7.2 Input

The IRC scan in AMS is triggered by setting the Task to IRC:

Task IRC

All IRC-related options are specified in the IRC input block:

IRC
Convergence

Gradients float
Step float

End
CoordinateType [Cartesian | Delocalized]
Direction [Both | Forward | Backward]
InitialHessian

File string
Type [Calculate | FromFile]

End
KeepConvergedResults Yes/No
MaxIRCSteps integer
MaxIterations integer
MaxPoints integer
MinEnergyProfile Yes/No
MinPathLength float
Restart

File string
RedoBackward integer
RedoForward integer

End
Step float

End

All keys of the IRC block have reasonable defaults or are optional. Thus, in principle, the IRC block can be omitted
altogether. These are some of the main options:

IRC

Direction

Type Multiple Choice

Default value Both

70 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Options [Both, Forward, Backward]

Description Select direction of the IRC path. The difference between the Forward and the Back-
ward directions is determined by the sign of the largest component of the vibrational normal
mode corresponding to the reaction coordinate at the transition state geometry. The For-
ward path correspond to the positive sign of the component. If Both is selected then first the
Forward path is computed followed by the Backward one.

Step

Type Float

Default value 0.2

GUI name Step size

Description IRC step size in mass-weighted coordinates, sqrt(amu)*bohr. One may have to
increase this value when heavy atoms are involved in the reaction, or decrease it if the reactant
or products are very close to the transition state.

InitialHessian

Type Block

Description Options for initial Hessian at the transition state. The first eigenvalue of the initial
Hessian defines direction of the first forward or backward step. This block is ignored when
restarting from a previous IRC calculation because the initial Hessian found in the restart file
is used.

File

Type String

GUI name File

Description If ‘Type’ is set to ‘FromFile’ then in this key you should specifiy the RKF file
containing the initial Hessian (or the ams results dir. containing it). This can be used to
load a Hessian calculated previously with the ‘Properties%Hessian’ keyword. If you want
to also use this file for the initial geometry then also specify it in a ‘LoadSystem’ block.

Type

Type Multiple Choice

Default value Calculate

Options [Calculate, FromFile]

GUI name Initial Hessian

Description Calculate the exact Hessian for the input geometry or load it from the results of
a previous calculation.

The following keys set limits on the number of steps for the inner and outer IRC loops and, related to that, the geometry
optimization criteria. Note that tighter criteria may require a greater MaxIterations limit. Please also note that the outer
loop limits are valid for each half of the path (forward and backward) separately. That is, if all settings are left at their
defaults then up to 200 IRC points may be calculated, each of them may require up to 300 energy evaluations.

IRC

MaxIRCSteps

Type Integer

GUI name Maximum IRC steps

4.7. Intrinsic Reaction Coordinate (IRC) 71



AMS Manual, Amsterdam Modeling Suite 2020

Description Soft limit on the number of IRC points to compute in each direction. After the
specified number of IRC steps the program will switch to energy minimization and complete
the path. This option should be used when you are interested only in the reaction path area
near the transition state. Note that even if the soft limit has been hit and the calculation has
completed, the IRC can still be restarted with a ‘RedoBackward’ or ‘RedoForward’ option.

MaxPoints

Type Integer

Default value 100

GUI name Maximum points

Description Hard limit on the number of IRC points to compute in each direction. After the
specified number of IRC steps the program will stop with the current direction and switch
to the next one. If both ‘MaxPoints’ and ‘MaxIRCSteps’ are set to the same value then
‘MaxPoints’ takes precedence, therefore this option should be used to set a limit on the
number of IRC steps if you intend to use the results later for a restart.

MaxIterations

Type Integer

Default value 300

GUI name Maximum iterations

Description The maximum number of geometry iterations allowed to converge the inner IRC
loop. If optimization does not converge within the specified number of steps, the calculation
is aborted.

Convergence

Type Block

Description Convergence at each given point is monitored for two items: the Cartesian gradient
and the calculated step size. Convergence criteria can be specified separately for each of
these items. The same criteria are used both in the inner IRC loop and when performing
energy minimization at the path ends.

Gradients

Type Float

Default value 0.001

Unit Hartree/Angstrom

GUI name Gradient convergence

Description Convergence criterion for the max component of the residual energy gradient.

Step

Type Float

Default value 0.001

Unit Angstrom

GUI name Step convergence

Description Convergence criterion for the max component of the step in the optimization
coordinates.

MinPathLength

72 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Type Float

Default value 0.1

Unit Angstrom

Description Minimum length of the path required before switching to energy minimization. Use
this to overcome a small kink or a shoulder on the path.

The following keys modify other aspects of the IRC scan:

IRC

CoordinateType

Type Multiple Choice

Default value Cartesian

Options [Cartesian, Delocalized]

GUI name Coordinates used for optimization

Description Select the type of coordinates in which to perform the optimization. Note that the
Delocalized option should be considered experimental.

MinEnergyProfile

Type Bool

Default value No

GUI name Minimum energy profile

Description Calculate minimum energy profile (i.e. no mass-weighting) instead of the IRC.

KeepConvergedResults

Type Bool

Default value Yes

Description Keep the binary RKF result file for every converged IRC point. These files may
contain more information than the main ams.rkf result file.

It is possible to restart an IRC calculation that crashed, has been killed or exceeded the MaxPoints limit, or to re-
compute the path starting from a certain point, using the Restart key:

IRC

Restart

Type Block

Description Restart options. Upon restart, the information about the IRC input parameters and
the initial system (atomic coordinates, lattice, charge, etc.) is read from the restart file. The
IRC input parameters can be modified from input. Except for ‘MaxPoints’ and ‘Direction’
all parameters not specified in the input will use their values from the restart file. The ‘Max-
Points’ and ‘Direction’ will be reset to their respective default values if not specified in the
input. By default, the IRC calculation will continue from the point where it left off. However,
the ‘RedoForward’ and/or ‘RedoBackward’ option can be used to enforce recalculation of a
part of the reaction path, for example, using a different ‘Step’ value.

File

Type String

GUI name Restart

4.7. Intrinsic Reaction Coordinate (IRC) 73



AMS Manual, Amsterdam Modeling Suite 2020

Description Name of an RKF restart file generated by a previous IRC calculation. Do not
use this key to provide an RKF file generated by a TransitionStateSearch or a SinglePoint
calculation, use the ‘LoadSystem’ block instead.

RedoBackward

Type Integer

Default value 0

Description IRC step number to start recalculating the backward path from. By default, if
the backward path has not been completed then start after the last completed step. If the
backward path has been completed and the ‘RedoBackward’ is omitted then no point on
the backward path will be recomputed.

RedoForward

Type Integer

Default value 0

Description IRC step number to start recalculating the forward path from. By default, if the
forward path has not been completed then start after the last completed step. If the forward
path has been completed and the ‘RedoForward’ is omitted then no point on the forward
path will be recomputed.

4.7.3 Output

A summary of reaction path is printed to the output file at the end of the IRC calculation.

The IRC reaction path can be visualized using the AMSmovie GUI module.

Results of an IRC calculation are also stored in the History section of the ‘ams.rkf’ file, just like in a normal geometry
optimization. In addition to the standard KF variables such as “Coords” and “Energy”, the following IRC-specific
variables are also created:

• IRCDirection - IRC direction to which this point belongs: 1 - forward, 2 - backward.

• IRCIteration - the IRC (a.k.a. the outer loop) iteration number.

• OptIteration - the geometry optimization (a.k.a. the inner loop) iteration number (0 means the results correspond
to the converged geometry at this IRC step).

• IRCGradMax - value of the max component of the IRC gradient that determines convergence of the inner loop.

• IRCGradRms - the RMS value of the IRC gradient that determines convergence of the inner loop. Both the
ircGradRms and the ircGradMax are given in the mass-weighted atomic units for IRC steps and in the atomic
units for the final minimization loop.

• ArcLength - length, in Angstrom, of the arc that connects the initial and the final point of this IRC step. The
corresponding pivot point is located near the the middle point of the arc.

• Angle - value of the angle (in degrees) between lines connecting the pivot point with the initial and final points.
A value of 180 degrees means the path is passing straight through the pivot point, while a smaller value means
the path makes a bend at this point.

• PathLength - sum of the ArcLength values from the transition state up to this point, in Angstrom.

• Converged - a Fortrtan logical value containing the convergence status of the given geometry.

The IRC section of the RKF file contains all the data needed for a successful restart procedure.

74 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

4.8 Excited state optimizations

It depends on the engine if it is possible to do an electronically excited state optimization, like an electronically excited
state geometry optimization (page 41), transition state search (page 55), linear transit, PES scan (page 58), or IRC
(page 69). Required is that the engine should be able to calculate the nuclear gradient for a particular electronically
excited state. ADF and DFTB are engines that can do such calculation. If the excited state gradient is available one
can also calculate an IR spectrum (page 131) of the excited state, and one could calculate a vibrationally resolved
electronic spectrum (page 166).

One should look in the documentation of the engine how to set up the calculation of the excited state gradient.

4.9 Molecular dynamics

Molecular dynamics (MD) can be used to simulate the evolution of a system in time.

See also:

• Examples (page 219)

• AMS GUI Tutorial

• MD trajectory analysis tool (page 206)

To perform a MD simulation, first select the corresponding Task:

Task MolecularDynamics

All aspects of the simulation can then be configured using the MolecularDynamics block.

MolecularDynamics
AddMolecules

AtomTemperature float
Coords float_list
CoordsBox float_list
CoordsSigma float_list
Energy float
EnergySigma float
FractionalCoords float_list
FractionalCoordsBox float_list
FractionalCoordsSigma float_list
Frequency integer
MinDistance float
NumAttempts integer
Rotate Yes/No
StartStep integer
StopStep integer
System string
Temperature float
TemperatureSigma float
Velocity float
VelocityDirection float_list
VelocitySigma float

End
Barostat

BulkModulus float
ConstantVolume Yes/No
Duration integer_list

(continues on next page)

4.8. Excited state optimizations 75

../../Tutorials/MolecularDynamicsAndMonteCarlo/index.html


AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Equal [None | XYZ | XY | YZ | XZ]
Pressure float_list
Scale [XYZ | Shape | X | Y | Z | XY | YZ | XZ]
Tau float
Type [None | Berendsen | MTK]

End
BondBoost

Chain
AtomNames string
MaxDistances float_list
MinDistances float_list

End
DistanceRestraint string
NSteps integer
NumInstances integer

End
CRESTMTD

AddEnergy Yes/No
GaussianScaling

ScaleGaussians Yes/No
ScalingSlope float

End
Height float
NGaussiansMax integer
NSteps integer
RestartFile string
Width float

End
CVHD

Bias
DampingTemp float
Delta float
Height float

End
ColVarBB

at1
region string
symbol string

End
at2

region string
symbol string

End
cutoff float
p integer
rmax float
rmin float

End
Frequency integer
StartStep integer
StopStep integer
WaitSteps integer

End
CalcPressure Yes/No
Checkpoint

Frequency integer
End

(continues on next page)

76 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Deformation
LatticeVelocity # Non-standard block. See details.

...
End
LengthRate float_list
LengthVelocity float_list
Period float
ScaleAtoms Yes/No
StartStep integer
StopStep integer
StrainRate # Non-standard block. See details.

...
End
TargetLattice # Non-standard block. See details.

...
End
TargetLength float_list
Type [Linear | Exponential | Sine | Cosine]

End
HeatExchange

HeatingRate float
Method [Simple | HEX | eHEX]
Sink

AtomList integer_list
Box

Amax float
Amin float
Bmax float
Bmin float
Cmax float
Cmin float

End
Region string

End
Source

AtomList integer_list
Box

Amax float
Amin float
Bmax float
Bmin float
Cmax float
Cmin float

End
Region string

End
StartStep integer
StopStep integer

End
InitialVelocities

File string
Temperature float
Type [Zero | Random | FromFile | Input]
Values # Non-standard block. See details.

...
End

End
(continues on next page)

4.9. Molecular dynamics 77



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

NSteps integer
Plumed

Input # Non-standard block. See details.
...

End
Parallel

nCoresPerGroup integer
nGroups integer
nNodesPerGroup integer

End
End
Preserve

AngularMomentum Yes/No
CenterOfMass Yes/No
Momentum Yes/No

End
Print

System Yes/No
Velocities Yes/No

End
Remap

Type [None | Atoms]
End
RemoveMolecules

Formula string
Frequency integer
SafeBox

Amax float
Amin float
Bmax float
Bmin float
Cmax float
Cmin float

End
SinkBox

Amax float
Amin float
Bmax float
Bmin float
Cmax float
Cmin float

End
StartStep integer
StopStep integer

End
ReplicaExchange

AllowWrongResults Yes/No
EWMALength integer
SwapFrequency integer
TemperatureFactors float_list
Temperatures float_list
nReplicas integer

End
Restart string
Thermostat

BerendsenApply [Local | Global]
ChainLength integer

(continues on next page)

78 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Duration integer_list
Region string
Tau float
Temperature float_list
Type [None | Berendsen | NHC]

End
TimeStep float
Trajectory

PrintFreq integer
SamplingFreq integer
TProfileGridPoints integer
WriteBonds Yes/No
WriteCharges Yes/No
WriteGradients Yes/No
WriteMolecules Yes/No
WriteVelocities Yes/No

End
End

4.9.1 General

The time evolution of the system is simulated by numerically integrating the equations of motion. A velocity Verlet
integrator is used with a time step set by the TimeStep key. The MD driver will perform NSteps timesteps in total.

Because the overall computational cost depends on NSteps but not on TimeStep, it is desirable to set the timestep
as large as possible to maximize the sampled timescale with a given computational budget. However, numerical
integration errors grow rapidly as the timestep increases. These errors will cause a loss of energy conservation,
crashes, and other artifacts. It is thus important to set the TimeStep value carefully, as its optimal value strongly
depends on the studied system and simulated conditions.

As a rule of thumb, reasonable timesteps for systems not undergoing chemical reactions are 10-20 times lower than
the period of the fastest vibration mode. Systems containing hydrogen atoms at room temperature can thus be ac-
curately simulated using a 1 fs timestep. Longer timesteps can be safely used for systems containing only heavy
atoms (vibration periods scale with the square root of the atomic mass). Conversely, the timestep needs to be made
shorter for high-temperature simulations. The same also applies to simulations of chemical reactions, which are usu-
ally accompanied by significant transient local heating. The default timestep of 0.25 fs should work for most of these
cases.

MolecularDynamics

NSteps

Type Integer

Default value 1000

GUI name Number of steps

Description The number of steps to be taken in the MD simulation.

TimeStep

Type Float

Default value 0.25

Unit Femtoseconds

Description The time difference per step.

4.9. Molecular dynamics 79



AMS Manual, Amsterdam Modeling Suite 2020

During a long simulation, numerical integration errors will cause some system-wide quantities to drift from their exact
values. For example, the system may develop a nonzero net linear velocity, causing an overall translation or flow.
Non-periodic (molecular) and 1D-periodic systems may also develop nonzero angular momentum (overall rotation)
and a Brownian motion of their center of mass through space. These problems are corrected by periodically removing
any accumulated drift. This feature can be controlled using the Preserve key.

MolecularDynamics

Preserve

Type Block

Description Periodically remove numerical drift accumulated during the simulation to preserve
different whole-system parameters.

AngularMomentum

Type Bool

Default value Yes

GUI name : Angular momentum

Description Remove overall angular momentum of the system. This option is ignored for
2D and 3D-periodic systems.

CenterOfMass

Type Bool

Default value No

GUI name : Center of mass

Description Translate the system to keep its center of mass at the coordinate origin. This
option is not very useful for 3D-periodic systems.

Momentum

Type Bool

Default value Yes

GUI name Preserve: Total momentum

Description Remove overall (linear) momentum of the system.

4.9.2 Constrained molecular dynamics

It is possible to keep part of the system frozen in place during MD. This is achieved using the Atom or AtomList
keys of the Constraints top-level input block.

Constraints

Atom

Type Integer

Recurring True

Description Fix the position of an atom. Just one integer referring to the index of the atom in
the [System%Atoms] block.

AtomList

Type Integer List

80 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Recurring True

Description Fix positions of the specified atoms. A list of integers referring to indices of atoms
in the [System%Atoms] block.

Note: During simulations with a changing simulation box (NpT, NpH), the absolute Cartesian coordinates of the
frozen atoms cannot be kept fixed. In this case, their fractional cell coordinates are maintained at the original values.

4.9.3 (Re-)Starting a simulation

The state of a system at the beginning of a simulation is defined by the positions and momenta of all atoms. The
positions can be set in the input or loaded from a file as described under Geometry, System definition (page 27). Initial
velocities are then supplied using the InitialVelocities block.

Probably the most common way to start up a simulation is to draw the initial velocities from a Maxwell-Boltzmann dis-
tribution by setting Type=Random and Temperature to a suitable value. Alternatively, velocities can be loaded
from an ams.rkf file produced by an earlier simulation using Type=FromFile and File. This is the recom-
mended way to start a production simulation from the results of a short preparation/equilibration run.

Velocities of all atoms in units of Å/fs can also be explicitly defined in the Values block after setting Type=Input.
This is mainly useful to repeat or extend simulations done by other programs. For example, velocities can be extracted
from the vels or moldyn.vel files used by the standalone ReaxFF program. A simple AWK script is supplied in
scripting/standalone/reaxff-ams/vels2ams.awk to help with the conversion.

MolecularDynamics

InitialVelocities

Type Block

Description Sets the frequency for printing to stdout and storing the molecular configuration on
the .rkf file.

File

Type String

Description AMS RKF file containing the initial velocities.

Temperature

Type Float

Unit Kelvin

GUI name Initial temperature

Description Sets the temperature for the Maxwell-Boltzmann distribution when the type
of the initial velocities is set to random, in which case specifying this key is mandatory.
AMSinput will use the first temperature of the first thermostat as default.

Type

Type Multiple Choice

Default value Random

Options [Zero, Random, FromFile, Input]

GUI name Initial velocities

4.9. Molecular dynamics 81

../../ReaxFF/index.html


AMS Manual, Amsterdam Modeling Suite 2020

Description Specifies the initial velocities to assign to the atoms. Three methods to assign
velocities are available. Zero: All atom are at rest at the beginning of the calculation. Ran-
dom: Initial atom velocities follow a Maxwell-Boltzmann distribution for the temperature
given by the [MolecularDynamics%InitialVelocities%Temperature] keyword. FromFile:
Load the velocities from a previous ams result file. Input: Atom’s velocities are set to the
values specified in the [MolecularDynamics%InitialVelocities%Values] block, which can
be accessed via the Expert AMS panel in AMSinput.

Values

Type Non-standard block

Description This block specifies the velocity of each atom, in Angstrom/fs, when [Molecu-
larDynamics%InitialVelocities%Type] is set to Input. Each row must contain three floating
point values (corresponding to the x,y,z component of the velocity vector) and a number
of rows equal to the number of atoms must be present, given in the same order as the
[System%Atoms] block.

The MD module also supports exact restarts of interrupted simulations by pointing the Restart key to an ams.rkf
file. This will restore the entire state of the MD module from the last available checkpoint (if the previous simulation
was interrupted) or from the final state (if the previous simulation ended after NSteps). An earlier trajectory can thus
be seamlessly extended by increasing NSteps and using Restart.

Note: Restart should be combined with LoadSystem from the same ams.rkf to restore the atomic positions.

Warning: The Restart feature is only intended for exact restarts, so the rest of the MolecularDynamics
settings should be the same as in the original run. Only NSteps and engine settings (contents of the Engine
block) can always be changed safely across restarts.

Although some MD settings (such as the trajectory sampling options) can in practice be changed without problems,
changing others (such as thermostat or barostat settings) will cause the restart to fail or produce physically incorrect
results. It is thus strongly recommended to only use Restart for exact continuation and InitialVelocities
Type=FromFile together with LoadSystem otherwise.

MolecularDynamics

Restart

Type String

GUI name Restart from

Description The path to the ams.rkf file from which to restart the simulation.

4.9.4 Thermostats and barostats

By default, the MD simulation samples the microcanonical (NVE) ensemble. Although this is useful to check energy
conservation and other basic physical properties, it does not directly map to common experimental conditions. The
canonical (NVT) ensemble can be sampled instead by applying a Thermostat, which serves as a simulated heat
bath around the system, keeping its average temperature at a set value.

AMS offers two thermostats with drastically different properties, mode of operation, and applicability, selected using
the Type key:

Berendsen The Berendsen friction thermostat drives the system to a particular target temperature by rescaling the
velocities of all atoms in each step. This ensures rapid (exponential) convergence of the temperature with a time

82 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

constant Tau. However, this thermostat produces an incorrect velocity distribution and should thus be avoided
in all situations where correct energy fluctuations are important. Additionally, using a too short time constant
Tau tends to cause incorrect equipartition of energy between different degrees of freedom in the system, leading
to the “flying ice cube” phenomenon. The time constant Tau should thus be set as large as possible to limit
these artifacts while still providing sufficient temperature control. Common values of Tau for condensed-
phase systems lie between 100 fs (strong damping, rapid convergence) and 10 ps (weak coupling with minimal
artifacts).

This thermostat is mainly useful for systems far from equilibrium, for example during the initial preparation and
equilibration phase of a simulation. The NHC thermostat should be preferred where possible.

NHC This enables a chain of coupled Nosé-Hoover thermostats. This method introduces artificial degrees of freedom
representing the heat bath and ensures correct sampling of the canonical ensemble. The combined total energy
of the system and the heat bath is conserved and shown in the GUI as Conserved Energy. Checking this
quantity for drift and artifacts thus offers a valuable test of the correctness of the simulation. This thermostat
exhibits oscillatory relaxation with a period of Tau. It is thus not well suited for systems starting far from equi-
librium, because the oscillations may take long to settle. The time constant Tau should be at least comparable
to the period of some natural oscillation of the system to ensure efficient energy transfer. It is commonly on the
order of hundreds of femtoseconds, although higher values may be used if weak coupling is desired.

Multiple independent thermostats can be used to separately control different non-overlapping regions of the system
at the same time. This is done by first defining appropriate Regions (page 32) in the System block and then speci-
fying the Thermostat block multiple times with the Region key of each thermostat set to an appropriate region
expression.

MolecularDynamics

Thermostat

Type Block

Recurring True

Description This block allows to specify the use of a thermostat during the simulation. Depend-
ing on the selected thermostat type, different additional options may be needed to character-
ize the specific thermostat’ behavior.

BerendsenApply

Type Multiple Choice

Default value Global

Options [Local, Global]

GUI name Apply Berendsen

Description Select how to apply the scaling correction for the Berendsen thermostat: - per-
atom-velocity (Local) - on the molecular system as a whole (Global).

ChainLength

Type Integer

Default value 10

GUI name NHC chain length

Description Number of individual thermostats forming the NHC thermostat

Duration

Type Integer List

GUI name Duration(s)

4.9. Molecular dynamics 83



AMS Manual, Amsterdam Modeling Suite 2020

Description Specifies how many steps should a transition from a particular temperature to
the next one in sequence take.

Region

Type String

Default value *

Description The identifier of the region to thermostat. The default ‘*’ applies the thermostat
to the entire system. The value can by a plain region name, or a region expression, e.g.
‘*-myregion’ to thermostat all atoms that are not in myregion, or ‘regionA+regionB’ to
thermostat the union of the ‘regionA’ and ‘regionB’. Note that if multiple thermostats are
used, their regions may not overlap.

Tau

Type Float

Unit Femtoseconds

GUI name Damping constant

Description The time constant of the thermostat.

Temperature

Type Float List

Unit Kelvin

GUI name Temperature(s)

Description The target temperature of the thermostat. You can specify multiple temperatures
(separated by spaces). In that case the Duration field specifies how many steps to use for
the transition from one T to the next T (using a linear ramp). For NHC thermostat, the
temperature may not be zero.

Type

Type Multiple Choice

Default value None

Options [None, Berendsen, NHC]

GUI name Thermostat

Description Selects the type of the thermostat.

Just like using a Thermostat to control the temperature of the system, a Barostat can be applied to keep the pres-
sure constant by adjusting the volume. This enables sampling the isenthalpic-isobaric (NpH) ensemble by using only
a barostat or the isothermal-isobaric (NpT) ensemble by combining a barostat and a thermostat. Unlike thermostats, a
barostat always applies to the entire system and there can thus be at most one barostat defined.

AMS offers two barostats with similar properties to the related thermostats:

Berendsen The Berendsen friction-like isobaric ensemble method rescales the system in each step to drive the pres-
sure towards a target value. Similarly to the Berendsen thermostat, the relaxation is exponential with a time
constant Tau. Similar considerations for the choice of Tau apply as in the case of the thermostat, but the
value of Tau for the barostat is usually at least several times higher than the corresponding Tau used for the
thermostat. This barostat does not have any conserved quantity.

MTK This enables the Martyna-Tobias-Klein extended Lagrangian barostat, which generates a true isobaric ensemble
by integrating the cell parameters as additional degrees of freedom. This barostat is derived from the Andersen-
Hoover isotropic barostat and the Parrinello-Rahman-Hoover anisotropic barostat. Like the NHC thermostat,

84 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

it exhibits oscillatory relaxation unsuitable for systems far from equilibrium. This barostat must always be
combined with a NHC thermostat. One instance of such thermostat coupled to the atoms as usual, while a
second instance is created internally and coupled to the cell degrees of freedom.

MolecularDynamics

Barostat

Type Block

Description This block allows to specify the use of a barostat during the simulation.

BulkModulus

Type Float

Default value 2200000000.0

Unit Pascal

Description An estimate of the bulk modulus (inverse compressibility) of the system for
the Berendsen barostat. This is only used to make Tau correspond to the true observed
relaxation time constant. Values are commonly on the order of 10-100 GPa (1e10 to 1e11)
for solids and 1 GPa (1e9) for liquids (2.2e9 for water). Use 1e9 to match the behavior of
standalone ReaxFF.

ConstantVolume

Type Bool

Default value No

Description Keep the volume constant while allowing the box shape to change. This is
currently supported only by the MTK barostat.

Duration

Type Integer List

Description Specifies how many steps should a transition from a particular pressure to the
next one in sequence take.

Equal

Type Multiple Choice

Default value None

Options [None, XYZ, XY, YZ, XZ]

Description Enforce equal scaling of the selected set of dimensions. They will be barostatted
as one dimension according to the average pressure over the components.

Pressure

Type Float List

Unit Pascal

Description Specifies the target pressure. You can specify multiple pressures (separated by
spaces). In that case the Duration field specifies how many steps to use for the transition
from one p to the next p (using a linear ramp).

Scale

Type Multiple Choice

Default value XYZ

4.9. Molecular dynamics 85



AMS Manual, Amsterdam Modeling Suite 2020

Options [XYZ, Shape, X, Y, Z, XY, YZ, XZ]

Description Dimensions that should be scaled by the barostat to maintain pressure. Selecting
Shape means that all three dimensions and also all the cell angles are allowed to change.

Tau

Type Float

Unit Femtoseconds

GUI name Damping constant

Description Specifies the time constant of the barostat.

Type

Type Multiple Choice

Default value None

Options [None, Berendsen, MTK]

GUI name Barostat

Description Selects the type of the barostat.

Temperature and pressure regimes

Arbitrary temperature and pressure regimes can be generated by setting Temperature or Pressure to a list of
values, corresponding to the successive set points. This needs to be accompanied by a Duration key specifying the
length of each regime segment in steps:

Thermostat
Temperature 0 300 300 500 500 300
Duration 100 200 100 200 100

End

Note that there is always N-1 Duration values for N Temperature values. The target temperature of the thermo-
stat in this example will evolve as follows:

1. Increase linearly from 0 to 300 K over 100 steps.

2. Stay constant at 300 K for 200 steps.

3. Increase linearly from 300 to 500 K over 100 steps.

4. Stay constant at 500 K for 200 steps.

5. Decrease linearly from 500 to 300 K over 100 steps.

6. Stay constant at 300 K for the rest of the simulation.

4.9.5 Trajectory sampling and output

A basic principle of the numerical integration of motion in MD is that the changes in the state of the system between
successive time steps are small. This means that storing the results of every step is not useful, because all the data is
strongly correlated. Instead, a snapshot of the system is taken every N steps, where N is set low enough to still capture
the fastest motion of interest but high enough to avoid wasting space due to correlations. The resulting sequence of
snapshots is then commonly called the trajectory.

86 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

AMS writes the trajectory to the History and MDHistory sections of ams.rkf, according to the settings in the
Trajectory block. A snapshot of the system and various MD variables is stored every SamplingFreq timesteps.
By default, this frequency is also used to print basic thermodynamic parameters of the simulation to the output and log
file. Set PrintFreq to override this.

Frequently sampling a long trajectory can generate large volumes of data. If the space usage becomes a concern, one
can selectively disable storing some parts of the trajectory to save space using the Write* keys. Note however that
this will make it impossible to use some analysis methods on the resulting trajectory:

• WriteBonds is necessary for reaction network analysis (ChemTraYzer). Disabling WriteBonds also makes
AMSmovie show only guessed bonds instead of those calculated by the engine.

• WriteMolecules is required by the Molecule Fractions panel in AMSmovie.

• WriteVelocities is required to calculate the velocity autocorrelation functions needed for diffusivity and
IR spectra.

The trajectory itself contains only the data needed for subsequent analysis of the dynamics of the system. However,
much more data is usually generated on every integration step. This includes, for example, the internal data used by
an engine when evaluating the energies and forces. This information is normally discarded after each step, because it
is often very large. However, a Checkpoint containing the complete internal state of the MD driver together with a
result file generated by the engine is stored every Frequency steps. An interrupted simulation can then be restarted
from this checkpoint using the Restart keyword. Additionally, the engine result files called MDStep*.rkf can
also be used to extract various engine-specific details about the system, such as the orbitals for QM engines.

MolecularDynamics

Trajectory

Type Block

Description Sets the frequency for printing to stdout and storing the molecular configuration on
the .rkf file.

PrintFreq

Type Integer

GUI name Printing frequency

Description Print current thermodynamic properties to the output every N steps. By default
this is done every SamplingFreq steps.

SamplingFreq

Type Integer

Default value 100

GUI name Sample frequency

Description Write the the molecular geometry (and possibly other properties) to the .rkf file
once every N steps.

TProfileGridPoints

Type Integer

Default value 0

Description Number of points in the temperature profile. If TProfileGridPoints > 0, a tem-
perature profile along each of the three unit cell axes will be written to the .rkf file. By
default, no profile is generated.

WriteBonds

4.9. Molecular dynamics 87



AMS Manual, Amsterdam Modeling Suite 2020

Type Bool

Default value Yes

Description Write detected bonds to the .rkf file.

WriteCharges

Type Bool

Default value Yes

Description Write current atomic point charges (if available) to the .rkf file. Disable this to
reduce trajectory size if you do not need to analyze charges.

WriteGradients

Type Bool

Default value No

Description Write gradients (negative of the atomic forces) to the .rkf file.

WriteMolecules

Type Bool

Default value Yes

Description Write the results of molecule analysis to the .rkf file.

WriteVelocities

Type Bool

Default value Yes

Description Write velocities to the .rkf file. Disable this to reduce trajectory size if you do
not need to analyze the velocities.

Checkpoint

Type Block

Description Sets the frequency for storing the entire MD state necessary for restarting the cal-
culation.

Frequency

Type Integer

Default value 1000

GUI name Checkpoint frequency

Description Write the MD state and engine-specific data to the respective .rkf files once
every N steps.

CalcPressure

Type Bool

Default value No

Description Calculate the pressure in periodic systems. This may be computationally expensive
for some engines that require numerical differentiation. Some other engines can calculate the
pressure for negligible additional cost and will always do so, even if this option is disabled.

Print

88 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Type Block

Description This block controls the printing of additional information to stdout.

System

Type Bool

Default value No

Description Print the chemical system before and after the simulation.

Velocities

Type Bool

Default value No

Description Print the atomic velocities before and after the simulation.

4.9.6 Lattice deformations (volume regimes)

The Deformation block can be used to gradually deform the periodic lattice of the system during a MD simulation.
This block can be repeated to define multiple deformations, which will be applied on every MD step in the order in
which they are listed in the input.

See also:

Example demonstrating various lattice deformations (page 260)

Warning: While a Deformation and a Barostat can be used at the same time, remember to set the Scale
parameter of the barostat so that no dimension is simultaneously being deformed and barostatted.

Each Deformation block will be active on MD steps between StartStep and StopStep.

The time dependence of the lattice parameters is defined by the Type key:

Linear This deformation type adds the same constant amount to the selected lattice parameters on every simula-
tion step. When used with TargetLattice, LatticeVelocity, or StrainRate, the lattice matrix 𝐻
evolves as 𝐻(𝑡) = 𝐻0 + ∆𝐻 · 𝑡, where 𝐻0 is the lattice at StartStep.

Exponential When used with StrainRate, this type strains the lattice by the given strain matrix \epsilon on
every step, so that the lattice matrix 𝐻 evolves as 𝐻(𝑡) = 𝐻0(1 + 𝜖)𝑡. When used with LengthRate, the
length of each lattice vector evolves as 𝑙(𝑡) = 𝑙0(1 + 𝑟)𝑡.

Sine This is a periodic deformation going from the starting value of the selected lattice parameters to a set target, and
then with the same amplitude to the opposite direction from the starting lattice.

Cosine This periodic deformation oscillates between the starting lattice and a defined target.

The period of the oscillation for the Sine and Cosine types must be set using the Period key.

The extent of the deformation is defined by setting one of the six mutually exclusive input keys. These belong to two
groups, depending on whether they operate on the lattice matrix as a whole, or just on the lengths of the individual
lattice vectors:

TargetLattice, Velocity, and Rate These input keys expect a “lattice-like” matrix of numbers, consisting of up to
three rows containing up to three values each. Each row contains the components of a single lattice vector and
corresponds to a row of the Lattice block (page 28). For systems with 1D or 2D periodicity the matrix may be
padded to 3x3 with zeros.

4.9. Molecular dynamics 89



AMS Manual, Amsterdam Modeling Suite 2020

TargetLength, LengthVelocity, and LengthRate These input keys expect a list of up to three values, defining the
desired length of each lattice vector or the (absolute or relative) rate of its change.

MolecularDynamics

Deformation

Type Block

Recurring True

Description Deform the periodic lattice of the system during the simulation.

LatticeVelocity

Type Non-standard block

Description Velocity of individual lattice vector components in Angstrom/fs. The format is
identical to the System%Lattice block. For Type Sine and Cosine, this defines the maxi-
mum velocity (at the inflection point).

LengthRate

Type Float List

Default value [0.0, 0.0, 0.0]

Description Relative rate of change of each lattice vector per step.

LengthVelocity

Type Float List

Default value [0.0, 0.0, 0.0]

Unit Angstrom/fs

Description Change the length of each lattice vector with this velocity. With
Type=Exponential, LengthVelocity is divided by the current lattice vector lengths on Start-
Step to determine a LengthRate, which is then applied on all subsequent steps. For Type
Sine and Cosine, this defines the maximum velocity (at the inflection point).

Period

Type Float

Unit Femtoseconds

Description Period of oscillation for Type Sine and Cosine.

ScaleAtoms

Type Bool

Default value Yes

Description Scale the atomic positions together with the lattice vectors. Disable this to
deform only the lattice, keeping the coordinates of atoms unchanged.

StartStep

Type Integer

Default value 1

Description First step at which the deformation will be applied.

StopStep

90 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Type Integer

Default value 0

Description Last step at which the deformation will be applied. If unset or zero, nSteps will
be used instead.

StrainRate

Type Non-standard block

Description Strain rate matrix to be applied on every step. The format is identical to the
System%Lattice block.

TargetLattice

Type Non-standard block

Description Target lattice vectors to be achieved by StopStep. The format is identical to the
System%Lattice block.

TargetLength

Type Float List

Default value [0.0, 0.0, 0.0]

Unit Angstrom

Description Target lengths of each lattice vector to be achieved by StopStep. The number
of values should equal the periodicity of the system. If a value is zero, the corresponding
lattice vector will not be modified.

Type

Type Multiple Choice

Default value Linear

Options [Linear, Exponential, Sine, Cosine]

Description Function defining the time dependence of the deformed lattice parameters. Lin-
ear increments the lattice parameters by the same absolute amount every timestep. Expo-
nential multiplies the lattice parameters by the same factor every timestep. Only Strain-
Rate, LengthRate, and LengthVelocity are supported for Type=Exponential. Sine deforms
the system from the starting lattice to TargetLattice/TargetLength and then by the same
amount to the opposite direction, while Cosine deforms the system from the starting lattice
to the target and back.

Example: Transition from the initial lattice to a 10 Å cube over 1000 steps:

MolecularDynamics
Deformation

StopStep 1000
TargetLattice

10.0 0.0 0.0
0.0 10.0 0.0
0.0 0.0 10.0

End
End

End

Example: Oscillate the length of the c lattice vector between the initial value and 20 Å, leaving the a and b vectors
unchanged:

4.9. Molecular dynamics 91



AMS Manual, Amsterdam Modeling Suite 2020

MolecularDynamics
Deformation

Type Cosine
Period 100
TargetLength 0 0 20

End
End

Example: Stretch the box in the “z” direction by a true exponential strain of 10 ppm per timestep while barostatting
the remaining dimensions:

MolecularDynamics
Barostat Type=MTK Pressure=1e5 Tau=1000 Scale=XY
Deformation

Type Exponential
StrainRate

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 1e-5

End
End

End

4.9.7 Molecule Gun: adding molecules during simulation

The molecule gun allows you to “shoot” (add with velocity) a molecule into the simulation box.

See also:

The GUI tutorial on the molecule gun.

Molecules can be continuously added to the simulation or only once. The initial position can be pre-set or be random
within the simulation box or a part thereof. It can be defined either in the Cartesian or fractional coordinates. The
initial velocity can be specified either directly (in Angstrom per femtosecond) or as translational temperature or kinetic
energy. Possible applications of the molecule gun include e.g. the simulation of enforced collisions or deposition
processes on surfaces.

MolecularDynamics

AddMolecules

Type Block

Recurring True

GUI name Add molecules

Description This block controls adding molecules to the system (a.k.a. the Molecule Gun).
Multiple occurrences of this block are possible. By default, molecules are added at random
positions in the simulation box with velocity matching the current system temperature. The
initial position can be modified using one of the following keywords: Coords, CoordsBox,
FractionalCoords, FractionalCoordsBox. The Coords and FractionalCoords keys can option-
ally be accompanied by CoordsSigma or FractionalCoordsSigma, respectively.

AtomTemperature

Type Float

Default value 0.0

92 Chapter 4. Structure and Reactivity, Molecular Dynamics

../../Tutorials/MolecularDynamicsAndMonteCarlo/MoleculeGun.html


AMS Manual, Amsterdam Modeling Suite 2020

Unit Kelvin

Description Add random velocity corresponding to the specified temperature to individual
atoms of the molecule. The total momentum of the added molecule is not conserved.

Coords

Type Float List

Unit Angstrom

Description Place molecules at or around the specified Cartesian coordinates. This setting
takes precedence over other ways to specify initial coordinates of the molecule: [Coords-
Box], [FractionalCoords], and [FractionalCoordsBox].

CoordsBox

Type Float List

Unit Angstrom

Description Place molecules at random locations inside the specified box in Cartesian co-
ordinates. Coordinates of the box corners are specified as: Xmin, Xmax, Ymin, Ymax,
Zmin, Zmax. This setting is ignored if Coords is used. In AMSinput, if this field is not
empty it will be used instead of the default Coords.

CoordsSigma

Type Float List

Unit Angstrom

Description Sigma values (one per Cartesian axis) for a Gauss distribution of the initial
coordinates. Can only be used together with Coords.

Energy

Type Float

Unit Hartree

Description Initial kinetic energy of the molecule in the shooting direction.

EnergySigma

Type Float

Default value 0.0

Unit Hartree

Description Sigma value for the Gauss distribution of the initial kinetic energy around the
specified value. Should only be used together with Energy.

FractionalCoords

Type Float List

Description Place molecules at or around the specified fractional coordinates in the main
system’s lattice. For non-periodic dimensions a Cartesian value in Angstrom is expected.
This setting is ignored if [Coords] or [CoordsBox] is used.

FractionalCoordsBox

Type Float List

4.9. Molecular dynamics 93



AMS Manual, Amsterdam Modeling Suite 2020

Description Place molecules at random locations inside the box specified as fractional coor-
dinates in the main system’s lattice. Coordinates of the box corners are specified as: Xmin,
Xmax, Ymin, Ymax, Zmin, Zmax. For non-periodic dimensions the Cartesian value in
Angstrom is expected. This setting is ignored if [Coords], [CoordsBox], or [FractionalCo-
ords] is used.

FractionalCoordsSigma

Type Float List

Description Sigma values (one per axis) for a Gauss distribution of the initial coordinates.
For non-periodic dimensions the Cartesian value in Angstrom is expected. Can only be
used together with FractionalCoords.

Frequency

Type Integer

Default value 0

Description A molecule is added every [Frequency] steps after the StartStep. There is never
a molecule added at step 0.

MinDistance

Type Float

Default value 0.0

Unit Angstrom

Description Keep the minimal distance to other atoms of the system when adding the
molecule.

NumAttempts

Type Integer

Default value 10

Description Try adding the molecule up to the specified number of times or until the
MinDistance constraint is satisfied. If all attempts fail a message will be printed and the
simulation will continue normally.

Rotate

Type Bool

Default value No

Description Rotate the molecule randomly before adding it to the system.

StartStep

Type Integer

Default value 0

Description Step number when the first molecule should be added. After that, molecules
are added every Frequency steps. For example, ff StartStep=99 and Frequency=100 then a
molecule will be added at steps 99, 199, 299, etc. . . No molecule will be added at step 0,
so if StartStep=0 the first molecule is added at the step number equal to [Frequency].

StopStep

Type Integer

94 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Description Do not add this molecule after the specified step.

System

Type String

Description String ID of the [System] that will be added with this ‘gun’. The lattice speci-
fied with this System is ignored and the main system’s lattice is used instead. AMSinput
adds the system at the coordinates of the System (thus setting Coords to the center of the
System).

Temperature

Type Float

Unit Kelvin

Description Initial energy of the molecule in the shooting direction will correspond to the
given temperature.

TemperatureSigma

Type Float

Default value 0.0

Unit Kelvin

Description Sigma value for the Gauss distribution of the initial temperature the specified
value. Should only be used together with TemperatureSigma.

Velocity

Type Float

Unit Angstrom/fs

Description Initial velocity of the molecule in the shooting direction.

VelocityDirection

Type Float List

Description Velocity direction vector for aimed shooting. It will be random if not specified.
In AMSinput add one or two atoms (which may be dummies). One atom: use vector from
center of the system to add to that atom. Two atoms: use vector from the first to the second
atom.

VelocitySigma

Type Float

Default value 0.0

Unit Angstrom/fs

Description Sigma value for the Gauss distribution of the initial velocity around the specified
value. Should only be used together with Velocity.

4.9.8 Removing molecules during simulation

Molecules detected (page 186) by the AMS driver can also be removed from the system. This feature can, for example,
be used to remove reaction products.

MolecularDynamics

4.9. Molecular dynamics 95



AMS Manual, Amsterdam Modeling Suite 2020

RemoveMolecules

Type Block

Recurring True

GUI name Remove molecules

Description This block controls removal of molecules from the system. Multiple occurrences
of this block are possible.

Formula

Type String

Description Molecular formula of the molecules that should be removed from the system.
The order of elements in the formula is very important and the correct order is: C, H, all
other elements in the strictly alphabetic order. Element names are case-sensitive, spaces in
the formula are not allowed. Digit ‘1’ must be omitted. Valid formula examples: C2H6O,
H2O, O2S. Invalid formula examples: C2H5OH, H2O1, OH, SO2. Invalid formulas are
silently ignored.

Frequency

Type Integer

Default value 0

Description The specified molecules are removed every so many steps after the StartStep.
There is never a molecule removed at step 0.

SafeBox

Type Block

Description Part of the simulation box where molecules may not be removed. Only one of
the SinkBox or SafeBox blocks may be present. If this block is present a molecule will
not be removed if any of its atoms is within the box. For a periodic dimension it is given
as a fraction of the simulation box (the full 0 to 1 range by default). For a non-periodic
dimension it represents absolute Cartesian coordinates in atomic units.

Amax

Type Float

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

96 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Description Coordinate of the lower bound along the third axis.

SinkBox

Type Block

Description Part of the simulation box where molecules will be removed. By default,
molecules matching the formula will be removed regardless of their location. If this block
is present a molecule will be removed if any of its atoms is within the box. For a periodic
dimension it is given as a fraction of the simulation box (the full 0 to 1 range by default).
For a non-periodic dimension it represents absolute Cartesian coordinates in atomic units.

Amax

Type Float

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Description Coordinate of the lower bound along the third axis.

StartStep

Type Integer

Default value 0

Description Step number when molecules are removed for the first time. After that,
molecules are removed every [Frequency] steps. For example, if StartStep=99 and Fre-
quency=100 then molecules will be removed at steps 99, 199, 299, etc. . . No molecule
will be removed at step 0, so if StartStep=0 the first molecules are removed at the step
number equal to [Frequency].

StopStep

Type Integer

4.9. Molecular dynamics 97



AMS Manual, Amsterdam Modeling Suite 2020

Description Do not remove the specified molecules after this step.

Warning: When there is a Molecules%AdsorptionSupportRegion defined, the molecule formulas depend on
whether the molecule is adsorbed or not.

4.9.9 Accelerated dynamics

The PLUMED library support in AMS

PLUMED (http://www.plumed.org/) is a plugin that works with various MD programs and is also available in AMS.
It can be used for on-the-fly analysis of the dynamics, or to perform a wide variety of free energy methods. The
interface with the plugin is really simple: you just need to specify the PLUMED input in the MolecularDynam-
ics%Plumed%Input block and it will be passed to the library “as is”. At each MD step, the current state of the system
will be passed to the plugin to be updated according to the PLUMED input.

MolecularDynamics

Plumed

Type Block

Description Input for PLUMED. The parallel option is still experimental.

Input

Type Non-standard block

Description Input for PLUMED. Contents of this block is passed to PLUMED as is.

Parallel

Type Block

Description Options for double parallelization, which allows to split the available processor
cores into groups working through all the available tasks in parallel, resulting in a better
parallel performance. The keys in this block determine how to split the available processor
cores into groups working in parallel.

nCoresPerGroup

Type Integer

GUI name Cores per group

Description Number of cores in each working group.

nGroups

Type Integer

GUI name Number of groups

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

GUI name Nodes per group

98 Chapter 4. Structure and Reactivity, Molecular Dynamics

http://www.plumed.org/


AMS Manual, Amsterdam Modeling Suite 2020

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

Metadynamics for Conformer-Rotamer Ensemble Sampling (CREST-MTD)

This is a very specific implementation of metadynamics that is only meant for exploration of conformer space, as used
in the Conformer-Rotamer Ensemble Sampling (CREST) approach. It is an RMSD-based metadynamics that places a
new 1-dimensional Gaussian on the potential energy surface every NSteps steps. The Gaussian is a function of the
RMSD from the current geometry, which will always be zero at the moment of placement. All Gaussians have the
same maximum height (Height) and the same width (Width). There is an upper limit of NGaussiansMax to the
number of Gaussians present in the system, and when this is exceeded the oldest Gaussian is removed. By default the
Gaussians are gradually introduced, using a scaling function that increases from 0 to 1 with the simulation time. The
keyword ScalingSlope in the inputblock GaussianScaling determines the slope of the scaling function with
respect to time. The default value of 0.03 𝑠𝑡𝑒𝑝𝑠−1 yields a scaling factor of nearly 1 after 100 steps. The keyword
ScaleGaussians in the inputblock GaussianScaling determines whether the Gaussians are scaled at all.

MolecularDynamics

CRESTMTD

Type Block

GUI name CREST_MTD

Description Input for CREST metadynamics simulation.

AddEnergy

Type Bool

Description Add the bias energy to the potential energy (to match the gradients)

GaussianScaling

Type Block

Description Options for gradual introduction of the Gaussians

ScaleGaussians

Type Bool

Default value Yes

Description Introduce the Gaussians gradually, using a scaling function

ScalingSlope

Type Float

Default value 0.03

Description Slope of the scaling function for the Gaussians with respect to time

Height

Type Float

Unit Hartree

Description The height of the Gaussians added

NGaussiansMax

Type Integer

4.9. Molecular dynamics 99



AMS Manual, Amsterdam Modeling Suite 2020

Description Maximum number of Gaussians stored

NSteps

Type Integer

Description Interval of Gaussian placement

RestartFile

Type String

Description Filename for file from which to read data on Gaussians placed previously.

Width

Type Float

Unit Bohr

Description The width of the Gaussians added in terms of the RMSD

By default the gradients of the Gaussians with respect to the atom coordinates are added to the state gradients, but the
value of the Gaussians is not added to the energy, which is common in metadynamics. For testing purposes it can be
useful to add the Gaussian value to the energy, and this can be done with the keyword AddEnergy. Irrespective of this
choice, the energy value of the Gaussian at each geometry is printed in the ams.rkf file in the section CrestMTDHistory.
It is also possible to use Gaussians from an earlier CREST-MTD simulation, using the keyword RestartFile.

Collective Variable-driven HyperDynamics (CVHD)

The Collective Variable-driven HyperDynamics is a molecular dynamics acceleration method that allows observation
of rare events by filling energy minima with a bias potential. In this sense it is similar to metadynamics. The difference
of the hyperdynamics is that it ensures that the bias disappears in the transition state region. This difference allows
hyperdynamics to calculate the rate of slow processes, for example the ignition phase of combustion.

See also:

The GUI tutorial on CVHD.

The CVHD implementation in AMS follows the algorithm described in K.M. Bal, E.C. Neyts, JCTC, 11 (2015)
(https://doi.org/10.1021/acs.jctc.5b00597)

The StartStep, Frequency, StopStep, and WaitSteps keys define when and how often the bias potential is added, and
when it is removed. The Bias block defines parameters of the bias potential peaks and the ColVarBB block describes
parameters of the bond-breaking collective variable.

MolecularDynamics

CVHD

Type Block

Recurring True

GUI name CVHD

Description Input for the Collective Variable-driven HyperDynamics (CVHD).

Bias

Type Block

Description The bias is built from a series of Gaussian peaks deposited on the collective
variable axis every [Frequency] steps during MD. Each peak is characterized by its (possi-
bly damped) height and the RMS width (standard deviation).

100 Chapter 4. Structure and Reactivity, Molecular Dynamics

../../Tutorials/MolecularDynamicsAndMonteCarlo/CVHD.html
https://doi.org/10.1021/acs.jctc.5b00597


AMS Manual, Amsterdam Modeling Suite 2020

DampingTemp

Type Float

Default value 0.0

Unit Kelvin

GUI name Bias damping T

Description During well-tempered hyperdynamics the height of the added bias is scaled
down with an exp(-E/kT) factor [PhysRevLett 100, 020603 (2008)], where E is the current
value of the bias at the given CV value and T is the damping temperature DampingTemp.
If DampingTemp is zero then no damping is applied.

Delta

Type Float

Description Standard deviation parameter of the Gaussian bias peak.

Height

Type Float

Unit Hartree

Description Height of the Gaussian bias peak.

ColVarBB

Type Block

Recurring True

GUI name Collective Variable

Description Description of a bond-breaking collective variable (CV) as described in [Bal &
Neyts, JCTC, 11 (2015)]. A collective variable may consist of multiple ColVar blocks.

at1

Type Block

Description Specifies the first bonded atom in the collective variable.

region

Type String

Default value *

Description Restrict the selection of bonded atoms to a specific region. If this is not set,
atoms anywhere in the system will be selected.

symbol

Type String

Description Atom type name of the first atom of the bond. The name must be as it
appears in the System block. That is, if the atom name contains an extension (e.g C.1)
then the full name including the extension must be used here.

at2

Type Block

Description Specifies the second bonded atom in the collective variable.

4.9. Molecular dynamics 101



AMS Manual, Amsterdam Modeling Suite 2020

region

Type String

Default value *

Description Restrict the selection of bonded atoms to a specific region. If this is not set,
atoms anywhere in the system will be selected.

symbol

Type String

Description Atom type name of the second atom of the bond. The value is allowed to be
the same as [at1], in which case bonds between atoms of the same type will be included.

cutoff

Type Float

Default value 0.3

GUI name Bond order cutoff

Description Bond order cutoff. Bonds with BO below this value are ignored when creating
the initial bond list for the CV. The bond list does not change during lifetime of the variable
even if some bond orders drop below the cutoff.

p

Type Integer

Default value 6

GUI name Exponent p

Description Exponent value p used to calculate the p-norm for this CV.

rmax

Type Float

Unit Angstrom

GUI name R max

Description Max bond distance parameter Rmax used for calculating the CV. It should be
close to the transition-state distance for the corresponding bond.

rmin

Type Float

Unit Angstrom

GUI name R min

Description Min bond distance parameter Rmin used for calculating the CV. It should be
close to equilibrium distance for the corresponding bond.

Frequency

Type Integer

Description Frequency of adding a new bias peak, in steps. New bias is deposited every
[Frequency] steps after [StartStep] if the following conditions are satisfied: the current CV
value is less than 0.9 (to avoid creating barriers at the transition state), the step number is
greater than or equal to [StartStep], and the step number is less than or equal to [StopStep].

102 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

StartStep

Type Integer

Description If this key is specified, the first bias will be deposited at this step. Otherwise,
the first bias peak is added at the step number equal to the Frequency parameter. The bias
is never deposited at step 0.

StopStep

Type Integer

Description No bias will be deposited after the specified step. The already deposited bias
will continue to be applied until the reaction event occurs. After that no new CVHD will
be started. By default, the CVHD runs for the whole duration of the MD calculation.

WaitSteps

Type Integer

Description If the CV value becomes equal to 1 and remains at this value for this many steps
then the reaction event is considered having taken place. After this, the collective variable
will be reset and the bias will be removed.

During a CVHD calculation, the following variables are saved to the MDHistory section of the RKF file, in addition
to other MD properties:

• BiasEnergy - value the bias energy at the current MD step, in Hartree.

• MaxBiasEnergy - max BiasEnergy since the last sampling step.

• BoostFactor - the boost factor at the given MD step. The boost factor is calculated at each MD step as 𝑏𝑜𝑜𝑠𝑡 =
𝑒𝐸𝑏𝑖𝑎𝑠/𝑘𝑇 , where T is the MD ensemble temperature.

• MaxBoostFactor - max BoostFactor value since the last sampling step.

• HyperTime - boosted MD time, in femtoseconds, which is a sum of the hyper-time steps calculated from the
current boost factor and the MD time step as ∆𝑡𝑏𝑜𝑜𝑠𝑡 = 𝑏𝑜𝑜𝑠𝑡 *∆𝑡. In hyperdynamics, the hyper-time value is
directly related to the rate of the process boosted by the corresponding collective variable.

Temperature Replica Exchange

Sampling of rare events can be accelerated using the Replica Exchange Molecular Dynamics (REMD) method, also
known as Parallel Tempering. This method runs multiple replicas (copies) of the simulated system in parallel, each in
a different ensemble. In the case of Temperature REMD, these ensembles are all NVT or NpT, each at a different tem-
perature. Periodically, Monte Carlo swaps are attempted between neighboring ensembles. If the current configuration
of replica A has a sufficient Boltzmann probability in the ensemble of replica B (and vice versa), the two configu-
rations will be swapped. This causes high-energy configuration to migrate into the high-temperature replicas while
low-energy configurations eventually end up in the coldest ensemble. This facilitates the crossing of energy barriers
in the high-temperature ensembles while keeping the coldest replica at a given temperature of interest. Because each
replica always samples an unbiased ensemble, any property can be calculated using standard MD analysis methods
without special preparation.

The method is controlled using the ReplicaExchange block:

MolecularDynamics

ReplicaExchange

Type Block

Description This block is used for (temperature) Replica Exchange MD (Parallel Tempering)
simulations.

4.9. Molecular dynamics 103



AMS Manual, Amsterdam Modeling Suite 2020

AllowWrongResults

Type Bool

Default value No

Description Allow combining Replica Exchange with other features when the combination
is known to produce physically incorrect results.

EWMALength

Type Integer

Default value 10

Description Length of the exponentially weighted moving average used to smooth swap
probabilities for monitoring. This value is equal to the inverse of the EWMA mixing
factor.

SwapFrequency

Type Integer

Default value 100

Description Attempt an exchange every N steps.

TemperatureFactors

Type Float List

Description This is the ratio of the temperatures of two successive replicas. The first value
sets the temperature of the second replica with respect to the first replica, the second value
sets the temperature of the third replica with respect to the second one, and so on. If there
are fewer values than nReplicas, the last value of TemperatureFactor is used for all the
remaining replicas.

Temperatures

Type Float List

Description List of temperatures for all replicas except for the first one. This is mutually
exclusive with TemperatureFactors. Exactly nReplicas-1 temperature values need to be
specified, in increasing order. The temperature of the first replica is given by [Thermo-
stat%Temperature].

nReplicas

Type Integer

Default value 1

GUI name Number of replicas

Description Number of replicas to run in parallel.

The number of replicas set by nReplicas must never exceed the total number of processors used for the simulation.
If possible, the total number of processors should be an integer multiple of nReplicas to ensure good load balancing.

The temperature of the base (coldest) replica is determined by the Thermostat input block, just like in an ordinary
MD simulation. There are two ways to set the temperatures of the remaining replicas, either using Temperatures
or TemperatureFactors. The latter is typically more convenient, as it makes it easy to set up the opti-
mal geometric progression of temperatures. In the simplest case, it is enough to supply just a single value in
TemperatureFactors, setting the common ratio of temperatures of any two adjacent replicas.

104 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

SwapFrequency should be set as low as practical for maximum efficiency. The value of this parameter isn’t critical
because it doesn’t affect the validity of the results. However, setting it too high will decrease overall acceleration by
missing some opportunities to exchange. Conversely, using a value that is too low will increase the communication
overhead and lead to useless back-and-forth swaps between adjacent replicas. Ideally, SwapFrequency should be
comparable to the correlation time of the system to ensure that individual exchange attempts are uncorrelated.

The trajectory of each replica is written to a separate RKF file: ams.rkf for the base replica and replicaX.rkf for the
other replicas. One can easily switch between these files in the GUI using File→ Related Files. In addition to data
present in any MD trajectory, these files also contain an extra section ReplicaExchangeHistory with the following data
items written every SwapFrequency steps:

• AvgSwapProbability – Average swap acceptance for each pair of replicas, smoothed using an exponentially
weighted moving average with a mixing factor equal to the inverse of EWMALength.

• {Min,Max,Mean,StdDev}PotentialEnergy – Statistics of the potential energy for each ensemble over the last
SwapFrequency steps.

• SystemInEnsemble i – Identifies the system (continuous trajectory) currently running in ensemble (replica) i.

• EnsembleOfSystem i – Inverse mapping of SystemInEnsemble, giving the current replica number in which the
system number i runs.

• TemperatureOfSystem i – Equivalent to EnsembleOfSystem using temperatures instead of integer numbers to
identify ensembles.

These data items can be plotted using the MD Replica Exchange menu in AMSmovie. For example, plotting
TemperatureOfSystem or EnsembleOfSystem is useful to visualize the migration of each system through the space
of ensembles, where each curve represents one continuous trajectory. Plotting potential energy statistics or average
acceptances facilitates tuning the number of replicas and their temperatures to achieve efficient acceleration. The
replica exchange method can only work when the potential energy distributions of adjacent ensembles have a suf-
ficient overlap. This can be easily seen by comparing MaxPotentialEnergy of ensemble i with MinPotentialEnergy
of ensemble i+1. The optimal degree of overlap is such that leads to approximately 20 % of swap attempts get-
ting accepted. The acceptance of swaps can be monitored by plotting AvgSwapProbability and the corresponding
TemperatureFactors can then be adjusted to keep it near the optimal value.

Bond Boost Method

The bond boost method implemented here is described in3. In this method, the distances between atoms that are
relevant to the reaction of interest are calculated to determine the orientation of the reactant molecules. If a suitable
initial configuration is recognized, an additional restraint energy (possibly consisting of more than one term) is added
to the system that is intended to stretch or compress bonds at a pre-defined rate such that this additional energy can
help achieve the energy to cross the reaction barrier. A single term of the restraint energy is depends on the restraints
type and its parameters, see restraint definitions (page 201) for details. If more than one suitable configuration is found
then the one with the smallest sum of distances is used to create the restraints.

See also:

The GUI tutorial on the Bond Boost Method.

MolecularDynamics

BondBoost

Type Block

Recurring True

3 A. Vashisth, C. Ashraf, W. Zhang, C.E. Bakis, and A.C.T. van Duin, Accelerated ReaxFF simulations for describing the reactive cross-linking
of polymers, J. Phys. Chem. A, 122, 6633-6642 (2018) (https://doi.org/10.1021/acs.jpca.8b03826)

4.9. Molecular dynamics 105

../../Tutorials/MolecularDynamicsAndMonteCarlo/PolymersBondBoost.html
https://doi.org/10.1021/acs.jpca.8b03826


AMS Manual, Amsterdam Modeling Suite 2020

Description Forced reaction (bond boost) definitions. Multiple BondBoost blocks may be spec-
ified, which will be treated independently.

Chain

Type Block

Description Specifications of a chain of atoms. When a chain is detected the distance re-
straints will be activated. No other chain of this type will be detected while any restraints
for this chain is active.

AtomNames

Type String

Description Atom names specifying the chain. An atom name can optionally be followed
by ‘@’ and a region name, in this case only atoms of this type from the given region will
be matched. A leading ‘@’ followed by a number indicates that this position in the chain
must be occupied by the atom found earlier at the specified position in the chain. For
example “O H N C @1” indicates that the last atom in the chain of the five atoms must be
the first oxygen, thus defining a 4-membered ring. This is the only way to define a ring
because implicit rings will not be detected. For example, “O H N C O” does not include
rings.

MaxDistances

Type Float List

Unit Angstrom

Description Maximum distances for each pair of atoms in the chain. The number of dis-
tances must be one less than the number of AtomNames.

MinDistances

Type Float List

Unit Angstrom

Description Minimum distances for each pair of atoms in the chain. The number of dis-
tances must be one less than the number of AtomNames.

DistanceRestraint

Type String

Recurring True

Description Specify two atom indices followed by the distance in Angstrom, the ForceCon-
stant (in a.u.) and, optionally, the profile type and F(Inf) (in a.u.). This restraint will try to
keep the distance between the two specified atoms at the given value. For periodic systems
this restraint follows the minimum image convention. Each index indicates position of the
corresponding atom in the AtomNames key. Currently recognized restraint profile types:
Harmonic (default), Hyperbolic, Erf.

NSteps

Type Integer

GUI name Boost lifetime

Description Number of steps the restraints will remain active until removed. Atoms partici-
pating in one reaction are not available for the given number of steps.

NumInstances

106 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Type Integer

Default value 1

GUI name Number of instances

Description Number of reactions of this type taking place simultaneously.

For example:

MolecularDynamics
BondBoost

NSteps 10000
Chain

AtomNames N.1 C.t O H @1
MinDistances 3.0 1.2 1.5 0.8
MaxDistances 3.8 3.0 2.5 1.5

End
# Restraints i j R_0 FC

DistanceRestraint 1 2 1.5 0.05 Hyperbolic 0.7
DistanceRestraint 2 3 3.5 0.03 Hyperbolic 0.5
DistanceRestraint 3 4 1.0 0.03 Hyperbolic 0.5

End
End

The AtomNames, MinDistances, and MaxDistances keys constitute the atom chain definitions for the initial
configuration. Thus, the example above defines a chain of atoms N.1-C.t-O-H-N.1 with R(N.1-C) in the (3.0,3.8)
range, R(C.t-O) in the (1.2,3.0) range, etc.. In this example, the last atoms in the chain is required to be the same as
the fist one, thus defining a ring. The specified restraints will push pairs of atoms C-N and O-H close together, which
will hopefully let them form a bond, and pull atoms C.t and O away from each other, thus breaking the C-O bond. The
restraint type is set to Hyperbolic to avoid very large forces that would otherwise result from a harmonic potential
at a large deviation.

Note: When detecting coordinates, the program uses the full atom name and not just the element name. An atom
name consists of the element name optionally followed by a period and a suffix, just like N.1 and C.t in the example
above. Using extended names for some atoms one may allow only a subset of bonds to be boosted.

4.9.10 Non-equilibrium MD (NEMD)

T-NEMD for thermoconductivity: heat exchange

There are different methods to study thermal conductivity using non-equilibrium molecular dynamics (NEMD). A
common feature of these methods is that they require the system to be divided into three or more zones, each with its
own thermostat and other properties. One method maintains the temperature of the heat source and the heat sink zones
at the given temperature using two different thermostats and measures the amount of heat transferred. These method
does not require any special features besides a standard thermostat and a possibility to calculate the amount of heat
accumulated by the thermostat per unit of time. The accumulated thermostat energies are available in the MDHistory
section of ams.rkf file, in variables called ‘XXXXstat#Energy’, where XXXX is a 4-letter abbreviation of the thermo-
/barostat (‘BerT’ for a Berendset thermostat, ‘NHCT’ for an NHC thermostat, ‘NHTB’ for an MTK barostat, etc.) and
‘#’ is a 1-digit index of the thermo-/barostat.

In the other method, the heat flow is constant and the induced temperature gradient is measured. This method is

4.9. Molecular dynamics 107



AMS Manual, Amsterdam Modeling Suite 2020

implemented in AMS in three variants: a simple heat exchange, HEX1 and eHEX2. In the simple heat exchange
method the atom velocities are scaled up (or down) by a factor corresponding to the amount of heat deposited to the
heat source (or withdrawn from the heat sink) without paying attention to the conservation of the total momentum
of the heat source (or sink). In the HEX method the velocities are scaled in such a way that the total momentum is
conserved. This, however, introduces a small but measurable drift in the total energy. The eHEX algorithm improves
upon the HEX by adding a third-order time-integration correction to remove the drift.

This method is controlled by the HeatExchange sub-block of the MolecularDynamics block:

MolecularDynamics

HeatExchange

Type Block

Recurring True

GUI name Heat exchange

Description Input for the heat-exchange non-equilibrium MD (T-NEMD).

HeatingRate

Type Float

Unit Hartree/fs

Description Rate at which the energy is added to the Source and removed from the Sink. A
heating rate of 1 Hartree/fs equals to about 0.00436 Watt of power being transfered through
the system.

Method

Type Multiple Choice

Default value Simple

Options [Simple, HEX, eHEX]

Description Heat exchange method used. Simple: kinetic energy of the atoms of the source
and sink regions is modified irrespective of that of the center of mass (CoM) of the region
(recommended for solids). HEX: kinetic energy of the atoms of these regions is modified
keeping that of the corresponding CoM constant. eHEX: an enhanced version of HEX that
conserves the total energy better (recommended for gases and liquids).

Sink

Type Block

Description Defines the heat sink region (where the heat will be removed).

AtomList

Type Integer List

GUI name Sink region

Description The atoms that are part of the sink. This key is ignored if the [Box] block or
[Region] key is present.

Box
1 T. Ikeshoji and B. Hafskjold, Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface

Molecular Physics 81, 251-261 (1994) (https://doi.org/10.1080/00268979400100171)
2 P. Wirnsberger, D. Frenkel, and C. Dellago, An enhanced version of the heat exchange algorithm with excellent energy conservation properties

Journal of Chemical Physics 143, 124104 (2015) (http://dx.doi.org/10.1063/1.4931597)

108 Chapter 4. Structure and Reactivity, Molecular Dynamics

https://doi.org/10.1080/00268979400100171
http://dx.doi.org/10.1063/1.4931597


AMS Manual, Amsterdam Modeling Suite 2020

Type Block

Description Part of the simulation box (in fractional cell coordinates) defining the heat sink.
If this block is specified, then by default, the whole box in each of the three dimensions is
used, which usually does not make much sense. Normally, you will want to set the bounds
along one of the axes.

Amax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the third axis.

Region

Type String

GUI name Sink region

Description The region that is the sink. This key is ignored if the [Box] block is present.

Source

Type Block

Description Defines the heat source region (where the heat will be added).

AtomList

4.9. Molecular dynamics 109



AMS Manual, Amsterdam Modeling Suite 2020

Type Integer List

GUI name Source region

Description The atoms that are part of the source. This key is ignored if the [Box] block or
[Region] key is present.

Box

Type Block

Description Part of the simulation box (in fractional cell coordinates) defining the heat
source. If this block is specified, then by default, the whole box in each of the three di-
mensions is used, which usually does not make much sense. Normally, you will want
to set the bounds along one of the axes. This block is mutually exclusive with the
FirstAtom/LastAtom setting.

Amax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the third axis.

Region

Type String

GUI name Source region

110 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

Description The region that is the source. This key is ignored if the [Box] block is present.

StartStep

Type Integer

Default value 0

Description Index of the MD step at which the heat exchange will start.

StopStep

Type Integer

Description Index of the MD step at which the heat exchange will stop.

One should be careful when choosing a value for the HeatingRate because a too large value may lead to pyrolysis
of the heat source or to an abnormal termination when all the kinetic energy of the heat sink has been drained. The
optimal value depends on the size of the system, its heat conductivity and the desired temperature gradient value. The
thermal conductivity k can be calculated by dividing the heat flow rate W by the temperature gradient grad(T) and by
the flow cross-section area S: 𝑘 = 𝑊/(𝑆 · 𝑔𝑟𝑎𝑑(𝑇 )). See the trajectory sampling (page 86) section above on how to
obtain the temperature profile from which the grad(T) can be computed.

4.10 Grand Canonical Monte Carlo (GCMC)

Tip: Take a look at the GCMC tutorial and learn how to setup a GCMC calculation.

4.10.1 General info

About Monte Carlo / the Grand Canonical Ensemble

It is best to read a bit about Monte Carlo and ensembles before working with the GCMC code. Almost every book or
review text on molecular simulations will do, for example: Frenkel D, Smit B. Understanding molecular simulation:
from algorithms to applications. Academic Press; 2002. 672 p.

Wikipedia also has some pages of interest:

• http://en.wikipedia.org/wiki/Monte_Carlo_method

• http://en.wikipedia.org/wiki/Grand_canonical_ensemble

It is important to note that this method heavily relies on random numbers, and simulations are thus non-repeatable in
detail, but should converge to the same answer.

About the AMS GCMC code

The GCMC code was originally developed for standalone Reaxff by Thomas Senftle, working as a Graduate Student
at Penn State University under the supervision of Dr. Adri van Duin12. The original version was a wrapper code
that called an external executable to perform the reaxff minimization step and energy calculation, and relied on file
modification and parsing to steer the reaxff code and get the results back.

The code was later rewritten by Hans van Schoot (SCM), in close collaboration with Thomas Senftle, to integrate it
directly into the ADF-ReaxFF code. The current version is an AMS re-implementation so the method can be used

1 T.P. Senftle, R.J. Meyer, M.J. Janik, A.C.T. van Duin, Development of a ReaxFF potential for Pd/O and application to palladium oxide
formation, J. Chem. Phys. 139, 044109 (2013) (https://doi.org/10.1063/1.4815820)

2 T.P. Senftle, A.C.T. van Duin, M.J. Janik, Determining in situ phases of a nanoparticle catalyst via grand canonical Monte Carlo simulations
with the ReaxFF potential, Catalysis Communications 52, 72–77 (https://doi.org/10.1016/j.catcom.2013.12.001)

4.10. Grand Canonical Monte Carlo (GCMC) 111

../../Tutorials/MolecularDynamicsAndMonteCarlo/GCMCLiSBattery.html
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Grand_canonical_ensemble
https://doi.org/10.1063/1.4815820
https://doi.org/10.1016/j.catcom.2013.12.001


AMS Manual, Amsterdam Modeling Suite 2020

with almost any engine supported by AMS (support for 3D periodic boundary conditions by the engine is currently a
requirement).

4.10.2 Method Details

Overview

The GCMC method will perform a number of Grand Canonical Monte Carlo trial moves (set by the Iterations
option of the GCMC input block), and accept or reject them based on the energy produced by the geometry optimization
of the trial geometry for the given engine. The Monte Carlo algorithm will always accept a step if it results in a decrease
of the energy, and accept steps that go up in energy with a probability. This section will give some details about how
the method works.

MC Moves (Insert/Delete/Displace/ChangeVolume)

The GCMC method currently supports 4 types of MC Moves: Insert, Delete, Displace (sometimes also called Move),
and ChangeVolume. The first three MC moves are always available and the ChangeVolume becomes available only
ChangeVolume option is set to True. The first three move types change coordinates of atoms in the system, while
the ChangeVolume move changes the lattice only.

On every MC iteration, the method first selects one of the molecules defined by the Molecule input blocks at random
and then selects an applicable MC move type. If there are no molecules of this type in the system then no Delete or
Displace is attempted. If the selected molecule has the NoAddRemove option set then the Insert and Delete moves
will not be attempted. If no MC move is possible with the selected molecule type then another one is selected or
a VolumeChange is attempted, if allowed. If no moves with any of the provided molecules is possible (i.e. if all
molecules have NoAddRemove set to True, there is nothing to displace and the volume is fixed) then the program
will stop.

The Insert and Displace MC move will rotate the molecule randomly and put it at a random position, and then check
if the minimum interatomic distance between the molecule and the rest of the system is within the MinDistance
and MaxDistance boundaries. If the condition is not satisfied, a new set of coordinates is generated and the check
is performed again. This is repeated up to NumAttempts times before stopping with an error.

The volume change is controlled by the VolumeChangeMax keyword. This sets the volume change limit, and
it should be a value between between 0 and 1. The new volume will be calculated as: Vnew = exp(random(-
1:1)*VolumeChangeMax)*Vold.

Calculating the chemical potential

The chemical potential of the molecule (or atom) reservoir is used when calculating the Boltzmann accept/reject
criteria after a MC move is executed. This value can be derived from first principles using statistical mechanics, or
equivalently, it can be determined from thermochemical tables available in literature sources.

For example, the proper chemical potential for a GCMC simulation in which single oxygen atoms are exchanged with
a reservoir of O2 gas, should be equal to 1/2 the chemical potential of O2 at the temperature and pressure of the
reservoir1:

𝜇𝑀𝐶
𝑂 (𝑇, 𝑃 ) = 1

2𝜇
𝑀𝐶
𝑂2 (𝑇, 𝑃 ) = 1

2

[︁
𝜇𝑟𝑒𝑓
𝑂2 (𝑇, 𝑃𝑟𝑒𝑓 ) + 𝑘𝑇 𝑙𝑛

(︁
𝑃

𝑃𝑟𝑒𝑓

)︁
− 𝐸𝑑𝑖𝑠𝑠

𝑂2

]︁
where the reference chemical potential 𝜇𝑟𝑒𝑓

𝑂2 (𝑇, 𝑃𝑟𝑒𝑓 ) is the experimentally determined chemical potential of O2 at

T and Pref, 𝑘𝑇 𝑙𝑛
(︁

𝑃
𝑃𝑟𝑒𝑓

)︁
is the pressure correction to the free energy, and 𝐸𝑑𝑖𝑠𝑠

𝑂2 is the dissociation energy of the O2

molecule.

Calculating energies

Because the GCMC simulation adds and deletes atoms or molecules during the runtime, it cannot directly compare the
AMS energies for the MC acceptance criteria: inserting a molecule will usually lower the total energy of the system,
causing the MC to always accept it, and always reject a deletion. To compensate this, the GCMC method calculates

112 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

a “corrected” MC energy to compare the trial energy with, consisting of the previously accepted AMS energy and a
correction depending on the move:

𝐸𝑀𝐶
𝑜𝑙𝑑 = 𝐸𝐴𝑀𝑆

𝑜𝑙𝑑 + 𝜇𝑀𝐶 for an Insert move;

𝐸𝑀𝐶
𝑜𝑙𝑑 = 𝐸𝐴𝑀𝑆

𝑜𝑙𝑑 − 𝜇𝑀𝐶 for a Delete move;

𝐸𝑀𝐶
𝑜𝑙𝑑 = 𝐸𝐴𝑀𝑆

𝑜𝑙𝑑 for a Displace move;

𝐸𝑀𝐶
𝑜𝑙𝑑 = 𝐸𝐴𝑀𝑆

𝑜𝑙𝑑 − 𝑃 (𝑉𝑛𝑒𝑤 − 𝑉𝑜𝑙𝑑) + 𝑁𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑𝑙𝑛
(︁

𝑉 𝑎𝑣𝑎𝑖𝑙
𝑛𝑒𝑤

𝑉 𝑎𝑣𝑎𝑖𝑙
𝑜𝑙𝑑

)︁
𝑘𝑇 for a ChangeVolume move.

Here, 𝜇𝑀𝐶 is the chemical potential of the inserted/deleted molecule, P is the pressure, V is the volume, and Ninserted
is the total number of MC molecules. The “new” and “old” subscripts refer to the current and the last accepted values.
The Vavail values are calculated from the MC-available volume as described below.

Calculating volumes

The available volume can be calculated in a few different ways, depending on the VolumeOption setting:

• Free: volume = total volume - occupied volume - specified vacuum volume (NonAccessibleVolume)

• Total: volume = total cell volume

• Accessible: volume = specified accessible volume (AccessibleVolume)

• FreeAccessible: volume = specified accessible volume (AccessibleVolume) - occupied volume

Here, the occupied volume is calculated as a sum of volumes of atoms that do not belong to the MC part of the system
(i.e. that were not inserted during calculation and are not Removables). The volume of an atom is calculated using
the average of the covalent and the Van der Waals radii of the atom defined in the atominfo module used throughout
AMS.

The AccessibleVolume and NonAccessibleVolume keywords can be used to get a more accurate available
volume.

Acceptance criteria

An MC move is always accepted if the AMS energy is lower than the corrected MC energy of the last accepted MC
move, or if the energy increase is small enough. If the new energy is higher, the code generates a random number
between 0 and 1, and accepts the move if the random number is greater than:

prob = preFactor * exp(-Beta*deltaE)

The prefactor is calculated (for insert and delete moves) using the deBroglie wavelength of the inserted molecules, the
number of inserted molecules and the available MC volume of the system.

4.10.3 Input

The GCMC functionality in AMS is triggered using the following Task key:

Task GCMC

GCMC
AccessibleVolume float
Box

Amax float
Amin float
Bmax float
Bmin float
Cmax float

(continues on next page)

4.10. Grand Canonical Monte Carlo (GCMC) 113



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Cmin float
End
Ensemble [Mu-VT | Mu-PT]
Iterations integer
MapAtomsToOriginalCell Yes/No
MaxDistance float
MinDistance float
Molecule

ChemicalPotential float
NoAddRemove Yes/No
SystemName string

End
NonAccessibleVolume float
NumAttempts integer
Pressure float
Removables # Non-standard block. See details.

...
End
Restart string
Temperature float
UseGCPreFactor Yes/No
VolumeChangeMax float
VolumeOption [Free | Total | Accessible | FreeAccessible]

End

The following keys are common for all GCMC calculations and should always be specified. The ChemicalPotential
value should correspond to the 𝜇𝑀𝐶 expression above, and not to the experimental chemical potential 𝜇𝑟𝑒𝑓 , which
means it should include the (engine-dependent) free molecule’s energy.

GCMC

Molecule

Type Block

Recurring True

GUI name Molecules

Description This block defines the molecule (or atom) that can be inserted/moved/deleted with
the MC method. The coordinates should form a reasonable structure. The MC code uses
these coordinates during the insertion step by giving them a random rotation, followed by a
random translation to generate a random position of the molecule inside the box. Currently,
there is no check to make sure all atoms of the molecule stay inside the simulation box. The
program does check that the MaxDistance/MinDistance conditions are satisfied.

ChemicalPotential

Type Float

Unit Hartree

Description Chemical potential of the molecule (or atom) reservoir. It is used when cal-
culating the Boltzmann accept/reject criteria after a MC move is executed. This value
can be derived from first principles using statistical mechanics, or equivalently, it can be
determined from thermochemical tables available in literature sources. For example, the
proper chemical potential for a GCMC simulation in which single oxygen atoms are ex-
changed with a reservoir of O2 gas, should equal 1/2 the chemical potential of O2 at the
temperature and pressure of the reservoir: cmpot = Mu_O(T,P) = 1/2*Mu_O2(T,P) = 1/2
* [Mu_ref(T,P_ref) + kT*Log(P/Pref) - E_diss] where the reference chemical potential

114 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

[Mu_ref(T,P_ref)] is the experimentally determined chemical potential of O2 at T and Pref;
kT*Log(P/Pref) is the pressure correction to the free energy, and E_diss is the dissociation
energy of the O2 molecule.

NoAddRemove

Type Bool

Default value No

GUI name Fix molecule

Description Set to True to tell the GCMC code to keep the number of molecules/atoms of
this type fixed. It will thus disable Insert/Delete moves on this type, meaning it can only
do a displacement move, or volume change move (for an NPT ensemble).

SystemName

Type String

GUI name Molecule

Description String ID of a named [System] to be inserted. The lattice specified with this
System, if any, is ignored and the main system’s lattice is used instead.

Iterations

Type Integer

GUI name Number of GCMC iterations

Description Number of GCMC moves.

Temperature

Type Float

Default value 300.0

Unit Kelvin

Description Temperature of the simulation. Increase the temperature to improve the chance of
accepting steps that result in a higher energy.

The following keys are related to Insert and Displace moves.

GCMC

NumAttempts

Type Integer

Default value 1000

GUI name Max tries

Description Try inserting/moving the selected molecule up to the specified number of times
or until all constraints are satisfied. If all attempts fail a message will be printed and the
simulation will stop. If the MaxDistance-MinDistance interval is small this number may
have to be large.

MinDistance

Type Float

Default value 0.3

Unit Angstrom

4.10. Grand Canonical Monte Carlo (GCMC) 115



AMS Manual, Amsterdam Modeling Suite 2020

GUI name Add molecules not closer than

Description Keep the minimal distance to other atoms of the system when adding the molecule.

MaxDistance

Type Float

Default value 3.0

Unit Angstrom

GUI name Add molecules within

Description The max distance to other atoms of the system when adding the molecule.

The following keys influence computation of the acceptance probability and of the MC energy correction.

GCMC

UseGCPreFactor

Type Bool

Default value Yes

GUI name Use GC prefactor

Description Use the GC pre-exponential factor for probability.

VolumeOption

Type Multiple Choice

Default value Free

Options [Free, Total, Accessible, FreeAccessible]

GUI name Volume method

Description Specifies the method to calculate the volume used to calculate the GC pre-
exponential factor and the energy correction in the Mu-PT ensemble: Free: V = totalVol-
ume - occupiedVolume - NonAccessibleVolume; Total: V = totalVolume; Accessible: V =
AccessibleVolume; FreeAccessible: V = AccessibleVolume - occupiedVolume. The Acces-
sibleVolume and NonAccessibleVolume are specified in the input, the occupiedVolume is
calculated as a sum of atomic volumes.

AccessibleVolume

Type Float

Default value 0.0

Description Volume available to GCMC, in cubic Angstroms. AccessibleVolume should be
specified for “Accessible” and “FreeAccessible” [VolumeOption].

NonAccessibleVolume

Type Float

Default value 0.0

GUI name Non-accessible volume

Description Volume not available to GCMC, in cubic Angstroms. NonAccessibleVolume may
be specified for the “Free” [VolumeOption] to reduce the accessible volume.

The following keys apply to the ensemble choice and options for the Mu-PT ensemble.

116 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

GCMC

Ensemble

Type Multiple Choice

Default value Mu-VT

Options [Mu-VT, Mu-PT]

Description Select the MC ensemble: Mu-VT for fixed volume or Mu-PT for variable volume.
When the Mu-PT ensemble is selected the [Pressure] and [VolumeChangeMax] should also
be specified.

VolumeChangeMax

Type Float

Default value 0.05

Description Fractional value by which logarithm of the volume is allowed to change at each step.
The new volume is then calculated as Vnew = exp(random(-1:1)*VolumeChangeMax)*Vold

Pressure

Type Float

Default value 0.0

Unit Pascal

Description Pressure used to calculate the energy correction in the Mu-PT ensemble. Set it to
zero for incompressible solid systems unless at very high pressures.

The GCMC code can insert multiple atom/molecule types in a single simulation, so it needs to keep track of what
atom belongs to which insert. This information is automatically stored and updated when insertion/deletion/moving
of atoms or molecules during the simulation, but is by default unknown for the atoms of the starting geometry. The
GCMC code will therefore by default not modify the atoms in the original input in the MC trial moves. The Restart
key and the Removables block are two ways to provide information about Deletable/Movable atoms/molecules in
the input structure. If the Restart key is present the Removables block will be ignored.

GCMC

Restart

Type String

Description Name of an RKF restart file. Upon restart, the information about the GCMC in-
put parameters, the initial system (atomic coordinates, lattice, charge, etc.) and the MC
molecules (both already inserted and to be inserted) are read from the restart file. The global
GCMC input parameters and the MC Molecules can be modified from input. Any parameter
not specified in the input will use its value from the restart file (i.e. not the default value).
Molecules found in the restart file do not have to be present as named Systems in the input,
however if there is a System present that matches the name of a molecule from restart then
the System’s geometry will replace that found in the restart file. It is also possible to spec-
ify new Molecules in the input, which will be added to the pool of the MC molecules from
restart.

Removables

Type Non-standard block

Description The Removables can be used to specify a list of molecules that can be removed or
moved during this GCMC calculation. Molecules are specified one per line in the format
following format: MoleculeName atom1 atom2 . . . The MoleculeName must match a name

4.10. Grand Canonical Monte Carlo (GCMC) 117



AMS Manual, Amsterdam Modeling Suite 2020

specified in one of the [Molecule] blocks. The atom indices refer to the whole input System
and the number of atoms must match that in the specified Molecule. A suitable Removables
block is written to the standard output after each accepted MC move. If you do so then you
should also replace the initial atomic coordinates with the ones found in the same file. If a
[Restart] key is present then the Removables block is ignored.

An example of the Removables block:

Removables
Oatom 41
O2 44 45
Oatom 42
Oatom 43

End

This example specifies that 5 atoms belong to 4 different GCMC molecules of two different types, Oatom and O2.
Thus in addition to the main input System there should be at least two additional Systems defined, one called “Oatom”
(containing one atom) and the other “O2” (containing two atoms). The first one was inserted three times (atoms 41,
42, and 43) and the second one was inserted once.

Finally there are more technical keywords:

GCMC

MapAtomsToOriginalCell

Type Bool

Default value Yes

Description Keeps the atom (mostly) in the original cell by mapping them back before the ge-
ometry optimizations.

Note that the GeometryOptimization block is also read by the GCMC task, and the settings used for the indi-
vidual optimizations. The documentation for these keywords can be found in the Geometry Optimization (page 41)
section of this manual.

4.10.4 Output

In addition to the standard KF variables in the “History” section on ams.rkf such as “Coords” and “Energy”, the
following GCMC-specific variables are also created for each accepted MC step:

• MCMove - integer index of the MC move.

• MCMoveType - string containing the type of the MC move.

• MCMolecule - string containing the name of the inserted/displaced/removed molecule.

• Converged - a Fortran logical value containing the convergence status of the given geometry.

Results of a GCMC calculation are stored in the GCMC section of the RKF file, in a number of variables. The
following variables contain a summary of the MC statistics up to and including the latest step:

• NIterMCtried - the latest iteration number.

• NIterMCaccept - the number of accepted MC moves.

• NIterMCreject - the number of rejected MC moves.

• NMCacceptAdd - the number of accepted MC molecule insertions.

• NMCacceptRemove - the number of accepted MC molecule removals.

118 Chapter 4. Structure and Reactivity, Molecular Dynamics



AMS Manual, Amsterdam Modeling Suite 2020

• NMCacceptMove - the number of accepted MC molecule moves.

• NMCacceptVolume - the number of accepted volume changes.

• NMCrejectAdd - the number of rejected MC molecule insertions.

• NMCrejectRemove - the number of rejected MC molecule removals.

• NMCrejectMove - the number of rejected MC molecule moves.

• NMCrejectVolume - the number of rejected volume changes.

The following variables (actually arrays of the size Iterations) in the GCMC section contain the detailed infor-
mation about all MC moves in the current simulation. Only the first NIterMCtried elements of each array contain valid
data.

• HistoryAccepted - MC move status value (1 - accepted, 0 - rejected, -1 - not done yet).

• HistoryAMSEnergy - the AMS energy (the 𝐸𝐴𝑀𝑆 above).

• HistoryMCEnergy - the corrected MC energy (𝐸𝑀𝐶 = 𝐸𝐴𝑀𝑆 − Σ𝜇𝑀𝐶
𝑖 , where Σ𝜇𝑀𝐶

𝑖 is the total chemical
potential of all inserted molecules).

• HistoryVolume - the simulation box volume.

• HistoryMoveType - the MC move type index (0 - insert, 1 - delete, 2 - displace, 3 - change volume). The name
of the move type with index i can be found in the MoveType(i) variable.

• HistoryMoleculeType - the inserted/deleted/displaced molecule type index. The name of the molecule type with
index i can be found in the MoleculeName(i) variable.

• HistoryMoleculeIndex - the inserted/deleted/displaced molecule index within its type.

4.10. Grand Canonical Monte Carlo (GCMC) 119



AMS Manual, Amsterdam Modeling Suite 2020

120 Chapter 4. Structure and Reactivity, Molecular Dynamics



CHAPTER

FIVE

GRADIENTS, HESSIAN, STRESS TENSOR, ELASTICITY

No matter what application the AMS driver is used for, in one way or another it always explores the potential energy
surface (PES) of the system. One can furthermore ask AMS to calculate additional properties of the PES in the points
that are visited. These are mostly (but not exclusively) derivatives of the energy, e.g. we can ask AMS to calculate
the gradients or the Hessian in the visited points. In general all these PES point properties are requested through the
Properties block in the AMS input:

Properties
Gradients Yes/No
StressTensor Yes/No
Hessian Yes/No
SelectedRegionForHessian string
PESPointCharacter Yes/No
ElasticTensor Yes/No

End

This properties described on this page in the AMS manual are all related to derivatives of the energy.

Note that because these properties are tied to a particular point on the potential energy surface, they are found on the
engine output files (page 15). Note also that the properties are not always calculated in every PES point that the AMS
driver visits during a calculation. By default they are only calculated in special PES points, where the definition of
special depends on the task (page 39) AMS is performing: For a geometry optimization (page 41) properties would for
example only be calculated at the final, converged geometry. This behavior can often be modified by keywords special
to the particular running task.

5.1 Nuclear gradients

The first derivative with respect to the nuclear coordinates can be requested as follows:

Properties
Gradients Yes/No

End

Properties

Gradients

Type Bool

Default value No

GUI name Nuclear gradients

Description Calculate the nuclear gradients.

121



AMS Manual, Amsterdam Modeling Suite 2020

Note that these are gradients, not forces, the difference being the sign. The gradients are printed in the output and writ-
ten to the engine result file (page 15) belonging to the particular point on the PES in the AMSResults%Gradients
variable as a 3× 𝑛atoms array in atomic units (Hartree/Bohr).

5.2 Hessian

The calculation of the second derivative of the total energy with respect to the nuclear coordinates is enabled by:

Properties
Hessian Yes/No
SelectedRegionForHessian string

End

Properties

Hessian

Type Bool

Default value No

Description Whether or not to calculate the Hessian.

SelectedRegionForHessian

Type String

GUI name Hessian only for

Description Compute the Hessian matrix elements only for the atoms in a particular region. If
not specified, the Hessian will be computed for all atoms.

The Hessian is not printed to the text output, but is saved in the engine result file as variable AMSResults%Hessian.
Note that this is just the plain partial second derivatives (no mass-weighting) of the total energy. The 3 × 𝑁atoms

columns/rows of the matrix are grouped by atom: the first three rows/columns correspond to the first atom, etc..

Note that the AMS driver also supports the Mobile Block Hessian (page 134) (MBH) method, which allows treating
parts of the system as rigid blocks.

Often one is not interested in the Hessian matrix itself, but just in using it for the calculation of IR frequencies or to
characterize a PES point (as e.g. a local minimum or a saddle point). For these application, see the following pages in
the manual:

• IR frequencies (page 131)

• PES point character (page 122)

5.3 PES point character

A PES point can according to the slope and curvature of the PES at that point be classified in the following categories:

• A local minimum on the PES with vanishing nuclear gradients and no negative frequencies.

• A transition state with vanishing nuclear gradients and exactly one negative frequency, i.e. a first order saddle
point on the PES.

• A higher order saddle point, i.e. a stationary point on the PES with vanishing nuclear gradients but more than
one imaginary frequency.

• A non-stationary point on the PES. Here the gradients are non-zero.

122 Chapter 5. Gradients, Hessian, Stress tensor, Elasticity



AMS Manual, Amsterdam Modeling Suite 2020

This classification can easily be done if both the gradients and the normal modes have already been calculated. How-
ever, calculating the full Hessian needed for the entire set of normal modes is very expensive and undesirable if one
only wants to know the character of a PES point. The AMS driver can quickly, and without calculating the full Hes-
sian, characterize a PES point into one of the above categories. This can be used to confirm the success of e.g. a
transition state search (page 55) or geometry optimization (page 41). A PES point can be characterized by requesting
PESPointCharacter as a property:

Properties
PESPointCharacter Yes/No

End

Properties

PESPointCharacter

Type Bool

Default value No

GUI name Characterize PES point

Description Determine whether the sampled PES point is a minimum or saddle point. Note that
for large systems this does not entail the calculation of the full Hessian and can therefore be
used to quickly confirm the success of a geometry optimization or transition state search.

This will calculate the few lowest normal modes using an iterative diagonalization of the Hessian1 based on a Davidson
algorithm implemented in the PRIMME library2. The procedure has been optimized for finding a small number of
low-lying eigenvalues in as few matrix-vector multiplications (and thus single point calculations) as possible. This
is facilitated by performing the iterative method using a pre-conditioning matrix based on an approximation of the
Hessian. The approximate Hessian is obtained from the full Hessian at a lower level of theory. This calculation also
provides the initial guesses for the desired normal modes. What the lower level of theory is depends on the main
engine used in the calculation: DFTB with the GFN1-xTB model is used as the lower level of theory for relatively
slow engines, e.g. DFT based engines. For semi-empirical engines like DFTB or MOPAC, the lower level of theory
is currently UFF. It is currently not possible to change the engine used to obtain the preconditioning Hessian and the
approximate modes.

• Note that the iterative calculation of the normal modes is skipped when . . .

1. . . . the nuclear gradients are so large that the PES point is considered non-stationary. The calculation of
the modes is then just not necessary for classifying it.

2. . . . the full normal modes or Hessian have also been requested. The iterative calculation is then not
necessary, as all modes are already known.

3. . . . the molecule is very small. (For small systems the iterative calculation of the few lowest normal modes
is not faster than the full calculation of all modes, so all modes are calculated instead.)

• The classification as a stationary or non-stationary point uses the gradient convergence criterion from the geom-
etry optimizer as the tolerance, see geometry optimization (page 41). This makes sure that the criterion for what
is considered converged/stationary is always in sync between the optimizer and the PES point characterization.

• For periodic systems the PES point characterization does not take the lattice degrees of freedom into account. A
PES point where the nuclear gradients are small enough would for example be classified as a stationary point,
even if the system is under stress.

Details of the iterative procedure can be configured in the PESPointCharacter block:

1 P. Deglmann and F. Furche, Efficient characterization of stationary points on potential energy surfaces, J. Chem. Phys. 117, 9535 (2002)
(https://doi.org/10.1063/1.1523393)

2 A. Stathopoulos and J. R. McCombs, PRIMME: PReconditioned Iterative MultiMethod Eigensolver: Methods and software description, ACM
Transactions on Mathematical Software, Vol. 37, No. 2, (2010), 21:1–21:30. (https://doi.org/10.1145/1731022.1731031)

5.3. PES point character 123

https://doi.org/10.1063/1.1523393
https://doi.org/10.1145/1731022.1731031
https://doi.org/10.1145/1731022.1731031


AMS Manual, Amsterdam Modeling Suite 2020

PESPointCharacter
Displacement float
NegativeFrequenciesTolerance float
NumberOfModes integer
Tolerance float

End

PESPointCharacter

Type Block

Description Options for the characterization of PES points.

Displacement

Type Float

Default value 0.04

Description Controls the size of the displacements used for numerical differentiation: The dis-
placed geometries are calculated by taking the original coordinates and adding the mass-
weighted mode times the reduced mass of the mode times the value of this keyword.

NegativeFrequenciesTolerance

Type Float

Default value -10.0

Unit cm-1

Description The threshold in frequency below which a mode is considered imaginary, i.e. indi-
cating a transition state. This is a small negative number, as very small negative frequencies
are normally due to numerical noise on an essentially flat PES and do not indicate true tran-
sition states.

NumberOfModes

Type Integer

Default value 2

Description The number of (lowest) eigenvalues that should be checked.

Tolerance

Type Float

Default value 0.016

Description Convergence tolerance for residual in iterative Davidson diagonalization.

• Note that the residual tolerance that can be achieved is limited by the numerical differentiation that is performed.
The default values should apply in most cases, but if convergence becomes a problem one may choose to
increase the tolerance or to increase the step size (slightly). Note that the default residual tolerance is lower
than for the other mode selective methods. This is because PRIMME uses a different convergence criteria than
mode tracking/refinement. The higher value used as a default will therefore not result in decreased levels of
accuracy. The method will bail if the number of iterations exceeds the number of normal modes as at this point
still achieving convergence becomes unlikely, in part due to the next point.

• In order to avoid producing the known and irrelevant rigid modes, the method searches for normal modes
orthogonal to six (or five) rigid modes. Imperfections due to the numerical differentiation may mean that the
translational and rotational rigid modes are not exact eigenmodes of the Hessian that is constructed. As a
result, some part of the lowest vibrational normal mode may lie in the span of the theoretical rigid modes and

124 Chapter 5. Gradients, Hessian, Stress tensor, Elasticity



AMS Manual, Amsterdam Modeling Suite 2020

therefore be inaccessible to the Davidson method. This places a lower bound on the residual tolerance that can
be achieved, which is directly related to the numerical differentiation accuracy. The take-away: do not set the
tolerance too low, the default usually suffices.

• Behind the scenes, the method actually computes a few more modes than requested. In the case of multiplicities,
eigenvalues may still converge out of order. These additional eigenvalues essentially guarantee that the obtained
modes are indeed the lowest ones.

5.4 Thermodynamics, gas phase Gibbs free energy

At the end of a completed IR Frequencies (normal modes) calculation, a survey is given of thermodynamic properties:
entropy, internal energy, constant volume heat capacity, enthalpy and Gibbs free energy, see:

• IR frequencies (page 131)

– Thermodynamics (page 151)

– Gibbs free energy change for a gas phase reaction (page 154)

5.5 Stress tensor

For periodic systems (chains, slabs, bulk) one can also request the clamped-ion stress tensor (note: the clamped-ion
stress is only part of the true stress tensor):

Properties
StressTensor Yes/No

End

Properties

StressTensor

Type Bool

Default value No

GUI name Stress tensor

Description Calculate the stress tensor.

The clamped-ion stress tensor 𝜎𝛼 (Voigt notation) is computed via numerical differentiation of the energy 𝐸 WRT a
strain deformations 𝜖𝛼 keeping the atomic fractional coordinates constant:

𝜎𝛼 =
1

𝑉0

𝜕𝐸

𝜕𝜖𝛼

⃒⃒⃒⃒
constant atomic fractional coordinates

where 𝑉0 is the volume of the unit cell (for 2D periodic system 𝑉0 is the area of the unit cell, and for 1D periodic
system 𝑉0 is the length of the unit cell).

The clamped-ion stress tensor (in Cartesian notation) is written to the engine result file in
AMSResults%StressTensor.

5.4. Thermodynamics, gas phase Gibbs free energy 125



AMS Manual, Amsterdam Modeling Suite 2020

5.6 Elastic tensor

The elastic tensor 𝑐𝛼,𝛽 (Voigt notation) is computed via second order numerical differentiation of the energy 𝐸 WRT
strain deformations 𝜖𝛼 and 𝜖𝛽 :

𝑐𝛼,𝛽 =
1

𝑉0

𝜕2𝐸

𝜕𝜖𝛼𝜕𝜖𝛽

where 𝑉0 is the volume of the unit cell (for 2D periodic system 𝑉0 is the area of the unit cell, and for 1D periodic
system 𝑉0 is the length of the unit cell).

For each strain deformation 𝜖𝛼𝜖𝛽 , the atomic positions will be optimized. The elastic tensor can be computed for any
periodicity, i.e. 1D, 2D and 3D.

See also:

Example: Elastic tensor (page 279)

To compute the elastic tensor, request it in the Properties input block of AMS:

Properties
ElasticTensor Yes/No

End

Note: The elastic tensor should be computed at the fully optimized geometry. One should therefore perform a
geometry optimization of all degrees of freedom, including the lattice vectors. It is recommended to use a tight
gradient convergence threshold for the geometry optimization (e.g. 1.0E-4). Note that all this can be done in one job
by combining the geometry optimization task (page 41) with the elastic tensor calculation.

The elastic tensor (in Voigt notation) is printed to the output file and stored in the engine result file (page 15) in the
AMSResults section (for 3D system, the elastic tensor in Voigt notation is a 6x6 matrix; for 2D systems is a 3x3
matrix; for 1D systems is just one number).

Options for the numerical differentiation procedure can be specified in the ElasticTensor input block:

ElasticTensor
MaxGradientForGeoOpt float
StrainStepSize float

End

ElasticTensor

Type Block

Description Options for numerical evaluation of the elastic tensor.

MaxGradientForGeoOpt

Type Float

Default value 0.0001

Unit Hartree/Angstrom

GUI name Maximum nuclear gradient

Description Maximum nuclear gradient for the relaxation of the internal degrees of freedom of
strained systems.

StrainStepSize

126 Chapter 5. Gradients, Hessian, Stress tensor, Elasticity



AMS Manual, Amsterdam Modeling Suite 2020

Type Float

Default value 0.001

Description Step size (relative) of strain deformations used for computing the elastic tensor
numerically.

Pressure (page 198) or non-isotropic external stress (page 199) can be included in your simulation via the correspond-
ing engine addons (page 195).

The elastic tensor calculation supports AMS’ double parallelization (page 17), which can perform the calculations for
the individual displacements in parallel. This is configured automatically, but can be further tweaked using the keys in
the NumericalDifferentiation%Parallel block:

ElasticTensor
Parallel

nCoresPerGroup integer
nGroups integer
nNodesPerGroup integer

End
End

ElasticTensor

Parallel

Type Block

Description Options for double parallelization, which allows to split the available processor
cores into groups working through all the available tasks in parallel, resulting in a better
parallel performance. The keys in this block determine how to split the available processor
cores into groups working in parallel.

nCoresPerGroup

Type Integer

Description Number of cores in each working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

GUI name Cores per task

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

5.7 Numerical differentiation options

The following options apply whenever AMS computes gradients, Hessians or stress tensors via numerical differentia-
tion.

5.7. Numerical differentiation options 127



AMS Manual, Amsterdam Modeling Suite 2020

NumericalDifferentiation
NuclearStepSize float
StrainStepSize float

End

NumericalDifferentiation

Type Block

Description Define options for numerical differentiations, that is the numerical calculation of gra-
dients, Hessian and the stress tensor for periodic systems.

NuclearStepSize

Type Float

Default value 0.005

Unit Bohr

Description Step size for numerical nuclear gradient calculation.

StrainStepSize

Type Float

Default value 0.001

Description Step size (relative) for numerical stress tensor calculation.

AMS may use symmetry (key NumericalDifferentiation%UseSymmetry) in case of numerical differenti-
ation calculations. If symmetry is used only symmetry unique atoms are displaced. Symmetry is only recognized if
the starting geometry has symmetry. Symmetry is only used for molecules if the molecule has a specific orientation
in space, like that the z-axis is the main rotation axis. If the GUI is used one can click the Symmetrize button (the
star), such that the GUI will (try to) symmetrize and reorient the molecule. There are some cases that even after such
symmetrization, the orientation of the molecule is not what is needed for the symmetry to be used in case of numerical
differentiation calculations. If that is the case or if key NumericalDifferentiation%UseSymmetry is set to
‘False’, then no symmetry will be used.

The numerical differentiation calculation supports AMS’ double parallelization (page 17), which can perform the
calculations for the individual displacements in parallel. This is configured automatically, but can be further tweaked
using the keys in the NumericalDifferentiation%Parallel block:

NumericalDifferentiation
Parallel

nCoresPerGroup integer
nGroups integer
nNodesPerGroup integer

End
End

NumericalDifferentiation

Parallel

Type Block

Description Options for double parallelization, which allows to split the available processor
cores into groups working through all the available tasks in parallel, resulting in a better
parallel performance. The keys in this block determine how to split the available processor
cores into groups working in parallel.

nCoresPerGroup

128 Chapter 5. Gradients, Hessian, Stress tensor, Elasticity



AMS Manual, Amsterdam Modeling Suite 2020

Type Integer

Description Number of cores in each working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

GUI name Cores per task

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

5.7. Numerical differentiation options 129



AMS Manual, Amsterdam Modeling Suite 2020

130 Chapter 5. Gradients, Hessian, Stress tensor, Elasticity



CHAPTER

SIX

VIBRATIONAL SPECTROSCOPY

6.1 General

The starting point is the Hessian of the system, being the second derivative of the energy with respect to the atomic
coordinates.

The eigenvalues of the Hessian are the frequencies and the eigen vectors are the normal modes.

As the calculation of the full Hessian is very expensive there are several ways to avoid it, so that you only get a part of
the full spectrum, or only modes for a region of the system, see IR frequencies and normal modes (page 131) section.

A full, partial, or approximate Hessian in itself can be useful for a (Hessian-based) geometry optimization or a transi-
tion state search.

Vibrational spectra are obtained by differentiating a property along the normal modes at a (local) minimum of the PES.
So for spectra you need to optimize the geometry first, otherwise you get negative frequencies.

The Normal modes and or vibrational spectra can be requested via the Properties block

Properties
NormalModes Yes/No
Raman Yes/No
VROA Yes/No
VCD Yes/No
Phonons Yes/No

End

When requesting the normal modes, the IR intensities are calculated, as they are very cheap.

See also:

Tutorials on Vibrational Spectroscopy

6.1.1 Where are the results?

Because the results of a vibrational spectroscopy calculation are tied to a particular point on the potential energy
surface, they are found on the engine output files (page 15). Note also that the properties are not always calculated in
every PES point that the AMS driver visits during a calculation. By default they are only calculated in special PES
points, where the definition of special depends on the task (page 39) AMS is performing: For a geometry optimization
(page 41) properties would for example only be calculated at the final, converged geometry. This behavior can often
be modified by keywords special to the particular running task.

131

../Tutorials/VibrationalSpectroscopy/index.html


AMS Manual, Amsterdam Modeling Suite 2020

6.2 IR frequencies and normal modes

6.2.1 All vibrational Modes

The calculation of the normal modes of vibration can be requested with:

Properties
NormalModes Yes/No

End

Typically used icw with Task SinglePoint (page 39), Task GeometryOptimization (page 41), or Task TransitionState-
Search (page 55). In case of geometry optimization or transition state search the normal modes will only be calculated
at the final, converged geometry.

Properties

NormalModes

Type Bool

Default value No

GUI name Frequencies

Description Calculate the frequencies and normal modes of vibration, and for molecules also
the corresponding IR intensities if the engine supports the calculation of dipole moments.

The molecular normal modes are normally calculated within the harmonic oscillation model. If the molecule is in its
equilibrium conformation, it sits in the lowest point (at least locally) on the PES. The cross-section of the PES profile
close to this point can then be assumed to be approximately parabolic, such that the second derivative of the energy
w.r.t a nuclear coordinate can be interpreted as a force constant for the harmonic oscillation of an atom along this
coordinate. Since molecular vibrations in polyatomics involve the simultaneous displacement of multiple atoms, this
harmonic oscillator model can be generalized to multiple nuclear coordinates. The normal modes and their frequencies
then become eigenvectors and eigenvalues of a force constant matrix, the Hessian:

𝐻𝑖𝑗 =
𝜕2𝐸

𝜕𝑅𝑖𝜕𝑅𝑗

The (non-mass-weighted) Hessian is saved in the engine result file as variable AMSResults%Hessian. It is not
printed to the text output. The column/row indices are ordered as: x-component of atom 1, y-component of atom 1,
z-component of atom 1, x-component of atom 2, etc.

Most engines (page 187) cannot calculate the Hessian analytically. The Hessian is then constructed column-wise
through numerical differentiation of the energy gradients w.r.t. each nuclear coordinate. AMS will set up 2 single-
point calculations (1 for the positive displacement, 1 for the negative displacement), and the requested engine will
return the energy gradients at these displacements. These gradients are calculated analytically for most engines.

Note: Numerical calculation of the full Hessian requires 6N single points calculation, which can take a considerable
amount of time for large systems. A mode selective method can be a fast alternative, see mode scanning (page 137),
mode refinement (page 138), and mode tracking (page 141).

When requesting the normal modes calculation, integrated IR intensities are simultaneously calculated during the finite
differentiation steps when constructing the Hessian (as long as dipole moments are supported by the engine). These
IR intensities are calculated from the numerical dipole gradients:

𝐼𝐼𝑅 =
𝑁𝜋

3𝑐2

∑︁
𝛼

(︁∑︁
𝑗

𝜕𝜇𝛼

𝜕𝑅𝑚
𝑗

𝑄𝑚
𝑗

)︁2

132 Chapter 6. Vibrational Spectroscopy



AMS Manual, Amsterdam Modeling Suite 2020

Where 𝛼 denotes the x-,y- and z-components of the dipole moment 𝜇, and 𝑄𝑚 is the mass-weighted vibrational normal
mode.

The resulting IR spectrum can be visualized by opening the engine result file with AMSspectra. The normal modes of
vibration and the IR intensities are saved to the engine result file (page 15) in the Vibrations section.

Note: The calculation of the normal modes of vibration needs to be done the system’s equilibrium geometry. So one
should either run the normal modes calculation using an already optimized geometry, or combine both steps into one
job by using the geometry optimization task (page 41) together with the Properties%NormalModes keyword.

Symmetry labels of the normal modes may be calculated if AMS uses symmetry in the calculation (key
UseSymmetry). If symmetry is used, the normal modes are projected against symmetric displacements for each
irrep. If that is not successful the symmetry label is ‘MIX’. Symmetry is only recognized if the geometry is (al-
most) perfectly symmetric and has a specific orientation in space. You can use the Symmetrize key in the System
block (page 27) to symmetrize and reorient the molecule. If the AMSinput GUI module is used, one can click the
Symmetrize button (the star) and the GUI will try to symmetrize and reorient the molecule.

Rescanning Imaginary modes

The ReScanModes keyword can be used to calculate more accurately frequencies of specific modes after a normal
modes calculation. It is identical to the ScanFreq option that was available for older versions of ADF and BAND.
Primarily used to identify spurious imaginary modes, and is on by default for this purpose. See also the Mode Scanning
(page 137) task, which is an extension of this method, but which is not on by default.

NormalModes
ReScanModes Yes/No
ReScanFreqRange float_list

End

NormalModes

ReScanModes

Type Bool

Default value Yes

GUI name Re-scan modes

Description Whether or not to scan imaginary modes after normal modes calculation has con-
cluded.

ReScanFreqRange

Type Float List

Default value [-10000000.0, 10.0]

Unit cm-1

Recurring True

GUI name Re-scan range

Description Specifies a frequency range within which all modes will be scanned. 2 numbers: an
upper and a lower bound.

6.2. IR frequencies and normal modes 133



AMS Manual, Amsterdam Modeling Suite 2020

6.2.2 Symmetric Displacements

NormalModes
Displacements Symmetric

End

Specify Displacements Symmetric to calculate the energy Hessian using finite differences in symmetry-
adapted displacements, and the corresponding normal modes.

NormalModes
SymmetricDisplacements

Type [All | Infrared | Raman | InfraredAndRaman]
End

End

If Type InfraRed or Type Raman is specified then only irreps that result in non-zero intensities for the corre-
sponding spectroscopy will be included in the calculation. Using this feature may save a lot of time for large symmet-
ric molecules by skipping calculation of normal modes that would not contribute to the spectrum anyway. If Type
InfraRedAndRaman is specified then vibrations that have a non-zero IR or Raman intensity will be calculated. If
Type All is specified then all vibrations will be calculated. For multi-dimensional irreps (such as E and T) only the
first component will be computed. For any component beyond the first, the frequencies and intensities will be copied
from the first one.

NormalModes

SymmetricDisplacements

Type Block

Description Configures details of the calculation of the frequencies and normal modes of vibra-
tion in symmetric displacements.

Type

Type Multiple Choice

Default value All

Options [All, Infrared, Raman, InfraredAndRaman]

GUI name Symm Frequencies

Description For symmetric molecules it is possible to choose only the modes that have non-
zero IR or Raman intensity (or either of them) by symmetry. In order to calculate the
Raman intensities the Raman property must be requested.

Warning: Specifying Type Raman alone does not trigger calculation of the Raman intensities. In order to
calculate the Raman spectrum one should also specify Raman True.

Note: Displacements Symmetricwill also produce a 3N-by-3N Hessian matrix but if the Type key’s argument
is not All then this matrix will likely have many zero eigenvalues.

134 Chapter 6. Vibrational Spectroscopy



AMS Manual, Amsterdam Modeling Suite 2020

6.2.3 Mobile Block Hessian (MBH)

NormalModes
Displacements Block

End

Specify Displacements Block for the Block Normal Modes option (also known as Mobile Block Hessian, or
MBH12). MBH is useful when calculating vibrational frequencies of a small part of a very large system (molecule or
cluster). Calculation of the full spectrum of such a system may be inefficient and is unnecessary if one is interested
in one particular part. Besides, it may be difficult to extract normal modes related to the interesting sub-system out of
the whole spectrum. Using Block Normal Modes it is possible to treat parts of the system as rigid blocks. Each block
will usually have only six frequencies related to its rigid motions compared to 3*N for when each atom of the block is
treated separately.

MBH is suitable to calculate frequencies in partially optimized structures. Assume a geometry optimization is per-
formed with the Block key in the Constraints input block [see constrained geometry optimizations]. During the ge-
ometry optimization, the shape of the block is not changed. The internal geometry of the block is kept fixed, but the
block as a whole can still translate or rotate.

At the end of such a partial geometry optimization, the position and orientation of the block is optimized, thus the
total force on the block is zero. However, there might be still some residual forces within a block, since those degrees
of freedom were not optimized. A traditional frequency calculation performed on this partially optimized structure
might result in non-physical imaginary frequencies without a clear interpretation. Therefore one should use an adapted
formulation of normal mode analysis: the Mobile Block Hessian method. MBH does not consider the internal degrees
of freedom of the block (on which residual forces) apply, but instead uses the position/orientation of the block as
coordinates. In the resulting normal mode eigenvectors, all atoms within the same block move collectively.

Of course, MBH can also be applied on a fully optimized structure.

Accuracy

NormalModes
BlockDisplacements

AngularDisplacement float
BlockAtoms integer_list
BlockRegion string
Parallel

nCoresPerGroup integer
nGroups integer
nNodesPerGroup integer

End
RadialDisplacement float

End
End

NormalModes

BlockDisplacements

Type Block

Description Configures details of a Block Normal Modes (a.k.a. Mobile Block Hessian, or
MBH) calculation.

AngularDisplacement

1 A. Ghysels, D. Van Neck, V. Van Speybroeck, T. Verstraelen and M. Waroquier, Vibrational Modes in partially optimized molecular systems,
Journal of Chemical Physics 126, 224102 (2007) (https://doi.org/10.1063/1.2737444)

2 A. Ghysels, D. Van Neck and M. Waroquier, Cartesian formulation of the Mobile Block Hessian Approach to vibrational analysis in partially
optimized systems, Journal of Chemical Physics 127, 164108 (2007) (https://doi.org/10.1063/1.2789429)

6.2. IR frequencies and normal modes 135

https://doi.org/10.1063/1.2737444
https://doi.org/10.1063/1.2789429


AMS Manual, Amsterdam Modeling Suite 2020

Type Float

Default value 0.5

Unit Degree

Description Relative step size for rotational degrees of freedom during Block Normal Modes
finite difference calculations. It will be scaled with the characteristic block size.

BlockAtoms

Type Integer List

Recurring True

Description List of atoms belonging to a block. You can have multiple BlockAtoms.

BlockRegion

Type String

Recurring True

Description The region to to be considered a block. You can have multiple BlockRegions,
also in combination with BlockAtoms.

Parallel

Type Block

Description Configuration for how the individual displacements are calculated in parallel.

nCoresPerGroup

Type Integer

Description Number of cores in each working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

GUI name Cores per task

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

RadialDisplacement

Type Float

Default value 0.005

Unit Angstrom

Description Step size for translational degrees of freedom during Block Normal Modes fi-
nite difference calculations.

The second derivatives of the energy with respect to Cartesian displacements of the free atoms and those with respect to
block motions (3 translation plus 3 rotations) are calculated by numerical differentiation of the gradient. The accuracy
of the second derivatives is determined by the accuracy of the gradient evaluation and the step size in the numerical

136 Chapter 6. Vibrational Spectroscopy



AMS Manual, Amsterdam Modeling Suite 2020

differentiation. The RadialDisplacement and AngularDisplacement parameters can be specified to set
the step size for Cartesian displacements (translations) and block rotations respectively. The step size for angles is
automatically scaled with the block size.

Note: Blocks should consist of at least 3 atoms (i.e. block of 1 or 2 atoms are not supported).

6.2.4 Mode Scanning

Mode Scanning can be used to obtain more accurate approximations for properties obtained by numerical differ-
entiation along the vibrational normal modes (frequencies, intensities, Raman, etc.), without changing the modes
themselves. Mode Scanning is an extension of the frequency scanning options (ScanFreq) that were part of ADF
and BAND in earlier versions of the Amsterdam Modeling Suite. These latter options are still available as the
ReScanModes keyword in the NormalModes block, if these are requested during a calculation.

• Primarily used to identify spurious imaginary modes.

• Improve numerical accuracy of normal mode properties.

• Rescanning modes using a different level of theory.

Theory

Vibrational normal modes are usually obtained as eigenvectors of the Hessian matrix. A common problem with this
scheme however, is that due to numerical errors in constructing this Hessian, low-frequency vibrations may be reported
to have imaginary frequencies instead. The Mode Scanning task allows for re-calculation of the frequency of these
modes. The Mode Scanning task does not change the normal modes itself, only its properties. This Mode Scanning
task allows you to confirm whether reported imaginary frequencies are attributed to transition states or whether they
are simply due to numerical errors.

Given a user-supplied mode 𝑄, the frequency is calculated from the force constant:

𝑘 =
𝜕2𝐸

𝜕2𝑄

𝜈 =
1

2𝜋𝑐

√︃
𝑘

𝜇𝑟

This is again done by numerical differentiation of the energy gradients, requiring AMS to set up 2 single point calcu-
lations per selected normal mode. Integrated IR intensities are also calculated simultaneously (if dipole moments are
supported by the engine (page 187)):

𝐼𝐼𝑅 =
𝑁𝜋

3𝑐2

∑︁
𝛼

(︁ 𝜕𝜇𝛼

𝜕𝑄𝑚

)︁2

Where the derivative is with respect to the mass-weighted normal mode.

It is also possible to use this method to selectively re-calculate the normal mode properties for different engine settings.
This has two distinct uses:

• If the modes were originally generated using a finite difference method, a different stepsize can be used. For
strong vibrations (high frequencies), large stepsizes may cause inaccuracies due to increasing anharmonic con-
tributions. For weak vibrations (low frequencies) on the other hand, stepsizes can often be too small. The dis-
placements associated with these vibrations are small, which can give incorrect sampling of the PES profile. This
should be compensated for by choosing a larger stepsize. The stepsize can be set using the Displacement
key.

6.2. IR frequencies and normal modes 137



AMS Manual, Amsterdam Modeling Suite 2020

• Users can also recalculate modes using higher levels of theory. Modes generated from a full frequency analysis
using e.g. DFTB can be recalculated using e.g. LDA DFT to obtain more realistic integrated IR intensities. The
method used for the single point calculations can be set in the Engine block (page 187).

Input

A numerical frequency calculation is performed by requesting the VibrationalAnalysis task with Type
ModeScanning:

Task VibrationalAnalysis
VibrationalAnalysis

Type ModeScanning
Displacement 0.001
NormalModes

ModeFile adf.rkf
# select all modes with imaginary frequencies
ModeSelect

ImFreq true
End

End
End

The Mode Scanning tasks uses only the NormalModes block for its input handling. Here, ModeFile specifies the
AMS output file containing the normal modes for which you want to calculate the frequencies. The ModeSelect
block is used to specify which of the modes in this file should be recalculated, since we are often only interested in a
select few of them. A more detailed overview of this block is given in the section Selecting Modes on the main page
(page 149). Finally, Displacement can be used to specify the stepsize (in Bohr) for the finite differences. The
stepsize is provided for displacements along the Cartesian normal modes.

The Mode Scanning module is the main driving force for the Mode Tracking (page 141) and Vibrational Mode Re-
finement (page 138) tasks, which provide more advanced options for refining not only the properties of the modes,
but also the modes themselves. Consult the relevant pages for more information. Alternatively, a simplified version
of Mode Scanning is available which follows the old implementation in ADF and BAND (as the ScanFreq option).
This version can be enabled when doing a full frequency analysis by enabling the Properties%NormalModes
keyword. See the Full Analysis (page 132) page for further details.

6.2.5 Mode Refinement

With this option you can improve the normal modes, by importing previously calculated modes and then applying
a more accurate engine, or more accurate settings, typically for only part of the spectrum. The vibrational Mode
Refinement method not only refines frequencies from a previous calculation, but also tries to correct the vibrational
modes themselves.

• Refinement of spectral regions requires a sufficient number of modes in the basis to be accurate.

• 1-step refinement. No iterative improvement possible. (Unless followed by a separate Mode Tracking calcula-
tion.)

• Quality of the results depends on accuracy of the selected guess modes.

If we start from e.g. a semi-empirical method such as in MOPAC, we can get approximations for the vibrational
modes. Mode Refinement then re-calculates part of the Hessian for a subset of these modes using a more accurate
method such as GGA DFT, and updates the normal modes themselves to fit this more accurate method. It is intended
to circumvent the expensive calculation of the Hessian if you are only interested in a (small) part of the full spectrum.

138 Chapter 6. Vibrational Spectroscopy



AMS Manual, Amsterdam Modeling Suite 2020

This is based on the method in reference3.

Because the Mode Refinement method uses linear combinations of the guess modes, its accuracy depends on the set
of modes that is supplied.

• If we want to e.g. obtain a mode which includes a C=O stretch, then the initial set must contain a mode which
has this C=O stretch, otherwise this cannot be included in the refined modes.

• If we are refining a region containing many similar modes, e.g. vibrations of aromatic ring backbones, and we
only use part of this spectral region for the initial set, the set of refined modes will “drift” towards the centre of
the spectral region as a results of mode-mixing. This is again an artefact of missing character in the modes.

• This mode-mixing may result in reduced accuracy for some of the modes, as this procedure minimizes the total
error for all of the modes. Instead of having a couple of modes with large errors, mode-mixing tends to spread
out the error across multiple normal modes. Adding 1 “bad” mode to the basis can then negatively affect your
results.

• The advantage of Mode Refinement over Mode Tracking is the ability to refine entire spectral regions at once.
If we have a good basis, Mode Refinement can be less computationally expensive than Mode Tracking. If you
want to refine larger sections of the spectrum, Mode Refinement is therefore recommended. If you only want
to calculate a select few modes, use Mode Tracking to avoid basis dependence and to assure accuracy of the
obtained modes.

• For characteristic peaks, Mode Tracking shows very good convergence, and will thus be cheaper to use than
Mode Refinement. For (semi-)degenerate modes however, Mode Refinement works better due to the poor
tracking performance for these modes.

See also:

The GUI tutorial on Mode Refinement.

Theory

We are going to start from a set of normal modes 𝑏, obtained from e.g. a semi-empirical or force-field method. First,
this task runs the numerical frequency (page 137) calculation for all selected normal modes, but this time using an ab
initio method such as DFT. During the finite difference steps, we also calculate the projection of the Hessian onto the
normal modes:

𝜎𝑖 = 𝐻𝑚 · 𝑏𝑚𝑖 =
𝜕2𝐸

𝜕𝑅𝑚
𝑖 𝜕𝑏𝑚

This term is calculated through finite differences on the analytical gradients of the electronic energy along the mass-
weighted normal modes 𝑏𝑚. The index 𝑖 denotes the 3𝑁 nuclear coordinates. These projections are then used to
construct a Rayleigh matrix:

�̃�𝑚 = 𝐵𝑚𝑇 ·𝐻𝑚 ·𝐵𝑚 = 𝐵𝑚𝑇 · Σ

Here, 𝐵𝑚 and Σ are matrices containing the 𝑏𝑚 and 𝜎 vectors. The eigenvectors of �̃�𝑚 give us the coefficient series
for linear combinations of the normal modes 𝑏𝑚 such that we obtain a new set of modes 𝑞:

𝑞𝑚 =
∑︁
𝑘

𝑐𝑘 · 𝑏𝑚𝑘

These modes 𝑞 are the closest approximation to the DFT-modes that we could obtain from a linear combination of the
approximate modes 𝑏. In other words: the approximate modes 𝑏 are used as a basis for finding the modes from a more
sophisticated theory.

3 T.Q. Teodoro, M.A.J. Koenis, S.E. Galembeck, V.P. Nicu, W.J. Buma, L. Visscher, A frequency range selection method for vibrational spectra,
J. Phys. Chem. Lett., 9 (23), 6878 (2018) (https://doi.org/10.1021/acs.jpclett.8b02963)

6.2. IR frequencies and normal modes 139

../Tutorials/VibrationalSpectroscopy/ModeRefinement.html
https://doi.org/10.1021/acs.jpclett.8b02963


AMS Manual, Amsterdam Modeling Suite 2020

Input

This method inherently features a trade-off:

• The computational benefit comes from only performing the finite difference calculations for the selected modes.
By only selecting a small set of modes that we are interested in, we minimize computational expense.

• The more modes we select, the larger the basis for constructing the refined modes. Running for a larger number
of modes yields better results. (In the extreme case, running for all 3N modes equates to constructing the full
Hessian.)

In practice, Mode Refinement requires you to select a reasonable portion of the spectrum to get accurate results.
Specifically, you should select all modes in a region of the spectrum which look similar. Ring structures for instance
often feature broad frequency regions with many ring distortions. Even if you are only interested in a couple of
these, you should still select all modes in this region, to assure sufficient basis size. Vibrational modes involving ring
substituents can however be omitted, which is where we save computation time.

If you are interested only in IR-active vibrations, you could further minimize the basis by only selecting the ap-
proximate modes which are IR-active (since adding the non-active modes to the linear expansion does not affect the
IR-intensity of the refined modes). Do note that if the semi-empirical method used for calculating the approximate
modes yields poor approximations for the dipole gradients, it may be safer to include also modes with very low IR
intensity. This is because their low IR-activity may have only been due to the low accuracy of the approximate method.

See also:

A tutorial showing this basis representability.

A Mode Refinement calculation is set up by requesting the VibrationalAnalysis task with the Type
ModeRefinement:

Task VibrationalAnalysis
VibrationalAnalysis

Type ModeRefinement
Displacement 0.001
NormalModes

ModeFile adf.rkf
ModeSelect

...
End
ScanModes true

End
End

The details of the calculation are specified in the NormalModes block. Here, ModeFile specifies the AMS output
file containing the normal modes for which you want to calculate the frequencies. The ModeSelect block is used
to specify which of the modes in this file will be selected for refinement. A more detailed overview of this block is
given in the section Selecting modes on the main page (page 149). Finally, Displacement can be used to specify
the stepsize (in Bohr) for the finite differences. The stepsize is provided for displacements along the Cartesian normal
modes.

The ScanModes key in the NormalModes block can be used to automatically run a numerical frequencies
(page 137) calculation on the new modes 𝑞. Mode Refinement uses a linear combination of modes and properties,
all obtained through finite differences. These results may still contain some minor errors due to the accumulation
of numerical errors from the linear expansion, or stepsize issues in the numerical frequency calculations. While
commonly not necessary, it is possible to run an additional numerical refinement calculation on the new modes to
minimize these errors. Only in exceptional cases will these errors be significant. Running this additional refinement
step is therefore only necessary if you need complete certainty that the results are accurate.

140 Chapter 6. Vibrational Spectroscopy

../Tutorials/VibrationalSpectroscopy/ModeRefinement.html


AMS Manual, Amsterdam Modeling Suite 2020

6.2.6 Mode Tracking

The Mode Tracking task is an interface for mode- and intensity-tracking methods, adapted from the MoViPac suite4-5.
These methods can be used to obtain select normal modes, without having to calculate the entire vibrational spectrum.
It does this through an iterative procedure.

• Calculations are conducted for each mode separately. Converges fastest for characteristic (non-highly degener-
ate) modes.

• Iterative approximation to the true modes. Guaranteed to give the correct normal modes if the procedure con-
verges.

• Will not necessarily reproduce the entire spectrum as multiple guess modes can converge to the same normal
mode.

Mode Tracking uses information about the known parts of the Hessian to expand its basis iteratively:

• Missing C-O stretch character can thus be recovered in this procedure, and there is no basis dependency.

• For large regions with similar modes however, it is possible that multiple guess modes converge to the same
normal mode. Running mode tracking for all modes in this region might not reproduce all unique normal
modes.

• The advantage of Mode Refinement over Mode Tracking is the ability to refine entire spectral regions at once.
If we have a good basis, Mode Refinement can be less computationally expensive than Mode Tracking. If you
want to refine larger sections of the spectrum, Mode Refinement is therefore recommended. If you only want
to calculate a select few modes, use Mode Tracking to avoid basis dependence and to assure accuracy of the
obtained modes.

• For characteristic peaks, Mode Tracking shows very good convergence, and will thus be cheaper to use than
Mode Refinement. For (semi-)degenerate modes however, Mode Refinement works better due to the poor
tracking performance for these modes.

Mode Tracking starts with a numerical frequency (page 137) calculation, which refines the initial guess 𝑏𝑚 for the
selected mode. The error of this mode with respect to the true Hessian eigenvector is calculated. This error is used
in a (Jacobi-)Davidson algorithm to generate an additional mode. In subsequent iterations, we use these modes as
approximations to the true normal modes. In this way, the error of the mode is minimized iteratively, yielding a closer
approximation to true normal modes. This is how Mode Tracking differs from the Mode Refinement methods, in that
it guarantees that the obtained modes are correct (assuming the procedure has converged).

See also:

The GUI tutorial on Mode Tracking.

Theory

During the numerical frequency calculation, we obtain also the projection of the Hessian onto this mode:

𝜎𝑖 = 𝐻𝑚 · 𝑏𝑚𝑖 =
𝜕2𝐸

𝜕𝑅𝑚
𝑖 𝜕𝑏𝑚

This term is calculated through finite differences on the analytical gradients of the electronic energy along the mass-
weighted normal modes 𝑞𝑚. The index 𝑖 denotes the 3𝑁 nuclear coordinates. From this projection a Rayleigh matrix

4 T. Weymuth, M.P. Haag, K. Kiewisch, S. Luber, S. Schenk, C.R. Jacob, C. Herrmann, J. Neugebauer, M. Reiher, MoViPac: Vibrational
Spectroscopy with a Robust Meta-Program for Massively Parallel Standard Inverse Calculations, Journal of Computational Chemistry 33, 2186
(2012) (https://doi.org/10.1002/jcc.23036)

5 S. Luber, J.Neugebauer, M. Reiher, Intensity tracking for theoretical infrared spectroscopy of large molecules, Journal of Chemical Physics
130, 064105 (2009) (https://doi.org/10.1063/1.3069834)

6.2. IR frequencies and normal modes 141

../Tutorials/VibrationalSpectroscopy/ModeTracking.html
https://doi.org/10.1002/jcc.23036
https://doi.org/10.1002/jcc.23036
https://doi.org/10.1063/1.3069834
https://doi.org/10.1063/1.3069834


AMS Manual, Amsterdam Modeling Suite 2020

is generated:

�̃�𝑚 = 𝐵𝑚𝑇 · Σ

Here, 𝐵𝑚 and Σ are matrices containing the 𝑏𝑚 and 𝜎 vectors for all foregoing iterations. During each iteration 𝑘, if
we have not converged, we generate an updated guess vector 𝑏𝑚𝑘 , and so the number of vectors in the matrices above
is equal to the number of iterations 𝑘. The eigenvectors of �̃�𝑚 give us the coefficient series for linear combinations
of the guess modes 𝑏𝑚 such that we obtain approximations for the true normal modes:

𝑄𝑚 =
∑︁
𝑘

𝑐𝑘 · 𝑏𝑚𝑘

Each iteration, we expand the vector basis 𝐵𝑚, which allows this series expansion to come closer to the true normal
modes each time. We can also calculate the error of this mode with respect to how close it is to being an eigenvalue of
the real Hessian:

𝑟 =
∑︁
𝑘

𝑐𝑘 ·
[︁
𝜎𝑘 − 𝜆 · 𝑏𝑘

]︁
Here, 𝜆 is the corresponding eigenvalue of �̃�𝑚. 𝑟 is the residual vector, giving the error for each vector element. It
should be zero if the mode is an exact eigenvector of the true Hessian.

Since �̃�𝑚 may give multiple eigenvectors, several approximate modes will be generated during those iterations. Out
of these, 1 mode is identified as the mode of interest according to the specified tracking method (page 145). If the
residual of this mode has been minimized sufficiently, the procedure has converged. If not, we generate a new guess
vector 𝑏𝑚𝑘 . There are 2 algorithms for generating this new guess, set by UpdateMethod in the ModeTracking
block:

Davidson method

The Davidson method uses a pre-conditioner 𝐷 to generate a new guess mode from the residual vector of the mode
selected by the tracking method:

𝑏𝑚𝑘 = 𝐷−1 · 𝑟

This preconditioner is constructed from an approximation of the Hessian:

𝐷 = 𝐻𝐴 − 𝜆 · 𝐼

The Davidson method works reasonably well, but can have trouble converging if the approximate modes or the Hessian
are too accurate. This results as the new vectors that are generated do not necessarily extend the span of the basis.6

vdVorst-Sleijpen-Jacobi-Davidson

This variant of the Jacobi-Davidson scheme from Sleijpen & vdVorst6 automatically makes the new guess vector
orthogonal to the normal mode selected by the tracking method:

𝑏𝑚𝑘 =
(︁ 𝑄𝑚𝐷−1𝑟

𝑄𝑚𝐷−1𝑄𝑚

)︁
𝐷−1𝑄𝑚 −𝐷−1𝑟

The new vector is therefore guaranteed to extend the span of the basis as much as possible, and thus also eliminates the
aforementioned issue with the Davidson method. In general, it is therefore recommended to use this Jacobi-Davidson
method since it is found to converge faster, and be more reliable, as a result of yielding better guess modes.

6 G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems, SIAM Journal on Matrix Analysis
and Applications 17, 401 (1996) (https://doi.org/10.1137/S0895479894270427)

142 Chapter 6. Vibrational Spectroscopy

https://doi.org/10.1137/S0895479894270427
https://doi.org/10.1137/S0895479894270427


AMS Manual, Amsterdam Modeling Suite 2020

Input

Task VibrationalAnalysis
VibrationalAnalysis

Type ModeTracking
...
ModeTracking

HessianGuess [Unit | File | UFF | Inline]
HessianInline # Non-standard block. See details.

...
End
HessianPath string
UpdateMethod [JD | D | I]
MaxIterations integer
...
GramSchmidt [True | False]
GramSchmidtIterations integer
GramSchmidtTolerance float

End
End

There are 4 methods to obtain the approximate Hessian 𝐻𝐴, used by both update methods. They are set by
HessianGuess:

HessianGuess [Unit | File | UFF | Inline]

UFF is the default, which generates the approximate Hessian using UFF. While this Hessian may not yield
the correct modes by itself, it produces good results as a preconditioner since it correctly represents the
molecular structure.

File will read the Hessian from an AMS output file, which can be specified in HessianPath. Using a
Hessian from a more advanced method will generally yield better results for the Jacobi-Davidson method.
The Davidson method will however experience difficulties with convergence as the Hessian becomes too
accurate.6

Inline will read a Hessian specified in the input file, in the HessianInline block. This allows you to use
Hessians generated in external programs:

Task VibrationalAnalysis
VibrationalAnalysis

Type ModeTracking
ModeTracking
HessianGuess Inline
# Approximate Hessian for H2O: 3 x nAtoms = 9 so 9x9 Hessian
HessianInline

0.62088786 0.00000000 0.00000000 -0.31044393 0.00000000 -0.
→˓21902068 -0.31044393 0.00000000 0.21902068

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.
→˓00000000 0.00000000 0.00000000 0.00000000

0.00000000 0.00000000 0.32143213 -0.15284008 0.00000000 -0.
→˓16071607 0.15284008 0.00000000 -0.16071607

-0.31044393 0.00000000 -0.15284008 0.33598889 0.00000000 0.
→˓18593038 -0.02554496 0.00000000 -0.03309030

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.
→˓00000000 0.00000000 0.00000000 0.00000000

-0.21902068 0.00000000 -0.16071607 0.18593038 0.00000000 0.
→˓15761846 0.03309030 0.00000000 0.00309761

-0.31044393 0.00000000 0.15284008 -0.02554496 0.00000000 0.
→˓03309030 0.33598889 0.00000000 -0.18593038

(continues on next page)

6.2. IR frequencies and normal modes 143



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.
→˓00000000 0.00000000 0.00000000 0.00000000

0.21902068 0.00000000 -0.16071607 -0.03309030 0.00000000 0.
→˓00309761 -0.18593038 0.00000000 0.15761846

End
End

End

Unit uses the unit matrix. This is evidently not a good approximation for the Hessian, and is not intended to
be used for proper Mode Tracking runs. However: using a poor approximation for the Hessian can result
in basis vectors being generated that we would not obtain otherwise. Running Mode Tracking with this
option can allow you to “probe” the vector space to obtain guesses for normal modes, which can be used
as starting points for proper Mode Tracking calculations. It is however generally recommended to instead
do e.g. a DFTB or UFF run if your goal is to obtain guess modes.

UpdateMethod [JD | D | I]

JD vdVorst-Sleijpen variant of Jacobi-Davidson (Mode tracking default).

D Davidson

I No preconditioner (VST default). This is not recommended for typical mode tracking applications, but is
useful for a variation of mode tracking, Vibronic-Structure Tracking (page 176).

In later iterations, the basis 𝐵𝑚 will become larger. In order to improve the guess modes even further, an iterative
Gram-Schmidt procedure is used to orthogonalize the new guess mode to the existing basis. An iterative procedure is
necessary to account for numerical noise.

GramSchmidt [True | False] Expert key. Sets whether to perform this Gram-Schmidt orthogonalization
step. It is True by default.

GramSchmidtTolerance float Expert key. Sets the absolute tolerance for orthogonality of the basis. It is
evaluated with respect to the norm of the overlap vector between the new guess mode and the basis of the
previous iteration ||𝑏𝑚𝑘

𝑇𝐵𝑚||.

GramSchmidtIterations Expert key. Sets the maximum number of allowed iterations during the Gram-
Schmidt procedure.

The default settings for the Gram-Schmidt procedure should work for almost all systems.

MaxIterations integer Finally, the Mode Tracking input block contains the MaxIterations key. It sets
the maximum allowed number of iterations that the Mode Tracking calculation may go through. If this number
is reached, the calculation will stop even if convergence was not achieved. If no value is supplied, a default
of 3𝑁/2 will be used. This is approximately the maximum number of iterations where the procedure remains
computationally competitive with the construction of the full Hessian.

Additional input parameters

Task VibrationalAnalysis
VibrationalAnalysis

Type ModeTracking
Displacement float
...
NormalModes

ScanModes [True | False]
...

(continues on next page)

144 Chapter 6. Vibrational Spectroscopy



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

End
End

Displacement float is the displacement stepsize (in Bohr) that is used for calculating frequencies, IR intensi-
ties and the Hessian projections through finite differences. The stepsize is provided for displacements along the
Cartesian normal modes.

ScanModes [True | False] key (False by default) in the NormalModes vibrational analysis sub-block can
be used to automatically run a numerical frequencies (page 137) calculation on the new modes 𝑄 after the
Mode Tracking calculation has finished. Ritz vectors are obtained here as linear combinations of the guess
modes, which in turn follow from finite difference calculations. This makes it possible for numerical errors
to accumulate in the normal modes. Only in exceptional cases will these errors be significant, and running this
additional refinement step is therefore only necessary if you need complete certainty that the results are accurate.

Input: Tracking methods

The TrackingMethod parameter allows you to select what property of the normal modes you want to track. At the
end of each iteration, we obtain a set of approximate normal modes. The tracking method identifies which of these
modes fits best for some criterion, and either returns this mode as the calculation result, or, if convergence was not
achieved, uses it to generating a new basis mode for the next iteration. In general these methods are distinguished in 3
categories:

Task VibrationalAnalysis
VibrationalAnalysis

Type ModeTracking
ModeTracking

TrackingMethod [OverlapInitial, DifferenceInitial, FreqInitial, IRInitial,
OverlapPrevious, DifferencePrevious, FreqPrevious, IRPrevious,
HighestFreq, HighestIR, LowestFreq, LowestResidual]

...
End

End

Mode Tracking

The original tracking methods focus on obtaining as accurate as possible a normal mode for the system. This class of
tracking methods focuses either on accuracy of the mode, or obtaining modes with particular vibrational character:

TrackingMethod [OverlapInitial, DifferenceInitial, FreqInitial, OverlapPrevious, DifferencePrevious, FreqPrevious, HighestFreq, LowestFreq, LowestResidual]

OverlapInitial is the default tracking method. Here, we choose the mode which resembles most closely
the guess mode that was initially supplied 𝑏𝑚1 . This is done by choosing the mode which has the greatest
overlap with the initial guess vector. This method allows us to direct the optimization towards modes that
e.g. involve particular atoms or include particular bending/stretching vibrations.

OverlapPrevious instead chooses the mode which resembles closest the approximate mode of the previous
iteration 𝑄𝑚

𝑘 . This procedure allows a bit more flexibility in the optimization. Since we essentially “forget”
about earlier iterations, this procedure allows the optimization to correct errors in the initial guess. (It is
possible for instance that the initial guess included 2 different bond stretches which do not mutually occur
in the true modes. This method will then converge quicker to a mode involving only 1 of these stretches,
whereas OverlapInitial will take a much larger number of iterations to achieve this, if it does so at
all.) Do note that this means that the final mode that you obtain does not necessarily represent the mode
you initially supplied.

6.2. IR frequencies and normal modes 145



AMS Manual, Amsterdam Modeling Suite 2020

DifferenceInitial works the same as OverlapInitial, except that it chooses the mode which has
the smallest norm for the difference vector between the initial mode and the approximate normal modes of
this iteration. The use of the difference vector prioritizes deviations in the dominant parts of the vibrational
character. E.g. if a mode consists primarily of a CO stretch, plus some minor vibrations in a carbon
backbone, it may be desired to prioritize getting the correct force constant for the dominant CO stretch.
This is achieved using these difference vector methods. In general, overlap methods still work well in
these situations, and the use of difference methods should only be necessary in extreme cases.

DifferencePrevious is also the same as DifferenceInitial except for the use of the difference
vector norm as the selection criterion.

FreqInitial chooses the mode with the frequency closest to that of the initial guess. This allows us to
direct the tracking towards modes in a particular frequency region of the spectrum. Note that convergence
for these frequency-based methods is slightly slower since the character of the mode itself is not included
in the selection criteria, allowing for larger differences in the modes between iterations.

FreqPrevious is similar to FreqInitial except that we choose the mode with the frequency closest to
that of the previous iteration. This allows the optimization more freedom to move away from the frequency
region of the initial guess, and thus allows to correct somewhat for poor initial guesses.

HighestFreq chooses the mode with the highest frequency. This method can be used if it is desired to track
particular characteristic high-frequency vibrations.

LowestResidual chooses the mode which has the smallest norm for the residual vector (see the ‘Con-
vergence’ section below.) This method only focuses on obtain the most accurate mode, regardless of
vibrational character or where it lies in the spectrum. This method should generally only be used as a
pre-conditioner if you have very little information on what the normal modes should look like. (Since it
is basically a non-directed optimization.) This method will then try and find the normal mode closest to
your guess. The approximate normal mode obtained this way will most likely not have converged yet,
but should give you an indication of what the normal modes may look like. You can use these modes to
refine your initial guess, and then do a new Mode Tracking run using any of the other tracking param-
eters to obtain the desired mode. Although this strategy is possible, it is generally recommended to use
an approximate method to get an initial guess for the normal modes instead (as shown in the examples
(page 219)).

Intensity Tracking

This class of methods focuses on tracking modes based on their intensity in e.g. the infrared spectrum, rather than
focusing on getting a mode with a particular type of vibration.

TrackingMethod [IRInitial, IRPrevious, HighestIR] IRInitial chooses the mode with the
IR intensity closest to that of the initial guess. This constrains the optimization to modes which are IR active, a
property that may be lost when using mode tracking update methods.

IRPrevious similarly chooses the mode with the IR intensity closest to that of the previous iteration. This
allows the method some more flexibility in varying the intensity of the vibration, and thus works better if the
initial guess is not that good.

HighestIR chooses the mode with the highest IR intensity. This option can be used to find the modes associ-
ated with sharp peaks in the IR spectrum.

With Intensity Tracking, we essentially add an additional requirement to the modes: they must have a particular IR
intensity. This constrained search has different convergence characteristics than conventional mode tracking, which
you should take into account when setting up the mode tracking calculations.

• The majority of modes will have near-zero IR intensity. If we use a near-zero IR intensity mode as our initial
guess, and request IRIntitial or IRPrevious, then we could be tracking any of one of these. Conversely,

146 Chapter 6. Vibrational Spectroscopy



AMS Manual, Amsterdam Modeling Suite 2020

convergence behavior will be poor since the generated basis modes are essentially random. If you are trying to
obtain a high IR-intensity mode, use an IR-susceptible mode.

Note: In our conventional work-flow, we recommend starting mode tracking or refinement calculations from a set of
approximate normal modes obtained from a semi-empirical or force-field method. Note however, that these method
often do not produce accurate IR intensities. When selecting the initial guess mode, do not use the IRRange or
related options in the ModeSelect block. This will cause you to miss vibrations which were incorrectly labeled
with low IR intensity, or vice versa. Instead, rely on chemical intuition to identify the modes which contain commonly
IR active vibrational components (such as C-O or N-H stretches). You can use AMSspectra in the GUI to visualize
the vibrational modes, to help you in this process.

• To allow the intensity tracking procedure to converge faster, it is recommended to use the IRPrevious tag
instead of the IRInitial tag. As discussed earlier, the former allows more flexibility in the optimization
procedure, which counters the rigidity imposed by the intensity constraint. Intensity tracking methods often
need this additional flexibility in generating guess modes to converge to the desired modes.

• Poor Initial Guesses: During each iteration, we still use the mode tracking methods to generate new basis
modes. These basis modes try to expand the span of the basis with respect to the vibrational character of the
modes. Note that this expansion does not guarantee that we will expand the basis specifically in the sub-span of
IR-susceptible vibrations. If the initial guess for intensity tracking is correct, we already start our search in the
sub-span vicinity of the normal modes. Basis expansion is then more efficient and there is a high chance that
new guess modes sample the IR characteristic vibrations. For intensity tracking it is therefore discouraged to
use poor initial guess modes.

• HighestIR is considered a “pure” intensity tracking method, in that it is used specifically to target character-
istics of the IR spectrum irrespective of the underlying vibrational character. Consequently, the normal mode
character can vary a lot between iterations. In order to assure that the procedure converges to the desired modes,
it is recommended to use sufficiently strict tolerances (see the Convergence section). If the tolerances are too
lax, the program may consider the modes to be “good enough” based on residual minimization, even though
there may be another mode with a higher IR intensity. For this reason it is generally recommended to use
ToleranceForNorm values 1 order of magnitude lower than the default, or around 0.00005.

Input: Selecting modes

It is possible to track multiple modes in a single Mode Tracking calculation. The Mode Tracking task will then run
the Mode Tracking algorithm for each mode in order.

The initial guess for the mode which will be tracked can be supplied in several ways. This is governed by
ModeInputFormat:

Task VibrationalAnalysis
VibrationalAnalysis

Type ModeTracking
NormalModes

ModeInputFormat [File | Inline | Hessian]
ModeFile string
ModeInline # Non-standard block. See details.

...
End
ModeSelect

...
End
MassWeighInlineMode [True | False]

End
End

6.2. IR frequencies and normal modes 147



AMS Manual, Amsterdam Modeling Suite 2020

ModeInputFormat [File | Inline | Hessian]

Inline will make the module read the mode from the input file. If this option is selected, you can sup-
ply the mode in the ModeInline block. It is possible to supply multiple modes by adding additional
ModeInline blocks. The modes are given with one line for the x,y,z-displacement per atom, and in the
same order, as the Atoms block in System:

ModeTracking
TrackedMode Inline
ModeInline

0.00000000 0.00000000 -0.03815965
-0.18888544 0.00000000 0.30281066
0.18888544 0.00000000 0.30281066

End
ModeInline

0.00000000 0.00000000 -0.02243153
0.32132452 0.00000000 0.17800237

-0.32132452 0.00000000 0.17800237
End
...

End

File will make the module read modes from an AMS or engine output file, specified by ModePath. Modes
generated using DFTB can be read from the dftb.rkf file and optimised using Mode Tracking for
example. When this option is selected, all the vibrational modes present in the file are read first. The
ModeSelect block then specifies for which of these modes you want to perform the Mode Tracking
calculation.

Hessian will generate modes as the eigenvectors of the approximate Hessian selected for the preconditioner in
HessianGuess. This also allows modes to be generated for Hessians obtained from external programs.
ModeSelect specifies which of the generated vibrational modes are selected for Mode Tracking.

• Settings for the ModeSelect block are discussed on the main page (page 149).

MassWeighInlineMode [True | False] decides whether the initial guess modes need to be mass-weighted
(default True). As discussed above, Mode Tracking uses mass-weighted normal modes. In most cases, the nor-
mal modes are given in regular Cartesian coordinates however. By setting MassWeighInlineMode true,
these Cartesian modes are converted into mass-weighted modes by the program. If you supply a mass-weighted
mode through the ModeInline block however, you do not need the program to do the mass-weighing, and
you should set MassWeighInlineMode false.

Input: Convergence

Task VibrationalAnalysis
VibrationalAnalysis

Type ModeTracking
ModeTracking

ToleranceForNorm float
ToleranceForResidual float
ToleranceForBasis float

End
End

In order to guide the Mode Tracking procedure, several convergence criteria are used:

ToleranceForNorm float is the absolute tolerance for convergence of the norm of the residual vector. The
residual vector is a vector containing the error for each element of the normal mode, and we use the norm as
a measure for the total error. If the total error is smaller than this threshold, we consider the mode to be a true

148 Chapter 6. Vibrational Spectroscopy



AMS Manual, Amsterdam Modeling Suite 2020

normal mode and we stop iterating. Since the value of this norm depends on the length of the residual vector
hence the number of atoms in the system, this tolerance is scaled internally to the number of atoms. 0.0005
is used as a default value for which most systems will converge to reasonably accurate modes in not too many
iterations. If you want a more accurate approximation, you can decrease this value by e.g. 1 order of magnitude.
(Consider running using the default settings, and reading the norm at convergence from the logfile. The new
norm can be chosen to be lower than this value to ‘force’ the method into another iteration.)

ToleranceForResidual float is the absolute tolerance for the maximum component of the residual vector.
Particularly in larger systems, where the vibration may be dominated by a small number of atoms, the error
associated with the vibration of the majority of atoms may be small (the scaled residual norm will be small).
The error for the atoms involved in the vibration may be comparatively large then, which is why we also check
convergence for the maximum component of the error. Note that both the norm and this max. error are checked
simultaneously. By varying strictness of the criteria for the norm and the max. error separately, you can prioritize
either the total vibration or more localized character.

ToleranceForBasis float checks that the basis mode generated in the previous iteration, through the (Jacobi-
)Davidson method, contributes to the approximate normal mode. Since the approximate mode is taken as a linear
combination of the basis modes, its linear expansion coefficient must be larger than this tolerance.

The iterative procedure is stopped in one of two cases. Either both the residual criteria are achieved, in which case
the mode is deemed to be converged and the program exits normally. Alternatively, the basis criterion is met in which
case a warning is broadcast indicating that the desired level of accuracy of the mode may not have been reachd yet,
but the basis has stopped expanding. The default values for these parameters should be applicable for most cases, but
can be adjusted if needed. If stricter criteria are required, it is recommended to adjust both ToleranceForNorm
and ToleranceForResidual.

6.2.7 Selecting modes

Mode Scanning, Mode Refinement and Mode Tracking as well as VG-FC Vibronic-Structure, VG-FC Vibronic-
Structure Refinement and VG-FC resonance Raman all require a set of normal modes to operate on. For Mode
Scanning these are the modes that you want to calculate the properties of, for Mode Refinement these modes form the
basis modes, and for Mode Tracking these are the initial guess modes. For the VG-FC based methods these modes are
the modes responsible for the vibronic coupling to the electronic excitation (in VG-FC Vibronic-Structure Refinement
they are refined first).

Note: VG-FC Vibronic-Structure Tracking does not require any normal modes and as such does not support the
ModeSelect (nor does it support the NormalModes block for that matter).

These methods provide options to load a large set of modes, after which the program will filter out the modes of
interest. This is done according to the keys set in the ModeSelect block.

Note: The ModeSelect block is part of the NormalModes block of the Vibrational Analysis input. All Vibrational
Analysis methods share this block, with the exception of VG-FC Vibronic-Structure Tracking. The methods for
obtaining the set of modes that we will filter can differ per method. Particularly Mode Tracking features a lot of
additional options, and the vibronic variants feature more specialized options.

Below is an overview of all the available options for the ModeSelect block as they appear in the basic vibrational
analysis tools. The vibronic variants are discussed in more detail on their respective documentation pages.

The options below are not mutually exclusive.

ModeSelect
DisplacementBound float

(continues on next page)

6.2. IR frequencies and normal modes 149



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

FreqAndIRRange float_list
FreqRange float_list
Full Yes/No
HighFreq integer
HighIR integer
IRRange float_list
ImFreq Yes/No
LargestDisplacement integer
LowFreq integer
LowFreqNoIm integer
LowIR integer
ModeNumber integer_list

End

ModeSelect

DisplacementBound

Type Float

Description Vibronic Structure (Refinement), Resonance Raman: Select all modes with a di-
mensionless oscillator displacement greater than the specified value.

FreqAndIRRange

Type Float List

Unit cm-1 and km/mol

Recurring True

Description Specifies a combined frequency and IR intensity range within which all modes will
be selected. First 2 numbers are the frequency range, last 2 numbers are the IR intensity
range.

FreqRange

Type Float List

Unit cm-1

Recurring True

Description Specifies a frequency range within which all modes will be selected. 2 numbers: an
upper and a lower bound. Calculating all modes higher than some frequency can be achieved
by making the upper bound very large.

Full

Type Bool

Default value No

GUI name All modes

Description Select all modes. This only make sense for Mode Scanning calculations.

HighFreq

Type Integer

GUI name # High frequencies

Description Select the N modes with the highest frequencies.

150 Chapter 6. Vibrational Spectroscopy



AMS Manual, Amsterdam Modeling Suite 2020

HighIR

Type Integer

GUI name # High IR

Description Select the N modes with the largest IR intensities.

IRRange

Type Float List

Unit km/mol

Recurring True

Description Specifies an IR intensity range within which all modes will be selected. 2 numbers:
an upper and a lower bound.

ImFreq

Type Bool

Default value No

GUI name All imaginary frequencies

Description Select all modes with imaginary frequencies.

LargestDisplacement

Type Integer

Description Vibronic Structure (Refinement), Resonance Raman: Select the N modes with the
largest VG-FC displacement.

LowFreq

Type Integer

GUI name # Low frequencies

Description Select the N modes with the lowest frequencies. Includes imaginary modes which
are recorded with negative frequencies.

LowFreqNoIm

Type Integer

GUI name # Low positive frequencies

Description Select the N modes with the lowest non-negative frequencies. Imaginary modes
have negative frequencies and are thus omitted here.

LowIR

Type Integer

GUI name # Low IR

Description Select the N modes with the smallest IR intensities.

ModeNumber

Type Integer List

GUI name Mode numbers

Description Indices of the modes to select.

6.2. IR frequencies and normal modes 151



AMS Manual, Amsterdam Modeling Suite 2020

6.2.8 Thermodynamics (ideal gas)

The following thermodynamic properties are calculated by default whenever normal modes are computed: entropy, in-
ternal energy, constant volume heat capacity, enthalpy and Gibbs free energy. Translational, rotational and vibrational
contributions are calculated for entropy, internal energy and constant volume heat capacity.

The results are written to the output file (section: “Statistical Thermal Analysis”) and to the engine binary results file
(section: “Thermodynamics”).

The thermodynamic properties are computed assuming an ideal gas, and electronic contributions are ignored. The
latter is a serious omission if the electronic configuration is (almost) degenerate, but the effect is small whenever the
energy difference with the next state is large compared to the vibrational frequencies. The thermal analysis is based
on the temperature dependent partition function. The energy of a (non-linear) molecule is (if the energy is measured
from the zero-point energy)

𝐸

𝑁𝑘𝑇
=

3

2
+

3

2
+

3𝑁−6∑︁
𝑗

(︂
ℎ𝜈𝑗
2𝑘𝑇

+
ℎ𝜈𝑗

𝑘𝑇 (𝑒ℎ𝜈𝑗/(𝑘𝑇 ) − 1)

)︂
− 𝐷

𝑘𝑇

The summation is over all harmonic 𝜈𝑗 , ℎ is Planck’s constant and 𝐷 is the dissociation energy

𝐷 = 𝐷0 +
∑︁
𝑗

ℎ𝜈𝑗
2

Contributions from low (less than 20 1/cm) frequencies to entropy, heat capacity and internal energy are excluded from
the total values, but they are listed separately (so the user can add them if they wish).

As an alternative to outright excluding low-frequency contributions, a correction scheme is available that is based on
interpolating between harmonic oscillator and free rotor values78 (Li/Head-Gordon and Grimme). It can greatly reduce
the impact of the inaccuracies of the harmonic oscillator model on thermodynamic properties at these low frequencies.
The scheme corrects vibrational contributions to entropies, internal energies and constant volume heat capacities. This
correction is applied automatically and its results are printed separately (in the text output, the corrected terms are
marked with the symbol (c)). When applied, the correction considers all real frequencies, including those less than
20 1/cm.

The interpolation for a corrected thermodynamic property 𝑓 at pressure 𝑝 and temperature 𝑇 in terms of harmonic
oscillator terms 𝑓𝐻𝑂, free rotor terms 𝑓𝐹𝑅, and interpolator terms 𝑥 for each harmonic oscillator frequency 𝜈𝑗 is:

𝑓 (𝑝, 𝑇 ) =
∑︁
𝑗

𝑥 (𝜈𝑗) · 𝑓𝐻𝑂 (𝑝, 𝑇, 𝜈𝑗) + (1− 𝑥 (𝜈𝑗)) · 𝑓𝐹𝑅 (𝑝, 𝑇, 𝜈𝑗)

𝑥 (𝜈𝑗) =
1

1 +
(︁

𝜈0

𝜈𝑗

)︁𝛼

Where 𝛼 is an arbitrary exponent and 𝜈0 is the harmonic oscillator frequency around which 𝑥 interpolates, with 𝑥 = 0.5
when 𝜈𝑗 = 𝜈0 and 𝑥 ≈ 1.0 when 𝜈𝑗 ≫ 𝜈0. While the free rotor terms used for internal energies and heat capacities
are the standard ones, the terms used for entropies have to use the rotors’ moments of inertia 𝜇𝐹𝑅 and symmetry
𝜎, which formally cannot be calculated from harmonic frequencies alone. The correction scheme instead estimates
each moment of inertia as being of a 𝜎 = 1 free rotor whose first excited state has an energy equal to the given ℎ𝜈𝑗 .
After this, each obtained moment of inertia 𝜇𝐹𝑅 is modified by an averaging moment of inertia 𝜇𝑎𝑣 to avoid grossly
overestimating entropies at very small frequencies (less than around 1 1/cm):

𝜇 =
𝜇𝐹𝑅 · 𝜇𝑎𝑣

𝜇𝐹𝑅 + 𝜇𝑎𝑣

Input options
7 Yi-Pei Li, Joseph Gomes, Shaama Mallikarjun Sharada, Alexis T. Bell, Martin Head-Gordon, Improved Force-Field Parameters for QM/MM

Simulations of the Energies of Adsorption for Molecules in Zeolites and a Free Rotor Correction to the Rigid Rotor Harmonic Oscillator Model for
Adsorption Enthalpies, J. Phys. Chem. C 2015, 119, 4, 1840-1850 (https://doi.org/10.1021/jp509921r)

8 Stefan Grimme, Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory, Chem. Eur. J., 18: 9955-9964
(https://doi.org/10.1002/chem.201200497)

152 Chapter 6. Vibrational Spectroscopy

https://doi.org/10.1021/jp509921r
https://doi.org/10.1002/chem.201200497


AMS Manual, Amsterdam Modeling Suite 2020

Thermo
Temperatures float_list
Pressure float
LowFrequencyCorrector

Alpha float
Frequency float
MomentOfInertia float

End
End

Thermo

Type Block

Description Options for thermodynamic properties (assuming an ideal gas). The properties are
computed for all specified temperatures.

Temperatures

Type Float List

Default value [298.15]

Unit Kelvin

Description List of temperatures at which the thermodynamic properties will be calculated.

Pressure

Type Float

Default value 1.0

Unit atm

Description The pressure at which the thermodynamic properties are computed.

LowFrequencyCorrector

Type Block

Description Options for the dampener-powered free rotor interpolator that corrects
thermodynamic quantities for low frequencies. See DOI:10.1021/jp509921r and
DOI:10.1002/chem.201200497.

Alpha

Type Float

Default value 4.0

Description The exponent term used in the dampener.

Frequency

Type Float

Default value 100.0

Unit cm-1

Description The frequency around which the dampener interpolates between harmonic os-
cillator and free rotor quantities.

MomentOfInertia

Type Float

6.2. IR frequencies and normal modes 153



AMS Manual, Amsterdam Modeling Suite 2020

Default value 1e-44

Unit kg m^2

GUI name Averaging Moment of Inertia

Description The moment of inertia used to restrict entropy results for very small frequencies
(generally around less than 1 cm-1).

Gibbs free energy change for a gas phase reaction

Here an example is given how to calculate the free energy change for a reaction. In the AMS output of a normal modes
calculation you can find the electronic bonding energy and nuclear kinetic energies, at room temperature. Example
part of the AMS output of a nonlinear molecule:

Zero-point energy (Hartree): 0.0333

...

...

Temp Transl Rotat
→˓Vibrat Total
---- ------ ----- ----
→˓-- -----

298.15 Entropy (cal/mol-K): 34.441 11.474 0.
→˓137 46.052

Nuclear Internal Energy (kcal/mol): 0.889 0.889 20.
→˓941 22.718

Constant Volume Heat Capacity (cal/mol-K): 2.981 2.981 0.
→˓565 6.526

Summary of energy terms
hartree eV kcal/

→˓mol kJ/mol
-------------------- ----------- ----------

→˓ -----------
Energy from Engine: -0.743995039793930 -20.2451 -466.
→˓86 -1953.36
Nuclear Internal Energy: 0.036203917534227 0.9852 22.
→˓72 95.05
Internal Energy U: -0.707791122259703 -19.2599 -444.
→˓14 -1858.31
pV/n = RT: 0.000944186013486 0.0257 0.
→˓59 2.48
Enthalpy H: -0.706846936246217 -19.2343 -443.
→˓55 -1855.83
-T*S: -0.021880868282982 -0.5954 -13.
→˓73 -57.45
Gibbs free energy: -0.728727804529199 -19.8297 -457.
→˓28 -1913.27

The Energy from Engine = -466.86 kcal/mol. It depends on the engine how this energy is calculated. In the ADF and
BAND engines the energy is normally calculated with respect to (artificial) spherical averaged neutral atoms.

The Nuclear Internal Energy = zero point energy + 3 kT + small correction term = 22.72 kcal/mol. 3 kT = 3/2 kT
for rotation, and 3/2 kT for translation (i.e. 1/2 kT for each degree of freedom). The small correction term is a term
due to the vibration partition function, depending on the temperature not only the ground state vibrational levels are
occupied, see also the previous discussion.

154 Chapter 6. Vibrational Spectroscopy



AMS Manual, Amsterdam Modeling Suite 2020

The Internal Energy U = Energy from Engine + Nuclear Internal Energy = -466.86 + 22.72 = -444.14 kcal/mol. Gas
phase pV/n = RT = 8.314472 * 298.15 / 4184 = 0.59 kcal/mol. The enthalpy H = U + pV = -444.14 + 0.59 = -443.55
kcal/mol. The Gibbs free energy G = H - TS = -443.55 - 298.15*46.052/1000 = -457.28 kcal/mol.

For a calculation of the free energy change for reaction (∆ G), you will have to do this for the reactant and product
molecules, and add and subtract these energies, for each molecule proportional to the number of molecules that take
place in the reaction. Application of ADF for obtaining enthalpy, entropy and Gibbs free energy can for instance be
obtained in Refs.910.

6.2.9 Moments of inertia

In case normal modes are computed in AMS, AMS also reports the moments of inertia of the molecule in units of amu
bohr2 (amu = atomic mass unit) and its corresponding principal axes.

6.2.10 Partial Vibrational Spectra (PVDOS)

The Partial Vibrational Spectra (also known as PVDOS) is computed by default whenever normal modes are requested.
The PVDOS 𝑃𝐼,𝑛 for atom 𝐼 and normal mode 𝑛 is defined as:

𝑃𝐼,𝑛 =
𝑚𝐼 |�⃗�𝐼,𝑛|2∑︀
𝑝 𝑚𝐼 |�⃗�𝐼,𝑝|2

where 𝑚𝐼 is the nuclear weight of atom 𝐼 , and �⃗�𝐼,𝑛 is the displacement vector for atom 𝐼 in normal normal mode 𝑛.

Tip: The Partial Vibrational Spectra (PVDOS) can be visualized using the AMSspectra GUI module (Vibrations
→ Partial Vibrational Spectra (PVDOS)). When plotting a partial vibrational spectrum, the IR intensity of normal
modes is scaled by the corresponding PVDOS of the selected atoms.

The PVDOS matrix is not printed to the text output, but only saved to the engine binary output (.rkf) in the variable
Vibrations%PVDOS.

6.3 Phonons

Collective oscillations of atoms around theirs equilibrium positions, giving rise to lattice vibrations, are called phonons.
AMS can calculate phonon dispersion curves within standard harmonic theory, implemented with a finite difference
method. Within the harmonic approximation we can calculate the partition function and therefore thermodynamic
properties, such as the specific heat and the free energy.

See also:

Example: Phonons for graphene (page 274), Example: Phonons with isotopes (page 275), Example: User-defined
Brillouin zone for phonon dispersion (page 277) and diamond lattice optimization and phonons tutorial

The calculation of phonons is enabled in the Properties block.

Properties
Phonons Yes/No

End

9 M. Swart, E. Rösler, and F. M. Bickelhaupt, Proton affinities of maingroup-element hydrides and noble gases: Trends across the periodic table,
structural effects, and DFT validation, Journal of Computational Chemistry 27, 1486 (2006) (https://doi.org/10.1002/jcc.20431)

10 M. Swart, and F. M. Bickelhaupt, Proton Affinities of Anionic Bases: Trends Across the Periodic Table, Structural Effects, and DFT Validation,
Journal of Chemical Theory and Computation 2, 281 (2006) (https://doi.org/10.1021/ct0502460).

6.3. Phonons 155

../Tutorials/StructureAndReactivity/DiamondOptimizationAndPhonons.html
https://doi.org/10.1002/jcc.20431
https://doi.org/10.1021/ct0502460


AMS Manual, Amsterdam Modeling Suite 2020

Fig. 6.1: Example of partial vibrational spectrum (PVDOS). The dotted line is the full IR spectrum of 1-propanol. The
solid line is the PVDOS-scaled IR spectrum of the OH group (IR spectrum computed using GFN1-xTB).

Note: Phonon calculations should be performed on optimized geometries, including the lattice vectors. This can be
done by either using an already optimized system as input, or by combining the phonon calculation with the geometry
optimization task (page 41) (you should set the GeometryOptimization%OptimizeLattice input option to
True).

The details of the phonon calculations are configured in the NumericalPhonons block:

NumericalPhonons
SuperCell # Non-standard block. See details.

...
End
StepSize float
DoubleSided Yes/No
Interpolation integer
NDosEnergies integer
AutomaticBZPath Yes/No
BZPath

Path # Non-standard block. See details.
...

End
End
Parallel

nCoresPerGroup integer
nGroups integer
nNodesPerGroup integer

End
End

NumericalPhonons

SuperCell

156 Chapter 6. Vibrational Spectroscopy



AMS Manual, Amsterdam Modeling Suite 2020

Type Non-standard block

Description Used for the phonon run. The super lattice is expressed in the lattice vectors. Most
people will find a diagonal matrix easiest to understand.

The most important setting here is the super cell transformation. In principle this should be as large as possible, as the
phonon bandstructure converges with the size of the super cell. In practice one may want to start with a 2x2x2 cell and
increase the size of the super cell until the phonon band structure converges:

NumericalPhonons
SuperCell

2 0 0
0 2 0
0 0 2

End
End

By default the phonon dispersion curves are computed for the standard path though the Brillouin zone (see https:
//doi.org/10.1016/j.commatsci.2010.05.010). One can request the a different path using the following keywords (for
an example of how to specify a user-defined path see Example: User-defined Brillouin zone for phonon dispersion
(page 277)):

NumericalPhonons
AutomaticBZPath Yes/No
BZPath

Path # Non-standard block. See details.
...

End
End

End

NumericalPhonons

AutomaticBZPath

Type Bool

Default value Yes

GUI name Automatic BZ path

Description If True, compute the phonon dispersion curve for the standard path through the
Brillouin zone. If False, you must specify your custom path in the [BZPath] block.

BZPath

Type Block

Description If [NumericalPhonons%AutomaticBZPath] is false, the phonon dispersion curve
will be computed for the user-defined path in the [BZPath] block. You should define the
vertices of your path in fractional coordinates (with respect to the reciprocal lattice vectors)
in the [Path] sub-block. If you want to make a jump in your path (i.e. have a discontinuous
path), you need to specify a new [Path] sub-block.

Path

Type Non-standard block

Recurring True

Description A section of a k space path. This block should contain multiple lines, and in
each line you should specify one vertex of the path in fractional coordinates. Optionally,
you can add text labels for your vertices at the end of each line.

6.3. Phonons 157

https://doi.org/10.1016/j.commatsci.2010.05.010
https://doi.org/10.1016/j.commatsci.2010.05.010


AMS Manual, Amsterdam Modeling Suite 2020

Other keywords in the NumericalPhonons block modify the details of the numerical differentiation procedure and
the accuracy of the results:

NumericalPhonons

StepSize

Type Float

Default value 0.04

Unit Angstrom

Description Step size to be taken to obtain the force constants (second derivative) from the
analytical gradients numerically.

DoubleSided

Type Bool

Default value Yes

Description By default a two-sided (or quadratic) numerical differentiation of the nuclear gra-
dients is used. Using a single-sided (or linear) numerical differentiation is computationally
faster but much less accurate. Note: In older versions of the program only the single-sided
option was available.

Interpolation

Type Integer

Default value 100

Description Use interpolation to generate smooth phonon plots.

NDosEnergies

Type Integer

Default value 1000

Description Nr. of energies used to calculate the phonon DOS used to integrate thermodynamic
properties. For fast compute engines this may become time limiting and smaller values can
be tried.

The numerical phonon calculation supports AMS’ double parallelization (page 17), which can perform the calculations
for the individual displacements in parallel. This is configured automatically, but can be further tweaked using the keys
in the NumericalPhonons%Parallel block:

NumericalPhonons
Parallel

nCoresPerGroup integer
nGroups integer
nNodesPerGroup integer

End
End

NumericalPhonons

Parallel

Type Block

Description Options for double parallelization, which allows to split the available processor
cores into groups working through all the available tasks in parallel, resulting in a better

158 Chapter 6. Vibrational Spectroscopy



AMS Manual, Amsterdam Modeling Suite 2020

parallel performance. The keys in this block determine how to split the available processor
cores into groups working in parallel.

nCoresPerGroup

Type Integer

GUI name Cores per group

Description Number of cores in each working group.

nGroups

Type Integer

GUI name Number of groups

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

GUI name Nodes per group

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

6.4 (Resonance) Raman

6.4.1 Raman

In this method the Raman scattering spectrum is calculated from the geometrical derivatives of the frequency-
dependent polarizability. Engine ADF is required. Raman scattering intensities and depolarization ratios for all or
a selected number of molecular vibrations at a certain laser frequency can be calculated. The Raman scattering cal-
culation is very similar to an IR intensity calculation. In fact, all IR output is automatically generated as well. At
all distorted geometries the dipole polarizability tensor is calculated. This is time-consuming and is only feasible for
small molecules.

Properties
Raman Yes/No

End

Raman
IncidentFrequency float
FreqRange float_list

End

If a FreqRange is included the Raman intensities are calculated for a range of vibrational frequencies only. Using
this option is a fast alternative for calculating all Raman intensities.

Properties

Raman

Type Bool

Default value No

6.4. (Resonance) Raman 159



AMS Manual, Amsterdam Modeling Suite 2020

Description Requests calculation of Raman intensities for vibrational normal modes.

Raman

IncidentFrequency

Type Float

Default value 0.0

Unit eV

Description Frequency of incident light.

FreqRange

Type Float List

Unit cm-1

Recurring True

GUI name Frequency range

Description Specifies a frequency range within which all modes will be scanned. 2 numbers: an
upper and a lower bound.

6.4.2 Resonance Raman: excited-state finite lifetime

Resonance Raman spectroscopy uses incident light with a wavelength close to that of an electronic transition. In
this method (Ref.11) the resonance Raman-scattering (RRS) spectra is calculated from the geometrical derivatives of
the frequency-dependent polarizability. Engine ADF is required. The polarizability derivatives are calculated from
resonance polarizabilities by including a finite lifetime (phenomenological parameter) of the electronic excited states.

Raman
FreqRange float_list
IncidentFrequency float
LifeTime float

End

Raman

FreqRange

Type Float List

Unit cm-1

Recurring True

GUI name Frequency range

Description Specifies a frequency range within which all modes will be scanned. 2 numbers: an
upper and a lower bound.

IncidentFrequency

Type Float

Default value 0.0

Unit eV
11 L. Jensen, L. Zhao, J. Autschbach and G.C. Schatz, Theory and method for calculating resonance Raman scattering from resonance polariz-

ability derivatives, Journal of Chemical Physics 123, 174110 (2005) (https://doi.org/10.1063/1.2046670)

160 Chapter 6. Vibrational Spectroscopy

https://doi.org/10.1063/1.2046670


AMS Manual, Amsterdam Modeling Suite 2020

Description Frequency of incident light.

LifeTime

Type Float

Default value 0.0

Unit hartree

Description Specify the resonance peak width (damping) in Hartree units. Typically the lifetime
of the excited states is approximated with a common phenomenological damping parameter.
Values are best obtained by fitting absorption data for the molecule, however, the values do
not vary a lot between similar molecules, so it is not hard to estimate values. A typical value
is 0.004 Hartree.

It is similar to the simple excited-state gradient approximation method (see next section) if only one electronic excited
state is important, however, it is not restricted to only one electronic excited state. In the limit that there is only one
possible state in resonance the two methods should give more or less the same results. However, for many states
and high-energy states and to get resonance Raman profiles (i.e., Raman intensities as a function of the energy of
the incident light beam) this approach might be more suitable. The resonance Raman profiles in this approach are
averaged profiles since vibronic coupling effects are not accounted for.

6.4.3 Resonance Raman: VG-FC

According to a the time-dependent picture of resonance-Raman (RR) scattering the relative intensities of RR scattering
cross sections are, under certain assumptions, proportional to the square of the excited-state energy gradients projected
onto the ground-state normal modes of the molecule (see Ref.12). For an alternative implementation of RR scattering
using a finite lifetime of the excited states, and a discussion of some of the differences, see the previous section. Engine
ADF or DFTB is required.

The vertical gradient Franck-Condon (VG-FC) method, also called the Independent Mode Displaced Harmonic Os-
cillator (IMDHO) model, we use to calculate vibrationally resolved absorption spectra can also be applied to the
calculation of resonance Raman spectra. In resonance Raman spectroscopy a molecule is excited from its ground
state to some electronically excited state. After a short period of time, the molecule then relaxes back to its electronic
ground state. However, when doing so, it might end up in a different vibrational state than it started off in. The result
is an energy difference between the incident and emmitted photon. One can then plot the intensity for different energy
differences to produce what is known as a Raman spectra. Resonance Raman spectroscopy uses incident light with a
wavelength close to that of an electronic transition.

AMS supports the calculation of such spectra by modeling the vibronic coupling of electronic transitions using the
VG-FC model. This model is discussed also on the Vibronic-Structure (page 174) documentation page. Here we will
discuss the modifications necessary to use the VG-FC model for resonance Raman spectroscopy. It is worth noting
that this VG-FC resonance Raman application does not support the mode selective options. As a result the VG-FC
Resonance Raman application will always first perform a full frequency analysis to obtain its normal modes.

Theory

While the basic theory behind the VG-FC model is explained in detail on the Vibronic-Structure (page 174) docu-
mentation page, we will briefly summarize the most important points here, as well as the modifications necessary for
its application to resonance Raman spectroscopy. It applies the harmonic approximation to both the ground state and
excited state PES and then goes on to assume that neither frequency changes nor normal mode rotations occur. Thus
the excited state PES is a shifted version of the ground state PES. We do not include temperature effects (so all initial

12 J. Neugebauer, E.J. Baerends, E. Efremov, F. Ariese and C. Gooijer, Combined Theoretical and Experimental Deep-UV Resonance Raman
Studies of Substituted Pyrenes, Journal of Physical Chemistry A 109, 2100 (2005) (https://doi.org/10.1021/jp045360d)

6.4. (Resonance) Raman 161

https://doi.org/10.1021/jp045360d


AMS Manual, Amsterdam Modeling Suite 2020

states will be ground states) and work at the Franck-Condon point. Under these assumptions, the Raman polarizability
of a particular excited state n, for a transition between initial and final vibrational states I and F can be written as:

(𝛼𝑛,𝑖𝑗)𝐹←𝐼 = 𝜇𝑛,𝑖𝜇𝑛,𝑗

∫︁ ∞
0

⟨𝐹 |𝐼𝑛(𝑡)⟩𝑒𝑖[𝜔−(𝐸𝑛,0−𝐸𝑚,0)]𝑡 · 𝑒−Γ𝑡𝑑𝑡

Here, 𝑖, 𝑗 label the components of the polarizability tensor and ⟨𝐹 |𝐼𝑛(𝑡)⟩ denotes the overlap of the initial state I,
propagated along the excited state PES with the final state F. Under the assumptions of the VG-FC model (page 166),
this overlap is equal to:

⟨𝐹 |𝐼𝑛(𝑡)⟩ =

𝑁𝑚𝑜𝑑𝑒𝑠∏︁
𝑗=1

{︂
(−1)𝑚𝑗∆𝑚𝑗

2𝑚𝑗/2𝑚𝑗 !
(1− 𝑒−𝑖𝜔𝑗𝑡)𝑚𝑗

}︂
exp

[︂
−

∆2
𝑛,𝑗

2
(1− 𝑒−𝑖𝜔𝑗𝑡)

]︂

Where the 𝑚𝑗 denote the excitation number of mode j in final state F. For a more detailed discussion, we refer to13.
The only parameters that appear in our expression are the dimensionless oscillator displacements ∆𝑛,𝑗 that represent
displacement of the excited state PES along normal mode j. Under the simplifying assumptions of the VG-FC, these
can be obtained from the ground state normal modes and a single excited state gradient. The Raman intensity is then
proportional to the square of the polarizabilities:

𝜎(𝜔)𝐹←𝐼 ∝
∑︁
𝑖,𝑗

|
∑︁
𝑛

(𝛼𝑛,𝑖𝑗)𝐹←𝐼 |2

A spectrum is then generated by including various different final states F, which are defined by different combinations
of normal mode excitation numbers, and assigning a relative intensity to each transition equal to the above expres-
sion. AMS only supports spectra which display relative intensities so the results are plotted in arbitrary units and are
normalized such that the largest peak reaches an intensity of 1.

Input

The calculation setup for resonance Raman spectra largely proceeds as it does for Absorption Spectra (page 174). We
need a set of ground state normal modes as well as an excited state gradient. The former are calculated at the start
using the selected AMS engine, or, in case the user has a pre-calculated set of normal modes, these can be read from
a .rkf file using the ModeFile key in the NormalModes sub-block. In this latter case, the engine is not used. The
ModeSelect block can be used to select specific modes from the full set of normal modes for which the spectrum
should be calculated. For details see the Mode Select (page 149) documentation on the main page. If one simply wants
the spectrum for the full set of normal modes, the Full key in the ModeSelect block can be set to True. The
excited state information is passed to the application via the ExcitationSettings block.

Another point to note is that since our states are labeled by discrete indices we will be calculating stick spec-
tra (which can be homogeneously broadened in amsspectra). By contrast, the absorption spectra produced by
VibronicStructure are raw x,y data. Due to this difference in nature of the Raman spectrum compared to
the absorption spectrum, this method uses the ResonanceRaman block for input options related to its spectrum (as
opposed to the AbsorptionSpectrum block).

The ExcitationSettings block is discussed on the Vibronic-Structure (page 182) page. One important differ-
ence with the latter is that Resonance Raman calculations are supported for more than one excitation at once. This is
more important for the case of Raman spectra as the intensity associated with a set of transitions is not equal to the
sum of their individual intensities (we sum over electronic states n before we square the polarizabilities). Here we will
address settings specific to the Raman spectrum, all of which can be found in the ResonanceRaman block. A short
example of how a typical input file might look is included at the end of this section.

13 T. Petrenko and F. Neese, Analysis and prediction of absorption band shapes, fluorescence band shapes, resonance Raman intensi-
ties, and excitation profiles using the time-dependent theory of electronic spectroscopy The Journal of Chemical Physics 127, 164319 (2007)
(https://doi.org/10.1063/1.2770706)

162 Chapter 6. Vibrational Spectroscopy

https://doi.org/10.1063/1.2770706


AMS Manual, Amsterdam Modeling Suite 2020

Task VibrationalAnalysis
VibrationalAnalysis

Task ResonanceRaman
ResonanceRaman

IncidentFrequency float
LifeTime float
RamanOrder integer
RamanRange float_list
MaximumStates integer

End
...

End

IncidentFrequency float Frequency of incident light.

LifeTime float sets the value of Γ (in Hartree) that controls the exponential damping in our integral. This
phenomenological parameter can be interpreted as the (inverse) life time of the Raman excited state and can
be used to help the results agree with experiment. The default value of 4.5e-4 is on the low end of reasonable
values but should provide a good starting point for most cases.

RamanOrder integer determines the set of final states and overtones to be included in the spectrum. It is an
integer and the application considers only final states such that the sum of excitation numbers of all normal
modes is less than or equal to this number. Setting this to 1 means we only include the fundamental band.

RamanRange float_list this keyword specifies the frequency range (in 𝑐𝑚−1) the Raman shift is restricted to
lie in. This prevents us from including excessively many states and overtones for high frequency modes. The
default is [0, 2000] 𝑐𝑚−1 but this can be changed to whatever is desired.

MaximumStates integer Expert key. Due to the combinatorial explosion of included final states that occurs for
combinations of large values of the raman order, large molecules and wide spectrum ranges, there is a maximum
number of final states that can be included in the spectrum. This is to prevent the program from using excessive
amounts of memory/computation times. The user can set this number using the MaximumStates key but this
should be done with caution.

Finally we give an example of a typical VibrationalAnalysis block for a resonance Raman calculation. This
also gives an idea of how the settings that were not explicitly mentioned above work:

VibrationalAnalysis
Type ResonanceRaman
NormalModes

ModeSelect
Full True

End
End
ExcitationSettings

ExcitationInfo File
ExcitationFile ./your_excitation/dftb.rkf
Singlet

A 1 2 4
End

End
ResonanceRaman

RamanOrder 3
RamanRange 0.0 3000.0

End
End

6.4. (Resonance) Raman 163



AMS Manual, Amsterdam Modeling Suite 2020

6.5 VROA: (Resonance) vibrational Raman optical activity

The normal and resonance VROA spectra are calculated from geometric derivatives of the different generalized polar-
izabilities obtained using linear response theory which may include a damping term to account for the finite lifetime.
Engine ADF is required. These polarizabilities are the electric dipole - electric dipole polarizability, the electric dipole
- magnetic dipole polarizability, and the the electric dipole - electric quadrupole polarizability. For resonance VROA
one should include a finite lifetime.

Properties
VROA Yes/No

End

Raman
FreqRange float_list
IncidentFrequency float
LifeTime float

End

Properties

VROA

Type Bool

Default value No

Description Requests calculation of VROA for vibrational normal modes.

Raman

FreqRange

Type Float List

Unit cm-1

Recurring True

GUI name Frequency range

Description Specifies a frequency range within which all modes will be scanned. 2 numbers: an
upper and a lower bound.

IncidentFrequency

Type Float

Default value 0.0

Unit eV

Description Frequency of incident light.

LifeTime

Type Float

Default value 0.0

Unit hartree

Description Specify the resonance peak width (damping) in Hartree units. Typically the lifetime
of the excited states is approximated with a common phenomenological damping parameter.
Values are best obtained by fitting absorption data for the molecule, however, the values do

164 Chapter 6. Vibrational Spectroscopy



AMS Manual, Amsterdam Modeling Suite 2020

not vary a lot between similar molecules, so it is not hard to estimate values. A typical value
is 0.004 Hartree.

6.5.1 Engine ADF

In the ADF engine a method is implemented to calculate both on- and off-resonance vibrational Raman optical ac-
tivities (VROAs) of molecules using time-dependent density functional theory, see Ref.14. This is an extension of a
method to calculate the normal VROA by including a finite lifetime of the electronic excited states in all calculated
properties. The method is based on a short-time approximation to Raman scattering and is, in the off-resonance case,
identical to the standard theory of Placzek. The normal and resonance VROA spectra are calculated from geometric
derivatives of the different generalized polarizabilities obtained using linear response theory which includes a damping
term to account for the finite lifetime. Gauge-origin independent results for normal VROA have been ensured using
either the modified-velocity gauge or gauge-included atomic orbitals. In ADF2016 the velocity gauge tensors required
for the calculation of VROA are now correctly calculated with the life time damping parameter. With these complex
tensors fixed, resonance VROA intensities are now origin invariant in the velocity gauge, see also Ref.15.

6.6 VCD: Vibrational Circular Dichroism

Vibrational circular dichroism (VCD) is the differential absorption of left and right circularly polarized infrared light
by vibrating molecules. Most engines can be used to calculate VCD with the approximate Atomic polar tensor (APT)
model. Engine ADF is required for the more accurate analytical VCD.

Properties
VCD Yes/No

End

Properties

VCD

Type Bool

Default value No

Description Requests calculation of VCD for vibrational normal modes.

VCDtools (page 215) is a program that can be used to do an analysis of the VCD spectrum. VCDtools (page 215) can
be used with the AMS-GUI module AMSspectra.

6.6.1 Atomic polar tensor (APT) model

In the so-called atomic polar tensor (APT) model the atomic axial tensors (AATs) can be calculated from electric
dipole gradients. Note that the APT model may not be very reliable for predicting VCD bands and its implementation
should not be blindly applied beyond a quick assessment. Results using the engine DFTB can be found in16.

For the engines BAND and DFTB only the APT model can be used. In case of the engine ADF the default is to
calculate the VCD analytically, see next section. One can calculate VCD using the APT model with the ADF engine
if one includes:

14 L. Jensen, J. Autschbach, M. Krykunov, and G.C. Schatz, Resonance vibrational Raman optical activity: A time-dependent density functional
theory approach, Journal of Chemical Physics 127, 134101 (2007) (https://doi.org/10.1063/1.2768533)

15 D.V. Chulhai and L. Jensen, Simulating Surface-Enhanced Raman Optical Activity Using Atomistic Electrodynamics-Quantum Mechanical
Models, Journal of Physical Chemistry A 118, 9069 (2014) (https://doi.org/10.1021/jp502107f)

16 T.Q. Teodoro, M.A.J. Koenis, R. Rüger, S.E. Galembeck, W.J. Buma, V.P. Nicu, L. Vissche, Use of Density Functional Based Tight Binding
Methods in Vibrational Circular Dichroism, Journal of Physical Chemistry A 122, 9435 (2018) (https://doi.org/10.1021/acs.jpca.8b08218)

6.6. VCD: Vibrational Circular Dichroism 165

https://doi.org/10.1063/1.2768533
https://doi.org/10.1021/jp502107f
https://doi.org/10.1021/acs.jpca.8b08218


AMS Manual, Amsterdam Modeling Suite 2020

NormalModes
Hessian Numerical

End

6.6.2 Analytical VCD in ADF

In the ADF engine the VCD intensities are calculated using Stephens’ equations for VCD. For the calculation of the
atomic axial tensors (AATs), analytical derivatives techniques and London atomic orbitals (the so called GIAO) are
employed. As a result the calculated rotational strengths are origin independent, and therefore the common origin
gauge is used17.

New in AMS2020 is that one can calculate analytical VCD also for open-shell systems in a spin-unrestricted calcula-
tion.

Calculation of the AATs requires an analytical frequencies calculation. This limits the choice of functionals that can
be used for VCD calculations.

The accuracy of the vibrational rotational strengths are determined by the accuracy of the harmonic force field, atomic
polar tensors (APTs) and AATs. The most critical parameter being the harmonic force field. Thus, for a fair comparison
with experimental data, accurate geometries and functionals that yield accurate force fields (e.g. BP86, OLYP, etc)
should be used. Our tests showed that the BP86 functional in combination with TZP basis sets is always a safe choice.
For a comparison of VCD spectra calculated with various functionals (e.g BP86, OLYP, BLYP, B3PW91 and B3LYP)
see17. Regarding the geometries, we recommend the following strict settings, 10-4 for the geometry convergence of
the gradients, and BeckeGrid quality good. The default settings should be used for the calculation of the frequencies.

By default, only the vibrational rotational strengths are printed in the AMS output file. For a deeper insight regarding
the origin of the VCD intensity of a given normal mode one can use the auxiliary program VCDtools (page 215).
VCDtools (page 215) can be used with the ADF-GUI module ADFspectra.

17 V.P. Nicu J. Neugebauer S.K. Wolff and E.J. Baerends, A vibrational circular dichroism implementation within a Slater-type-orbital
based density functional framework and its application to hexa- and hepta-helicenes, Theoretical Chemical Accounts 119, 245 (2008)
(https://doi.org/10.1007/s00214-006-0234-x)

166 Chapter 6. Vibrational Spectroscopy

https://doi.org/10.1007/s00214-006-0234-x


CHAPTER

SEVEN

VIBRATIONALLY RESOLVED ELECTRONIC SPECTRA

7.1 AH-FC: Adiabatic Hessian Franck-Condon

Electronic spectra, such as absorption, emission, phosphorescence, and ionization, may contain a vibrational structure.

In the Adiabatic Hessian Franck-Condon (AH-FC) method one needs to do a frequency calculation both at the ground
state as well as the excited state of interest. The model makes the following assumptions:

• 1. It employs the adiabatic (Born-Oppenheimer) approximation and treats the nuclei as moving in an effective
potential defined by the electronic configuration.

• 2. It works at the Franck-Condon point and assumes that the transition occurs at the ground state equilibrium
structure for absorption and at the excited state equilibrium structure for emission.

• 3. It applies the harmonic approximation to both the ground and excited state potential energy surfaces.

Franck-Condon factors can be calculated for the transition between the two electronic states, which can be done with
the FCF Module (page 167), described below. These Franck-Condon factor can then be used to predict the relative
intensities of absorption or emission lines in the electronic spectra. Note that the Herzberg-Teller effect is not taken
into account.

In the vertical gradient Franck-Condon (VG-FC) method some extra assumptions are made compared to the AH-FC
method. This approach is particularly effective for large molecules as it shows linear scaling with the number of
normal modes.

• See the documentation of the VG-FC method (page 174).

7.1.1 FCF module: Franck-Condon Factors

fcf is an auxiliary program which can be used to calculate Franck-Condon factors from two vibrational mode calcula-
tions1.

fcf requires an ASCII input file where the user specifies the .rkf files from two vibrational mode calculations, carried
out for two different electronic, spin or charge states of the same molecule. These calculations can be either numerical
or analytical. The number of vibrational quanta that have to be taken into account for both states in the evaluation of
the Franck-Condon factors have to be specified.

fcf produces a (binary) KF file TAPE61, which can be inspected using the KF utilities. Furthermore, fcf writes the
frequencies, vibrational displacements and electron-phonon couplings for both states too the standard output, including
any error messages.

1 J.S. Seldenthuis, H.S.J. van der Zant, M.A. Ratner and J.M. Thijssen, Vibrational Excitations in Weakly Coupled Single-Molecule Junctions:
A Computational Analysis, ACS Nano 2, 1445 (2008) (https://doi.org/10.1021/nn800170h)

167

https://doi.org/10.1021/nn800170h


AMS Manual, Amsterdam Modeling Suite 2020

Theory

Franck-Condon factors are the squares of the overlap integrals of vibrational wave functions. Given a transition
between two electronic, spin or charge states, the Franck-Condon factors represent the probabilities for accompanying
vibrational transitions. As such, they can be used to predict the relative intensities of absorption or emission lines in
spectroscopy or excitation lines in transport measurements.

When a molecule makes a transition to another state, the equilibrium position of the nuclei changes, and this will give
rise to vibrations. To determine which vibrational modes will be active, we first have to express the displacement of
the nuclei in the normal modes:

k = L′
𝑇
m1/2(B0x0 − x′0)

Here, k is the displacement vector, L is the normal mode matrix, m is a matrix with the mass of the nuclei on
the diagonal, B is the zero-order axis-switching matrix and x0 is the equilibrium position of the nuclei. For free
molecules, depending on symmetry constraints, the geometries of both states may have been translated and/or rotated
with respect to each other. To remove the six translational and rotational degrees of freedom, we can center the
equilibrium positions around the center of mass and rotate one of the states to provide maximum overlap. The latter is
included with the zero-order axis-switching matrix B, implemented according to2.

When we have obtained the displacement vector, it is trivial to calculate the dimensionless electron-phonon couplings.
They are given by:

𝜆 = (Γ/2)1/2k

Here, Γ = 2𝜋𝜔/ℎ is a vector containing the reduced frequencies.3. The Huang-Rhys factor g is related to 𝜆 as:

g = 𝜆2

The reorganization energy per mode is

E = (ℎ/2𝜋) * 𝜔𝜆2

When the displacement vector k, the reduced frequencies Γ and Γ′, and the Duschinsky rotation matrix J = L′
𝑇
B0L

have been obtained, the Franck-Condon factors can be calculated using the two-dimensional array method of Ruhoff
and Ratner3.

There is one Franck-Condon factor for every permutation of the vibrational quanta over both states. Since they repre-
sent transition probabilities, all Franck-Condon factors of one state which respect to one vibrational state of the other
state must sum to one. Since the total number of possible vibrational quanta, and hence the total number of permu-
tations, is infinite, in practice we will calculate the Franck-Condon factors until those sums are sufficiently close to
one. Since the number of permutations rapidly increases with increasing number of vibrational quanta, it is generally
possible to already stop after the sum is greater than about two thirds. The remaining one third will be distributed over
so many Franck-Condon factors that their individual contributions are negligible.

In the limiting case of one vibrational mode, with the same frequency in both states, the expression for the Franck-
Condon factors of transitions from the ground vibrational state to an excited vibrational state are given by the familiar
expression:

|𝑙0,𝑛|2 = 𝑒−𝜆
2

𝜆2𝑛/𝑛!

2 G.M. Sando and K.G. Spears, Ab Initio Computation of the Duschinsky Mixing of Vibrations and Nonlinear Effects, Journal of Physical
Chemistry A 105, 5326 (2001) (https://doi.org/10.1021/jp004230b)

3 P.T. Ruhoff and M.A. Ratner, Algorithms for computing Franck-Condon overlap integrals, International Journal of Quantum Chemistry 77,
383 (2000) (https://doi.org/10.1002/(SICI)1097-461X(2000)77:1%3C383::AID-QUA38%3E3.0.CO;2-0)

168 Chapter 7. Vibrationally resolved electronic spectra

https://doi.org/10.1021/jp004230b
https://doi.org/10.1021/jp004230b
https://doi.org/10.1002/(SICI)1097-461X(2000)77:1%3C383::AID-QUA38%3E3.0.CO;2-0
https://doi.org/10.1002/(SICI)1097-461X(2000)77:1%3C383::AID-QUA38%3E3.0.CO;2-0


AMS Manual, Amsterdam Modeling Suite 2020

Input

The input for fcf is keyword oriented and is read from the standard input. fcf recognizes several keywords, but only
two have to be specified to perform the calculation. All input therefore contains at least two lines of the following
form:

$AMSBIN/fcf << eor
STATES state1 state2
QUANTA l1 l2

eor

Documentation for all keys of fcf :

$AMSBIN/fcf << eor
States state1 state2
Quanta l1 l2
Lambda float
Modes first last
Rotate [True | False]
Translate [True | False]
Spectrum FreqMin FreqMax NFreq

eor

Lambda

Type Float

Default value 0.0

Description Optional. The minimum value of the electron-phonon coupling for a mode to be taken
into account in the calculation. Together with the MODES option, this provides a way to signif-
icantly reduce the total number of Franck-Condon factors. As with the MODES option, always
check if the results do not change too much.

Modes

Type Integer List

Default value [0, 0]

Description Optional. The first and last mode to be taken into account in the calculation. By default,
all modes are taken into account. This option can be used to effectively specify and energy range
for the Franck-Condon factors. When using this options, always check if the results (electron-
phonon couplings, ground state to ground overlap integral, average sum of Franck-Condon fac-
tors, etc.) do not change too much.

Quanta

Type Integer List

Default value [0, 0]

Description The maximum number of vibrational quanta to be taken into account for the two states.
Franck-Condon factors will be calculated for every permutation of up to and including l1/l2
quanta over the vibrational modes.

Rotate

Type Bool

Default value No

7.1. AH-FC: Adiabatic Hessian Franck-Condon 169



AMS Manual, Amsterdam Modeling Suite 2020

Description Optional, recommended to be included. Rotate the geometries to maximize the overlap
of the nuclear coordinates.

Spectrum

Type Float List

Description Optional. If included, the vibrational spectrum is calculated. A histogram of the spec-
trum is calculated for the frequency range defined by three numbers: FreqMin (minimum fre-
quency for which the spectrum is calculated), FreqMax (maximum frequency for which the
spectrum is calculated), NFreq (number of frequencies for which the spectrum is calculated).
Usage example: ‘Spectrum 0.0 2.0E4 1000’

States

Type String

Description The filenames of two results files of a numerical or analytical frequency calculation.
The calculations must have been performed on the same molecule, i.e. the type, mass and order
of occurrence of all the atoms (or fragments) has to be the same in both files.

Translate

Type Bool

Default value No

Description Optional, recommended to be included. Move the center of mass of both geometries to
the origin.

Only a few keys from the .rkf file are used for the calculation of the Franck-Condon factors. Disk space usage can be
significantly reduced by extracting just these keys from the .rkf file before further analysis. The following shell script
will extract the keys from the KF file specified by the first argument and store them in a new KF file specified by the
second argument using the cpkf utility:

#!/bin/sh
cpkf $1 $2 General Molecule Vibrations

Result: TAPE61

After a successful calculation, fcf produces a TAPE61 KF file. All results are stored in the Fcf section:

170 Chapter 7. Vibrationally resolved electronic spectra



AMS Manual, Amsterdam Modeling Suite 2020

contents of TAPE61 comments
firstmode, lastmode the first and last vibrational mode taken into account
lambda the minimum value of the electron-phonon coupling
maxl1, maxl2 maximum level (or maximum number of vibrational quanta) in

both states
translate, rotate whether the TRANSLATE and ROTATE options were specified

in the input
natoms number of atoms in the molecule
mass atomic mass vector (m)
xyz1, xyz2 equilibrium geometries of both states (x0 and x0 ‘)
b0 zero-order axis-switching matrix matrix (B0 )
nmodes number of vibrational modes with a non-zero frequency
gamma1, gamma2 reduced frequencies of both states (Γ and Γ’)
lmat1, lmat2 mass-weighted normal modes of both states (L and L’)
jmat Duschinsky rotation matrix (J)
kvec1, kvec2 displacement vectors for both states (k and k’, kvec1 is used for

the calculation of the Franck-Condon factors)
lambda1, lambda2 electron-phonon couplings for both states (𝜆 and 𝜆’)
maxp1, maxp2 maximum number of permutations of maxl1/maxl2 quanta over

the vibrational modes
i0 ground state to ground state overlap integral (I0,0 )
freq1, freq2 frequencies of every permutation of the vibrational quanta for

both states
fcf maxp1 by maxp2 Franck-Condon factor matrix
fcfsum1, fcfsum2 average sum of the Franck-Condon factors for both states

In addition to producing a binary TAPE61 file, fcf also writes the frequencies, displacement vectors and electron-
phonon couplings for both states to the standard output.

7.1.2 FCF example absorption and fluorescence

In this example it is assumed that the molecule has a singlet ground state S0 , and the interesting excited state is the
lowest singlet excited state S1 . First one needs to a the ground state geometry optimization, followed by a frequency
calculation. For the ground state frequency calculation we will use AMS_JOBNAME=S0. Next one needs to do an
excited state geometry optimization. Here it is assumed that the lowest singlet excited state S1 is of interest:

AMS_JOBNAME=S1_GEO $AMSBIN/ams <<eor
...
Task GeometryOptimization
Engine ADF

...
Excitation

Onlysing
Lowest 1

End
ExcitedGO

State A 1
Singlet

End
EndEngine

eor

7.1. AH-FC: Adiabatic Hessian Franck-Condon 171



AMS Manual, Amsterdam Modeling Suite 2020

To get the frequencies for this excited state, numerical frequencies need to be calculated, at the optimized geometry of
the first excited state:

AMS_JOBNAME=S1 $AMSBIN/ams <<eor
...
LoadSystem

File S1_GEO.results/adf.rkf
End
Task SinglePoint
Properties

NormalModes True
End
Engine ADF

...
Excitation

Onlysing
Lowest 1

End
ExcitedGO

State A 1
Singlet

End
EndEngine

eor

Next for the absorption spectrum, we look at excitations from the lowest vibrational state of the electronic ground
state to the vibrational levels of the first singlet excited state S1 (S1← S0 ), using the FCF program (page 167), which
calculates the Franck-Condon factors between the vibrational modes of the two electronic states, with input

$AMSBIN/fcf << eor
STATES S0.results/adf.rkf S1.results/adf.rkf
QUANTA 0 5
SPECTRUM 0 10000 1001
TRANSLATE
ROTATE

eor

The number of vibrational quanta for the excited state should be larger in case of small molecules. See the description
of FCF program (page 167) for more details.

For the fluorescence spectrum, we look at excitations from the lowest vibrational state of the first singlet excited state
S1 to the vibrational levels of the singlet ground state state S0 (S1 → S0 ). Input for the FCF program (page 167) is in
this case:

$AMSBIN/fcf << eor
STATES S0.results/adf.rkf S1.results/adf.rkf
QUANTA 5 0
SPECTRUM -10000 0 1001
TRANSLATE
ROTATE

eor

The number of vibrational quanta for the ground state should be larger in case of small molecules.

Note that the FCF program calculates the spectrum relative to the 0-0 transition. Thus one should add to spectrum
calculated with FCF the difference in energy of the lowest vibrational state of the ground state S0 and the lowest
vibrational state of the electronically singlet excited state S1 .

172 Chapter 7. Vibrationally resolved electronic spectra



AMS Manual, Amsterdam Modeling Suite 2020

7.1.3 FCF Example phosphorescence

In this example it is assumed that the molecule has a singlet ground state S0 , and the interesting excited state is the
lowest triplet excited state T1 . Emission from a triplet state to a singlet state is spin forbidden, however, due to spin-
orbit coupling such transitions may occur. In the following we assume that the geometry of the triplet excited state is
not influenced much by spin-orbit coupling.

First one needs to a the ground state geometry optimization, followed by a frequency calculation, using
AMS_JOBNAME=S0. Next one needs to do an excited state geometry optimization of the lowest triplet excited
state, followed by a frequency calculation.

AMS_JOBNAME=T1 $AMSBIN/ams <<eor
...
Task GeometryOptimization
Properties

NormalModes True
End
Engine ADF

Unrestricted
SpinPolarization 2.0

EndEngine
eor

For the phosphorescence spectrum, we look at excitations from the lowest vibrational state of the first triplet excited
state T1 to the vibrational levels of the singlet ground state state S0 (T1→ S0 ). Input for the FCF program (page 167)
is in this case:

$AMSBIN/fcf << eor
STATES S0.results/adf.rkf T1.results/adf.rkf
QUANTA 5 0
SPECTRUM -10000 0 1001
TRANSLATE
ROTATE

eor

The number of vibrational quanta for the ground state should be larger in case of small molecules.

Note that the FCF program calculates the spectrum relative to the 0-0 transition. Thus one should add to spectrum
calculated with FCF the difference in energy of the lowest vibrational state of the ground state S0 and the lowest
vibrational state of the electronically triplet excited state T1 .

Zero field splitting (ZFS) and the radiative rate constants (i.e. radiative phosphorescence lifetimes) could be calculated
with spin-orbit coupled ZORA time-dependent density functional theory (ZORA-TDDFT). With the ADF engine spin-
orbit coupling can be treated self-consistently (i.e. non perturbatively) during both the SCF and TDDFT parts of the
computation.

An alternative to the use of the unrestricted formalism to calculate the lowest triplet excited state is to use the TDDFT
formalism:

AMS_JOBNAME=T1_GEO $AMSBIN/ams <<eor
...
Task GeometryOptimization
Engine ADF

Excitation
Onlytrip
Lowest 1

End
ExcitedGO

(continues on next page)

7.1. AH-FC: Adiabatic Hessian Franck-Condon 173



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

State A 1
Triplet

End
EndEngine

eor

To get the frequencies for this excited state, numerical frequencies need to be calculated, at the optimized geometry of
the first excited state.

AMS_JOBNAME=T1 $AMSBIN/ams <<eor
...
LoadSystem

File T1_GEO.results/adf.rkf
End
Task SinglePoint
Properties

NormalModes True
End
Engine ADF

...
Excitation

Onlytrip
Lowest 1

End
ExcitedGO

State A 1
Triplet

End
EndEngine

eor

7.2 VG-FC: Vertical Gradient Franck-Condon

Electronic spectra, such as absorption, emission, phosphorescence, and ionization, may contain a vibrational structure.

In the vertical gradient Franck-Condon (VG-FC) method some extra assumptions are made compared to the Adiabatic
Hessian Franck-Condon (AH-FC) method. VG-FC is also called the Independent Mode Displaced Harmonic Oscilla-
tor (IMDHO) model. The AH-FC model (used in the FCF Module (page 167)) makes the following assumptions:

• 1. It employs the adiabatic (Born-Oppenheimer) approximation and treats the nuclei as moving in an effective
potential defined by the electronic configuration.

• 2. It works at the Franck-Condon point and assumes that the transition occurs at the ground state equilibrium
structure for absorption and at the excited state equilibrium structure for emission.

• 3. It applies the harmonic approximation to both the ground and excited state potential energy surfaces.

The VG-FC model makes following additional assumptions:

• 4. It assumes the excited state PES has the same shape as that of the ground state, but it is displaced from it, i.e.
both states have the same normal modes and frequencies but different equilibrium geometries.

• 5. The excited state equilibrium structure is found from a Newton-Raphson step from the ground state geometry
using the excited state gradient at this point.

Under these simplifying approximations we can reduce the ingredients necessary for a spectrum calculation to an
excited state gradient and a set of ground state normal modes. Furthermore it uses a time-domain description of the

174 Chapter 7. Vibrationally resolved electronic spectra



AMS Manual, Amsterdam Modeling Suite 2020

absorption cross-section (this introduces no further approximations) so we do not need any explicit Franck-Condon
factors as is done in the FCF Module (page 167). This approach is particularly effective for large molecules as it shows
linear scaling with the number of normal modes. Further details on how to use this method, and the VG-FC model in
general can be found below.

The approximations we make remove the need for an excited state geometry optimization and frequency analysis. This
means the most expensive step in a typical calculation is actually the ground state frequency analysis. The ability of
Mode Tracking to generate a set of approximate normal modes, without performing a full frequency analysis can be
applied to the calculation of vibrationally resolved optical spectra. This is exactly what is done in Vibronic-Structure
Tracking (page 176). On the other hand, the ability of Mode Refinement to refine entire spectral regions at once
means this method can be transferred to calculating vibrationally resolved optical spectra from a select number of
(vibronically active) approximate normal modes. This idea is applied in Vibronic-Structure Refinement (page 178).
Under suitable assumptions, the computational cost of calculating an approximation of the vibronic-structure can be
reduced significantly through the use of these two methods, allowing for application to large molecules inaccessible to
more detailed methods. While they are clearly best suited for these large molecules, they can also serve as an efficient
method to obtain quick, first approximations for more moderately sized molecule.

With the VG-FC model one can calculate the 0-0 energy difference between the ground state and excited state. In
this VG-FC method the vibrationally resolved emission spectrum will be a mirror image of the vibrationally resolved
absorption spectrum, in which the 0-0 transitions are the same.

Note: The VG-FC model uses certain approximations which may not always be valid. Something to look out for that
may affect the reliability of VG-FC results are large changes in conformation upon excitation. In this case the normal
modes of the excited state may be completely different from those of the ground state, at which point the model is
not expected to produce reliable results. Should non-adiabatic effects become important, the BO approximation could
potentially break down as well. In these cases the FCF Module (page 167) may provide a more suitable alternative to
the VG-FC model.

See also:

Tutorials: Resonance Raman, Vibrationally resolved electronic spectra with ADF, Vibrationally resolved electronic
spectra with DFTB

7.2.1 Theory

Here we will introduce the theory behind the model used to compute vibronic couplings. We use the so-called Verti-
cal Gradient Franck-Condon (VG-FC) method, also called Independent Mode Displaced Harmonic Oscillator model
(IMDHO). The VG-FC model as used here works as follows: The PES in the gound state is assumed parabolic (the
harmonic approximation). Upon excitation, we assume that the only change to the PES that occurs is a shift in origin
(i.e. no stretching or rotation of the parabolic well). This means, both the normal modes and their frequencies remain
the same in both the ground and excited state. The result is that a spectrum can be calculated using only a single
excited state gradient at the optimized ground state geometry. Hence we avoid the expensive excited state geometry
optimization and frequency analysis used by methods such as the FCF Module (page 167).

Moving to a slightly more detailed discussion, we can start with an expression for the absorption cross-section in terms
of a sum over contributions from different Franck-Condon factors, each homogeneously broadened with an assumed
Lorentzian of linewidth Γ. For excitation from the vibrational ground state of electronic state m, to electronic state n
we get the following expression (Hartree atomic units are used throughout):

𝜎𝑛←𝑚(𝜔) =
4𝜋𝜔

3𝑐
|𝜇𝑚𝑛|2

∑︁
𝑙𝑛,1

...
∑︁

𝑙𝑛,𝑁𝑚𝑜𝑑𝑒𝑠

Γ
∏︀𝑁𝑚𝑜𝑑𝑒𝑠

𝑖=1 |⟨𝑙𝑛,𝑖|0𝑚,𝑖⟩|2(︂
𝐸𝑛,0 +

∑︀𝑁𝑚𝑜𝑑𝑒𝑠

𝑖 𝜔𝑖𝑙𝑛,𝑖 − 𝐸𝑚,0 − 𝜔

)︂2

+ Γ2

Here the 𝜇𝑚𝑛 is the transition dipole moment and the
∏︀𝑁𝑚𝑜𝑑𝑒𝑠

𝑖=1 |⟨𝑙𝑛,𝑖|0𝑚,𝑖⟩|2 denote the Franck-Condon factors for
excitation from the vibrational ground state to the vibrationally excited state of the excited state PES, with quantum

7.2. VG-FC: Vertical Gradient Franck-Condon 175

../../../Tutorials/VibrationalSpectroscopy/ResonanceRaman.html
../../../Tutorials/VibrationalSpectroscopy/VibrationallyResolvedElectronicSpectraADF.html
../../../Tutorials/VibrationalSpectroscopy/VibrationallyResolvedElectronicSpectraDFTB.html
../../../Tutorials/VibrationalSpectroscopy/VibrationallyResolvedElectronicSpectraDFTB.html


AMS Manual, Amsterdam Modeling Suite 2020

numbers 𝑙𝑛,𝑖. This sum-over-states formulation is what is also used to compute the spectrum in the FCF Module
(page 167). While efficient pre-screening and thresholding techniques can make this method applicable to moderately
sized molecules, it is still quite expensive for large molecules. We can derive an expression which is equivalent to the
one above, but which enjoys significant computational benefits. This is done by writing the cross-section as an integral
over time:

𝜎𝑛←𝑚(𝜔) =
4𝜋𝜔

3𝑐
|𝜇𝑚𝑛|2𝑅𝑒

∫︁ ∞
0

⟨𝑖|𝑖𝑛(𝑡)⟩𝑒𝑖[𝜔+𝐸𝑚,0]𝑡 · 𝑒−Γ𝑡𝑑𝑡

Here, ⟨𝑖|𝑖𝑛(𝑡)⟩ denotes the overlap of the initial state, propagated along the excited state PES with itself at time 𝑡 = 0.
This expression is still completely general, however, using the assumptions of the VG-FC model (page 166), this
overlap admits a simple closed form expression:

⟨𝑖|𝑖𝑛(𝑡)⟩ =

𝑁𝑚𝑜𝑑𝑒𝑠∏︁
𝑗=1

exp

[︃
−

∆2
𝑛,𝑗

2
(1− 𝑒−𝑖𝜔𝑗𝑡)

]︃
𝑒−𝑖𝐸𝑛,0𝑡

This expression can be derived by different methods and admits a few interpretations, the details of which we will not
go into here. The interested reader is referred to reference1. Instead we will focus on its numerical implementation.
The great computational advantage of this expression is that it scales only weakly with the number of degrees of
freedom. Compare this with the sum-over-states formalism above, where the number of FCF’s needed to have a
converged sum proliferates for large molecules and the advantage becomes clear.

The ∆𝑛,𝑗 appearing in the expression are the dimensionless normal mode displacements at the equilibrium geometry
in state n, compared to state m along normal mode j which has angular frequency 𝜔𝑗 . They represent the change in
origin of the PES along a particular normal mode. These are the parameters which control the shape of the spectrum.
Under the assumptions we listed above they can be calculated from the excited state energy gradient at the ground
state equilibrium structure as:

∆𝑗 =
𝑞𝑚𝑗 · ∇𝑚𝐸

𝜔
3/2
𝑗

Where we have suppressed the n subscript. The gradient is with respect to mass weighted coordinates and the 𝑞𝑚𝑗
denote the mass-weighted normal modes.

Essentially, we use the (assumed) parabolic shape of the PES in the harmonic approximation along each of the normal
modes to determine the displacement from the gradient projection along that mode. An important consequence of the
simplified VG-FC model is that the Franck-Condon factors can be expressed in closed form:

|⟨𝑙𝑖|0𝑖⟩|2 =

(︂
Δ𝑖

2

)︂2

𝑙𝑖!
𝑒−

Δ2
𝑖
2

Modes with the largest displacement are then expected to also have the largest impact on the structure of the vibrational
progression in the spectrum. This gives us an obvious candidate for a tracking method to be used with the Mode
Tracking protocol. This approach is taken in the Vibronic-Structure Tracking (page 176) module.

Theory: Vibronic-Structure Tracking

Vibronic-structure tracking (VST) is a method for obtaining quick and approximate vibrationally resolved optical
spectra for larger sized molecules. It is based on the mode-tracking algorithm and works by tracking those modes that
are expected to have the largest impact on the vibronic-structure of the spectrum. Its AMS implementation follows
that in reference1.

1 J.R. Reimers, K.R. Wilson and E.J. Heller, Complex time dependent wave packet technique for thermal equilibrium systems: Electronic spectra
The Journal of Chemical Physics 79, 4749 (1983) (https://doi.org/10.1063/1.445618)

176 Chapter 7. Vibrationally resolved electronic spectra

https://doi.org/10.1063/1.445618


AMS Manual, Amsterdam Modeling Suite 2020

The modes that are tracked by the mode tracking routine are used to generate a UV/vis spectrum. This is done
using the Vertical Gradient Franck-Condon (VG-FC) method, also called the Independent Mode Displaced Harmonic
Oscillator (IMDHO) model as described on the Vibronic-Structure (page 174) page. This model reduces the necessary
TD-DFT calculations to a single excited state gradient performed at the ground state equilibrium geometry. At this
point it is typically the ground state frequency analysis which becomes the bottleneck for large molecules. Through
the use of Mode Tracking we can circumvent this step and calculate only those modes which will significantly impact
the vibronic fine structure. This yields a very cheap and efficient method for obtaining vibrationally resolved optical
spectra.

The use of Mode Tracking within the context of vibronic-structure calculations proceeds as follows: from an initial
guess for a normal mode, we construct a new basis vector which we hope will improve the quality of our initial
guess. We then iteratively expand the basis by refining those modes which have the largest impact on the vibronic fine
structure. We keep iterating until we deem the spectrum to be converged. We’ll address the technical details of this
procedure in this section.

Let us first consider how we can gauge which modes will have a large impact on our spectrum. Over on the Vibronic-
Structure (page 174) page, we showed that according to the VG-FC model, the Franck-Condon factors can be written
as:

|⟨𝑙𝑖|0𝑖⟩|2 =

(︂
Δ𝑖

2

)︂2

𝑙𝑖!
𝑒−

Δ2
𝑖
2

This expression implies modes with large displacements ∆𝑗 will have the largest Franck-Condon factors. Thus,
we expect that modes with large oscillator displacements will contribute most strongly to the vibronic fine structure
of the spectrum. This suggests a tracking method in addition to those described in the Mode Tracking (page 141)
documentation. Namely, to track the mode with the largest ∆𝑗 . This is the only setting for the TrackingMethod
supported by Vibronic-Structure Tracking and is automatically set when choosing Vibronic-Structure Tracking as the
Vibrational Analysis type. As a reminder, the oscillator displacements can be obtained from the assumed parabolic
shape of the excited state PES and the known excited state gradient:

∆𝑗 =
𝑞𝑚𝑗 · ∇𝑚𝐸

𝜔
3/2
𝑗

This expression for our normal mode displacements suggests that a reasonable guess for a hypothetical normal mode
with a large effect on the spectrum is given by the normalized excited state gradient, as this maximizes the projection.

The choice of preconditioner is of course an important one. While better preconditioners such as the Jacobi-Davidson
method can lead to fast and tightly directed convergence of the modes, this may not be ideal in the case of Vibronic-
Structure Tracking, as we are not necessarily focused on obtaining converged modes but rather obtaining a converged
spectrum. By default the method does not use any preconditioner for generating normal modes from the residual
vectors to allow the procedure to more freely explore the entire space of modes. This means that the new basis vector
produced on each iteration is the (normalized) residual vector of that iterations selected mode. Note that this is different
from using the Davidson method with an identity matrix as guess for the Hessian. The user is still able to use any of
the pre-conditioning options provided by the stand-alone mode tracking method, however we suggest the user uses the
default I (for identity) as the UpdateMethod. This also conveniently means no approximate Hessian is required.

It is important to choose a suitable convergence criterion. When using Vibronic-Structure Tracking, the aim is to get
an approximation of the progression in the spectrum. The convergence of the modes then takes a backseat to the
convergence of the spectrum. Although the two usually go hand in hand, requiring that all modes be converged in
the usual mode-tracking sense is likely to be far too restrictive. Thus the convergence criterion used for VST is the
following: at every iteration, the previous iteration’s spectrum is subtracted from the new one. The absolute difference
is then integrated on the requested frequency range. Convergence is achieved once the so-obtained number drops
below a pre-set convergence threshold. The result is that it may not be the case that all modes are exact normal modes
yet, however further refinement will have a limited effect on the resulting spectrum, for example due to these modes
having very small Franck-Condon factors.

Convergence according to this criterion is affected by the other options that the user chooses, see the secion on how
the adiabatic excitation energy is calculated.

7.2. VG-FC: Vertical Gradient Franck-Condon 177



AMS Manual, Amsterdam Modeling Suite 2020

Theory: Vibronic-Structure Refinement

Vibronic-Structure Refinement takes the idea of Mode Refinement, and applies it to the calculation of vibrationally
resolved optical spectra. Under the assumptions of the Vibronic-Structure application, the most time-consuming step
becomes the calculation of the ground state normal modes. However, we may not be interested in all normal modes
that contribute to the Vibronic fine structure of a spectrum. By using Mode Refinement we can limit ourselves to the
spectral region of interest, or to modes which we expect to have the largest impact on the fine structure. The details of
the Mode Refinement protocol can be found on the relevant documentation page (page 138).

Theory: Adiabatic excitation energy

The last aspect we will comment on here is the calculation of the adiabatic excitation energy. The number we get
from an excited state calculation is the vertical excitation energy (∆𝐸𝑣𝑒𝑟𝑡), this number is generally unobservable
in spectra. The more interesting quantity is the adiabatic excitation energy (∆𝐸𝑎𝑑). The former is the difference in
energy between the two PES’es at the ground state geometry, the latter is the difference in energy between the ground
and excited state vibrational ground states. Since we assumed both PES’es to have the same frequencies, the zero-
point energy of the two states are the same and hence, the adiabatic energy difference is the same as the 0-0 energy
difference (∆𝐸0−0). This is simply the difference between the bottom of the two PES’es. It can be reconstructed
from the excited state gradients projected onto our normal modes, as well as their frequencies. For a molecule with N
modes we obtain:

∆𝐸𝑎𝑑 = ∆𝐸𝑣𝑒𝑟𝑡 −
𝑁𝑚𝑜𝑑𝑒𝑠∑︁

𝑗

1

2
𝜔𝑗∆

2
𝑗

Where the sum represents the reorganization energy stored in the excited oscillator modes. Depending on the desired
information, one can use two different representations of the spectrum. The first is to simply plot the spectrum against
an energy range with the ground state energy as an offset. This would represent a true absorption spectrum that can
be compared directly with experiment. However, the energy difference ∆𝐸𝑣𝑒𝑟𝑡 − ∆𝐸𝑎𝑑 in the VG-FC model is
reconstructed only from the ground state equilibrium structure and can thus be somewhat unreliable. If the user is
primarily interested in the shape of the spectrum, using the 0-0 excitation energy as an offset may be a more suitable
choice. The latter is the default setting in AMS, but the method supports both options.

Note that in case of a Vibronic-structure tracking (VST) calculation we only have access to a small set of approximate
normal modes, we will have an approximation of ∆𝐸𝑎𝑑 that changes from iteration to iteration as new normal modes
are introduced and the old normal modes are refined. If a spectrum relative of the 0-0 energy is requested, the shift
caused by the iterative convergence of ∆𝐸𝑎𝑑 is not taken into account, although it will still have some effect on the
spectrum as it also appears in the integral that defines the spectrum. If one is interested in a converged approximation
of ∆𝐸0−0 it may be more reliable to provide an absolute frequency range for the spectrum as the shift in the peak
locations will then also affect convergence.

7.2.2 Input: Vibronic-Structure all modes

As mentioned, we need both a set of ground state normal modes as well as an excited state gradient. All the normal
modes are calculated using the AMS engine that was selected, or, in case the user has a pre-calculated set of normal
modes, these can be read from a .rkf file using the ModeFile key in the NormalModes sub-block. In this latter case,
the engine is not used. One can then use the keys in the ModeSelect block to filter out specific modes, or, simply
select all modes using the Full key in this block. For further details on how to use the Mode Select block for more
specialized selection options, see the Mode Select (page 149) documentation. As for the excited state information, this
is passed to the application via the ExcitationSettings block. Additionally there are (optional) settings related
to the appearance of the spectrum under the AbsorptionSpectrum block. For an overview of the input options
see the list of keys at the end of this page.

For completeness we provide an example of what the user input may look like:

178 Chapter 7. Vibrationally resolved electronic spectra



AMS Manual, Amsterdam Modeling Suite 2020

Task VibrationalAnalysis
VibrationalAnalysis

Type VibronicStructure
NormalModes

# Select all modes present in the .rkf file
ModeSelect

Full True
End

End
ExcitationSettings

ExcitationInfo File
ExcitationFile ./your_excitation.t21
Singlet

B1.u 2
End

End
AbsorptionSpectrum

LineWidth 100.0
AbsorptionRange -500.0 4000.0

End
End

7.2.3 Input: Vibronic-Structure Tracking

VST is notably the only Vibrational Analysis task that does not support the NormalModes block as no initial normal
modes are necessary. The excited state gradient fills this role instead. Furthermore, the recommended default of using
the identity matrix as a preconditioner means that no approximate Hessian is required either.

One thing to note regarding the Mode Tracking settings is that VST features a convergence criterion not present in stan-
dard Mode Tracking. The tolerance for the convergence of the spectrum is set using the ToleranceForSpectrum
keyword in the ModeTracking block. The default is set to 0.01 and should be sufficient for most purposes, but
restarting (page 180) with a lower value may improve the reliability of the convergence.

Note: The usual Mode Tracking tolerances are still present in addition to the spectral tolerance mentioned above.
This is so we do not track modes that have already converged. Instead, once a mode is converged in the usual mode
tracking sense, we switch to the next mode that satisfies our tracking criterion. The defaults should normally apply,
but may be loosened a bit to allow for more free subspace exploration.

A typical Vibronic-Structure Tracking run may be setup as follows:

Task VibrationalAnalysis
VibrationalAnalysis

Type VibronicStructureTracking
# Select our excited state energy+gradient from a previous calculation
ExcitationSettings

ExcitationInfo File
ExcitationFile ./your_excitation.t21

End
# Tuning how our spectrum will look
AbsorptionSpectrum

LineWidth 250.0
AbsorptionRange -500.0 6000.0

End
ModeTracking

(continues on next page)

7.2. VG-FC: Vertical Gradient Franck-Condon 179



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

UpdateMethod I
End

End

Input: Restarting VST

The Vibronic-Structure Tracking task is fully restartable from a previously completed VST run. The main reason
why it may be useful to perform a restart is related to the way the spectrum is generated. Most modules/applications
in AMS that calculate a spectrum usually produce a stick spectrum. This stick spectrum is then convoluted against
either a gaussian or lorentzian of specified width or area. This allows one to tweak the homogeneous broadening
post-calculation to improve agreement with experiments. VST operates differently, in that the Lorentzian linewidth
is specified at the start of the calculation as an essential input parameter. If upon convergence it becomes clear that
a different linewidth would have been better suited for the spectrum at hand, one can restart the calculation with this
new linewidth. The program then computes a new spectrum using these new settings and repeats the last iteration of
the previous run. The latter is done because the linewidth directly influences the convergence (larger linewidths tend
to converge more easily as the features are not as sharply resolved). If the spectrum does not change after the first
iteration the program terminates as usual and the new spectrum is now available to the user. However, if this additional
iteration does not pass the convergence test, the program keeps iterating until the spectrum converges for this new
linewidth.

In addition to changing the linewidth post-calculation, the user is also free to change the spectral range that is to be
computed as well as its resolution through the FrequencyGridPoints keywords. Alternatively, the tolerance
used may be lowered if tighter convergence is required. Importantly however, none of the previous run’s input settings
are retrieved upon restart, so any settings the user doesn’t want to change have to be same in the new run script as in
the old. The easiest way to restart is to simply re-use the previous run’s runscript under a new name and then changing
the relevant settings.

The restart functionality is controlled by the RestartPath keyword. One simply states the path to a previous
calculation’s .rkf file from which the relevant data is to be read. The .rkf file of any VST runs contains a section
labeled VSTRestart which contains the data needed to restart from that run. Restarting is then a simple one-liner in
the VibrationalAnalysis block:

VSTRestartFile ./previous_run.results/ams.rkf

7.2.4 Input: Vibronic-Structure Refinement

Vibronic-Structure Refinement (VSR) assumes that the modes relevant to the vibronic-structure are, at least in an
approximate sense, known a priori. The VSR method takes these approximate modes and refines them via the Mode
Refinement algorithm. The approximate normal modes should thereby span a subspace containing the exact normal
modes and, the more similar they are to the exact mode, the better they allow to reproduce the spectrum of a full
ground state frequency analysis. Naturally, the refinement becomes more accurate with increasing dimensionality of
the spanned subspace, although this this increases the computational costs. In any case, the subspace needs to contain
those modes that are most relevant for the vibronic progression for the entire approach to work, which leads to the
question, how do we select such modes?

This is done using familiar ModeSelect block from the mode selective analysis tasks tasks. While all the usual
options are available, for which further details can be found on the Vibrational Analysis (page 149) page, there are two
selection methods that are geared specifically towards VSR. Within the VG-FC model, the parameters defining the
effect a mode will have on the spectrum are the oscillator displacements ∆𝑗 . We can determine these values from the
projection of the approximate normal modes onto the gradient in combination with their respective frequencies. We
are then interested in those modes with the largest displacement. To select these, two options are available:

180 Chapter 7. Vibrationally resolved electronic spectra



AMS Manual, Amsterdam Modeling Suite 2020

Task VibrationalAnalysis
VibrationalAnalysis

Type VibronicStructureRefinement
NormalModes

ModeSelect
LargestDisplacement integer
DisplacementBound float
...

End
...

End
...

End

LargestDisplacement integer sets an integer value N, to select the N modes with the largest displacements
as calculated within the VG-FC model. This method limits the total number of modes we refine and thus places
an upper bound on the computational cost required by the method, but it does not ensure that all relevant modes
have been selected. In particular there may still be modes with large displacements that have been omitted and
as such peaks or progressions may be missing from the spectrum.

DisplacementBound float Alernatively this selects all approximate modes with a displacement greater than
the supplied lower bound. An appropriate choice for this value ensures all modes which visibly affect the
spectrum (at least at the lower level of theory used to produce the approximate modes) are included in the
subspace basis used for Mode Refinement. The displacements ∆𝑗 are dimensionless and the largest ones will
typically be of order one. Based on this, a value of 0.01 for this parameter will generally select all relevant
modes. This of course comes at the trade-off that for general molecules it is not known how many such modes
there will be and the computational cost may be larger than expected. But, if one is not discouraged by this,
this will of course yield the most accurate results. Values up to 0.05 may still provide reasonable results
while minimizing computation times. Using larger linewidths (AbsorptionSpectrum%LineWidth) for
the homogeneous broadening can help to correct for the non-resolved modes.

The calculation setup for Vibronic-Structure Refinement is essentially the same as that for Vibronic-Structure, the
only difference being that the modes that we provide will first be refined, before a spectrum is computed. A detailed
description is given on the Vibronic-Structure (page 174) page. A typical VSR calculation can be setup as follows:

Task VibrationalAnalysis
VibrationalAnalysis

Type VibronicStructureRefinement
# Select our normal modes from a previous calculation
NormalModes

ModeFile ams.rkf
ModeSelect

# select all modes with VG-FC displacements over 0.01
DisplacementBound 0.01

End
End
# Select our excited state energy+gradient from a previous calculation
ExcitationSettings

ExcitationInfo File
ExcitationFile ./your_excitation.t21
# Select second singlet excitation with symmetry label A
Singlet

A 2
End

End
# Tuning how our spectrum will look
AbsorptionSpectrum

(continues on next page)

7.2. VG-FC: Vertical Gradient Franck-Condon 181



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

LineWidth 250.0
AbsorptionRange -500.0 6000.0

End
End

7.2.5 Input: Excited State

Both the excited state gradient at the ground state equilibrium structure as well as the vertical excitation energy are
necessary to obtain a spectrum. These can be provided by most TD-DFT programs, including ADF. Unfortunately, the
AMS driver does not yet support computing these properties on the fly. As a result they are currently required as user
input. One can use ADF or DFTB to compute them and then either read them from the produced output file, or copy
and paste them to an inline input block.

Task VibrationalAnalysis
VibrationalAnalysis

Type ...
ExcitationSettings

ExcitationInputFormat [File | Inline]
ExcitationFile string
EnergyInline float
GradientInline # Non-standard block. See details.

...
End
Singlet # Non-standard block. See details.

...
End
Triplet # Non-standard block. See details.

...
End

End
End

ExcitationInputFormat [File | Inline] this keyword is used to specify whether the gradient and en-
ergy are to be read from a kf file or if one chooses to use the inline block for them. Currently, no TD-DFT
engine is implemented in the AMS driver. Furthermore, ADF uses the old tape21 format for its output which is
quite different from the more streamlined AMS format. The inline option allows one to bypass any possible
confusion here. The File option requires the specification of the specific excitation to read, which we will
discuss below.

GradientInline is the block where the gradient can be specified if the inline option is selected. The format can
be either a N by 3 block (N rows, 3 columns) or a 3N long column vector if one happens to have a gradient in
this format. The gradient values should be in the unit Hartree/Bohr.

EnergyInline float is used to specify the excitation energy. This will just be a single floating point number
(in Hartree).

The resulting input would look like:

Task VibrationalAnalysis
VibrationalAnalysis

Type ...
...
ExcitationSettings

ExcitationInfo Inline
# Excited state gradient for transhexatriene 14 atoms x 3 coordinates (to be

→˓provided in Hartree/Bohr) (continues on next page)

182 Chapter 7. Vibrationally resolved electronic spectra



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

GradientInline
-0.03786125 0.01786798 0.00003833
0.05322148 -0.00798712 -0.00004152
-0.06658803 0.01373495 0.00004727
0.06656379 -0.01374825 0.00002398
-0.05318451 0.00799875 -0.00002097
0.03783718 -0.01786722 0.00001362
0.00382226 0.00327391 0.00001046
-0.00046176 -0.00499971 -0.00003583
0.00014312 0.00534412 -0.00001335
0.00011081 -0.00558254 -0.00002107
-0.00011074 0.00558350 -0.00000933
-0.00014517 -0.00534330 0.00000839
-0.00381513 -0.00327314 -0.00000248
0.00046796 0.00499807 0.00000250

End
# The vertical excitation energy is simply a float (to be provided in Hartree)
EnergyInline 0.17062882

End
End

ExcitationFile string If ExcitationInputFormat is set to File one also has to set the
ExcitationFile keyword to provide a path to the file from which the info should be read.

Singlet or Triplet In case the excited state information should be read directly from a file, one should specify
which excitation AMS should read. This is done analogously to how this is done for excited state gradients in
ADF. One chooses either the Singlet or Triplet blocks (for singlet-singlet or singlet-triplet excitations
respectively). Once such a block is chosen, a line containing the symmetry label, followed by the number of
the excitation of that symmetry. As for the symmetry labels, the notational convention used can be found in
the ADF manual appendix on symmetry labels. If symmetry was disabled, either explicitly by the user or when
using TD-DFTB which does not support symmetry, when calculating the excited state properties, the symmetry
label A should be used. Vibronic-structure calculations are only supported for one excitation at a time.

The resulting input block looks something like this:

ExcitationSettings
ExcitationInputFormat File
ExcitationFile ./ExcitedState.results/myengine.rkf
Singlet

A 1
End

End

7.2.6 Input: Producing the spectrum

To go from normal modes to an actual spectrum, we have to solve the integral that we introduced in the first section,
the details of which will be discussed here.

For long times, the integrand is dominated by the exponential damping term. We can define a suitable cut-off by
demanding that this damping term be smaller than some threshold. As mentioned, the integral is evaluated using
a Chebyshev quadrature. The number of Chebyshev nodes used for the integral can then be determined from this
integration limit and the time step size. This time step size should be large enough to accurately represent the highest
frequencies that are present in the highly oscillatory integrand. The Nyquist frequency can be used as a guide here: the
highest frequency should be represented by at least two samples each period. Note however, that in principle there is
no upper bound to the frequencies present in the integrand due to the fact that modes can be excited to arbitrarily high

7.2. VG-FC: Vertical Gradient Franck-Condon 183

../../../ADF/Appendices/Symmetry.html#schonfliess-symbols-and-symmetry-labels


AMS Manual, Amsterdam Modeling Suite 2020

energy levels. Fortunately, the Franck-Condon factors will quickly act to dampen these high frequencies, restricting
their significance. The user may either supply a time step size directly or leave this up to the program to determine. If
the latter is chosen the highest relevant frequency is estimated by assuming that oscillator excitations are relevant up
to about twice the Huang-Rhys parameter (which follow directly from the displacements). This default should in most
cases be sufficient to produce a converged integral.

The keywords associated with the different input parameters are collected under the AbsorptionSpectrum block.
It contains the following keys:

Task VibrationalAnalysis
VibrationalAnalysis

Type ...
...
AbsorptionSpectrum

AbsorptionRange float_list
FrequencyGridPoints integer
LineWidth float
SpectrumOffset [absolute | relative]

End
End

LineWidth float sets the lorentzian line width and thus has a large impact on the appearance of the final spec-
trum. It may be used to improve the agreement of the computed spectrum with experiment. Another purpose
that the linewidth may serve is that some low frequency modes may not be represented very accurately within
the VG-FC model. However, these modes do not result in particularly distinct vibronic progressions but rather
cause an unspecific broadening of existing peaks. Applying a homogeneous peak broadening by increasing the
value of Γ may be an effective (albeit a little ad hoc) way of resolving such issues, should they occur. The
default value is 200𝑐𝑚−1 but it is recommended to do some experimentation with this value.

AbsorptionRange float_list keyword specifies the frequency range (in 𝑐𝑚−1) that is to be computed by
VST.

SpectrumOffset [absolute | relative] specifies whether the range provided by the
AbsorptionRange keyword is relative to the 0-0 excitation energy (Relative), or relative to the
vertical excitation energy (Absolute). Due to the limited accuracy of the VG-FC model at predicting ∆𝐸0−0
the default is Relative with a AbsorptionRange of [-500,4000].

FrequencyGridPoints integer sets the number of points we use on our frequency grid. It is set to 400 by
default which generally produces a smooth looking spectrum.

The current implementation of VG-FC vibronic-structure supports only spectra for one excitation at a time. The
spectrum is normalized such that the highest peak is equal to 1 in arbitrary units. For this reason the prefactor of the
integral is irrelevant and transition dipole moments do not affect the appearance of the spectrum.

184 Chapter 7. Vibrationally resolved electronic spectra



CHAPTER

EIGHT

DIPOLE MOMENT, POLARIZABILITY, BOND ORDERS

This page in the AMS manual describes the calculation of the dipole moment, the polarizability, and bond orders.

Properties
DipoleMoment Yes/No
Polarizability Yes/No
BondOrders Yes/No

End

Note that because these properties are tied to a particular point on the potential energy surface, they are found on the
engine output files (page 15). Note also that the properties are not always calculated in every PES point that the AMS
driver visits during a calculation. By default they are only calculated in special PES points, where the definition of
special depends on the task (page 39) AMS is performing: For a geometry optimization (page 41) properties would for
example only be calculated at the final, converged geometry. This behavior can often be modified by keywords special
to the particular running task.

8.1 Charges, Dipole Moment, Polarizability

Properties
Charges Yes/No
DipoleMoment Yes/No
DipoleGradients Yes/No
Polarizability Yes/No

End

Properties

Charges

Type Bool

Default value No

Description Requests the engine to calculate the atomic charges.

DipoleMoment

Type Bool

Default value No

Description Requests the engine to calculate the electric dipole moment of the molecule. This
can only be requested for non-periodic systems.

DipoleGradients

185



AMS Manual, Amsterdam Modeling Suite 2020

Type Bool

Default value No

Description Requests the engine to calculate the nuclear gradients of the electric dipole moment
of the molecule. This can only be requested for non-periodic systems.

Polarizability

Type Bool

Default value No

Description Requests the engine to calculate the polarizability tensor of the system.

8.2 Bond orders & Molecule detection

Many engines can determine bond orders between atoms. For engines based on force fields, these might just be the
bond orders used internally by the force field, while for quantum mechanical engines the bond orders are usually
determined by analyzing the results of the quantum mechanical calculation, e.g. the electronic density. We refer users
to the manuals of the respective engine for details.

Properties
BondOrders Yes/No

End

Properties

BondOrders

Type Bool

Default value No

Description Requests the engine to calculate bond orders. For MM engines these might just be
the defined bond orders that go into the force-field, while for QM engines, this might trigger
a bond order analysis based on the electronic structure.

Based on the bond orders, the AMS driver can analyze the atomic connectivity graph in order to determine which
sets of atoms together constitute molecules. This allows for example to monitor the changes in molecular composition
during a reactive molecular dynamics calculation. For molecular dynamics (page 75) calculations this option is enabled
by default. For other tasks (page 39) the molecular analysis can explicitly be requested in the Properties block.

Properties
Molecules Yes/No

End

Properties

Molecules

Type Bool

Default value No

Description Requests an analysis of the molecular components of a system, based on the bond
orders calculated by the engine.

Details of the molecule detection are configured in a dedicated block:

186 Chapter 8. Dipole moment, Polarizability, Bond orders



AMS Manual, Amsterdam Modeling Suite 2020

Molecules
AdsorptionSupportRegion string
BondOrderCutoff float

End

Molecules

Type Block

Description Configures details of the molecular composition analysis enabled by the Proper-
ties%Molecules block.

AdsorptionSupportRegion

Type String

GUI name Adsorption support region

Description Select region that will represent a support for adsorption analysis. Adsorbed
molecules will receive an ‘(ads)’ suffix after name of the element bonded to the support.
Such elements will be listed separate from atoms of the same element not bonded to the
support, for example, HOH(ads) for a water molecule bonded to a surface via one of its H
atoms.

BondOrderCutoff

Type Float

Default value 0.5

Description Bond order cutoff for analysis of the molecular composition. Bonds with bond
order smaller than this value are neglected when determining the molecular composition.

8.2. Bond orders & Molecule detection 187



AMS Manual, Amsterdam Modeling Suite 2020

188 Chapter 8. Dipole moment, Polarizability, Bond orders



CHAPTER

NINE

ENGINES

The engines are the core of the Amsterdam Modeling Suite: While the AMS driver steers the calculation over the
potential energy surface in e.g. a geometry optimization (page 41) or molecular dynamics (page 75) calculation, the
engines calculate energies and gradients and in this way define the PES on which the driver works.

Engine header

Engine

Type Block

Description The input for the computational engine. The header of the block determines the type of
the engine.

The engine used for an AMS calculation is selected and configured with the special Engine block in the AMS input:

Engine DFTB
... input for the DFTB engine ...

EndEngine

Here the type of engine, e.g. DFTB as in the example above, is specified on the line that opens the block. Note that the
Engine block ends with EndEngine, and is in this way different from all the other blocks in the AMS input, which
close just with End. The content of the engine block is what we call the “engine input”. Generally the engine input
consists of a series of blocks and keywords, and looks just like the AMS driver input. However, many engines have
a lot of options and keywords, which are documented in a separate engine manual. In other words: This AMS driver
manual documents all the keywords outside of the Engine block, while the individual engine manuals document the
contents of the engine block.

9.1 Available engines

The following engines are available in the 2020 release of the Amsterdam Modeling Suite:

• ADF A DFT engine particularly strong in understanding and predicting structure, reactivity, and spectra of
molecules.

• BAND An atomic-orbital based DFT engine aimed at periodic systems (crystals, slabs, chains) but supporting
also molecular systems.

• DFTB An engine implementing Density Functional based Tight-Binding, a fast approximation to DFT.

• ReaxFF An engine for modeling chemical reactions with atomistic potentials based on the reactive force field
approach.

• MLPotential Machine learning potentials (machine learning force fields).

189

../ADF/index.html
../BAND/index.html
../DFTB/index.html
../ReaxFF/index.html
../MLPotential/index.html


AMS Manual, Amsterdam Modeling Suite 2020

• ForceField An engine implementing classical non-reactive force fields such as UFF (a non-reactive force field
covering the entire periodic table).

• Hybrid Hybrid engine, for embedding and QM/MM calculations that combine multiple engines.

• MOPAC An engine wrapping the MOPAC code, a general-purpose semiempirical molecular orbital package
for the study of solid state and molecular structures and reactions.

• External (page 191) A flexible scripting interface that allows advanced users to use external modeling pro-
grams as engines in AMS.

• LennardJones (page 195) A simple toy engine implementing a Lennard-Jones potential.

9.2 Summary of engine capabilities

Some options/properties can only be computed in combination with some of the engines (i.e., not all engines support
all features). These tables summarize the capabilities of the engines of the Amsterdam Modeling Suite:

Table 9.1: Engine support for AMS driver options
Feature ADF BAND DFTB ReaxFF MLPot. ForceField MOPAC
All elements available X X X1 X2 X
Non-periodic systems (page 27) X X X X X3 X X
1D periodic systems (page 27) X X X X
2D periodic systems (page 27) X X X X
3D periodic systems (page 27) X X X X3 X X
Charged molecular systems X X X X X X
External electric field X X X X
External point charges X X X

1 All elements are available for the GFN1-xTB model, but other DFTB parameter sets are not parametrized for all elements.
2 All elements are available with UFF (universal force field), but other force fields are not parametrized for all elements.
3 MLPotential backends may support non-periodic and/or 3D-periodic calculations.

190 Chapter 9. Engines

../ForceField/index.html
../Hybrid/index.html
../MOPAC/index.html


AMS Manual, Amsterdam Modeling Suite 2020

Table 9.2: Engine support for AMS driver properties
Feature ADF BAND DFTB ReaxFF MLPot. Force-

Field
MOPAC

Atomic charges (page 185) X X X X X X
Bond orders (page 186) X X X X X
Dipole gradients (page 185) X X X X
Dipole moment (page 185) X X X X
Elastic tensor (page 126) X X X X X X
Gradients / Forces (page 121) X X X X X X X
Hessian (page 122) X X X X X X X
Infrared spectra (page 131) X X X X
Molecule detection X X X X X
Normal modes (page 131) X X X X X X X
PES point character (page 122) X X X X X X X
Phonons (page 155) X X X X X X
Polarizability (page 185) X
Raman (page 159) X
Stress tensor (page 125) X X X X X X
Thermodynamic properties
(page 151)

X X X X X X X

VCD (page 165) X X X X
VROA (page 163) X

Note: The features/options in the following tables are engine-specific, and are described in the corresponding engine’s
manual. The input for these options should be specified in the Engine block (page 7) section of the input file.

Table 9.3: Engine-specific capabilities
Feature ADF BAND DFTB ReaxFF MLPot. ForceField MOPAC
EFG X (doc) X (doc)
Electronic transport X (doc) X (doc) X (doc)
Energy decomposition analysis X (doc) X (doc)
ESR/EPR X (doc)
Hyperpolarizabilities X (doc)
NMR X (doc)
Orbital energies X X X X
pKa X (doc)
Solvation models X (doc) X (doc) X (doc) X (doc)
Spin-polarization X (doc) X (doc) X (doc) X (doc)
UV-VIS optical spectra X (doc) X (doc)

Table 9.4: Engine-specific capabilities for periodic systems
Feature ADF BAND DFTB ReaxFF MLPot. ForceField MOPAC
Density of states (DOS) X (doc) X (doc)
Dielectric function X (doc)
Effective mass X (doc) X (doc)
Electronic band structures X (doc) X (doc)
k-space sampling X (doc) X (doc)
X-ray form factors X (doc)

9.2. Summary of engine capabilities 191

../ADF/Input/EFG.html
../BAND/Spectroscopy_and_Properties/EFG.html
../ADF/Input/Transport.html
../BAND/Electronic_Transport/NEGF.html
../DFTB/NEGF.html
../ADF/Input/Bond_energy_analysis.html
../BAND/Analysis/Energy_Decomposition_Analysis.html
../ADF/Input/ESREPR.html
../ADF/Input/Polarizabilities.html
../ADF/Input/NMR.html
../MOPAC/Input.html#properties
../ADF/Input/Solvents_and_other_environments.html
../BAND/Model_Hamiltonians/Solvation.html
../DFTB/DFTB_Model_Hamiltonian.html#solvation-gbsa
../MOPAC/Input.html#solvation
../ADF/Input/Electronic_Configuration.html
../BAND/Model_Hamiltonians/Relativistic_Effects_and_Spin.html
../DFTB/DFTB_Model_Hamiltonian.html#scc-details-and-spin-polarization
../MOPAC/Input.html#model-hamiltonian
../ADF/Input/Spectroscopic_properties.html
../DFTB/Spectroscopy_and_Properties.html#excited-states-with-time-dependent-dftb
../BAND/Analysis/DOS.html
../DFTB/Spectroscopy_and_Properties.html#electronic-structure-of-periodic-systems
../BAND/Spectroscopy_and_Properties/Time_Dependent_Current_DFT.html
../BAND/Spectroscopy_and_Properties/Effective_Mass.html
../DFTB/Spectroscopy_and_Properties.html#electronic-structure-of-periodic-systems
../BAND/Analysis/Band_Structure.html
../DFTB/Spectroscopy_and_Properties.html#electronic-structure-of-periodic-systems
../BAND/Accuracy_and_Efficiency/K-Space_Integration.html
../DFTB/DFTB_Model_Hamiltonian.html#k-space-integration
../BAND/Spectroscopy_and_Properties/X-Ray_Form_Factors.html


AMS Manual, Amsterdam Modeling Suite 2020

9.3 External programs as engines

The AMS driver allows running external programs as an engine. In this way users can combine the functionality in
the AMS driver (tasks and PES point properties) with the energies and gradients of any molecular modeling program
they have access to. For example, the graphical user interface supports setting up VASP as an external engine to the
AMS driver.

In general, the interfacing between the AMS driver and the external program has to be done by the user in form of
a small script, which allows users to hook up any external program without access to the source code of AMS. The
graphical user interface of the Amsterdam Modeling Suite can then be used to analyze the results of these calculations.

An external engine is specified with Engine External. The keyword Execute is used to specify the command
that is run to execute the external program:

Engine External
Execute /path/to/my_interface_script.sh

EndEngine

The command can in principle be anything, as it will just be executed as is by the system shell. However, it should not
use relative paths (e.g. to files in the directory where the input file is). We recommend writing the interfacing script in
Python and using the Python interpreter that ships with AMS:

Engine External
Execute "$AMSBIN"/amspython /path/to/my_python_interface_script.py

EndEngine

AMS then starts running and for every geometry prepares a folder in which the external engine is supposed to run.
This is the folder in which the interface script specified with the Execute key is executed (so any relative paths are
relative to that folder). AMS puts two files into this folder:

system.xyz
request.json

The system.xyz just contains the geometry AMS wants the external engine to calculate. It is an extended format
XYZ file (page 285) with the VEC1, VEC2, VEC3 extension at the end for periodic systems, e.g. diamond would look
like this:

2

C -0.51292147 -0.51292147 -0.51292147
C 0.51292147 0.51292147 0.51292147
VEC1 0.00000000 2.05168587 2.05168587
VEC2 2.05168587 -0.00000000 2.05168587
VEC3 2.05168587 2.05168587 0.00000000

The request.json file is just a small JSON file that specifies what exactly AMS wants the external engine to
calculate:

{
"title": "GOStep28",
"quiet": false,
"gradients": true,
"stressTensor": false,
"hessian": true,
"dipoleMoment": false,
"properties": true,

(continues on next page)

192 Chapter 9. Engines

../GUI/VASP_via_AMS.html
../GUI/VASP_via_AMS.html


AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

"prevResults": "GOStep27"
}

The job of the interfacing script is now to read these files, run the external program and convert its output into a format
understood by AMS. Generally these are simple text files with the name of the property and the extension .txt. The
bare minimum the interfacing script needs to produce is the file energy.txt containing a single number, i.e. the total
energy in atomic units (Hartree). Other properties are optional, and it is easiest to go through the request.json
entries one by one to see what AMS might request and what the interfacing script could produce in response.

title Just a title for this particular engine run. It can be passed on to the external program if desired, or can just be
ignored.

quiet Whether AMS wants the external engine to write to standard output. This can be ignored in principle, but
that might lead to really incomprehensible text output files of AMS if the external engine has to be called many
times, e.g. for numerical derivatives.

gradients Whether or not to calculate nuclear gradients. The interface script should put the gradients in a file
called gradients.txt with nAtoms lines of 3 real numbers each, in atomic units, i.e. Hartree/Bohr. Note
that AMS wants the gradients, not forces (beware the - sign!).

stressTensor Whether to calculate the stressTensor for periodic systems. Should be written to
stresstensor.txt in atomic units.

hessian Whether to calculate the Hessian, that is just the second derivative of the energy with respect to the nuclear
coordinates, without applying any mass weighing to it. If the Hessian has been calculated, it should be put in
hessian.txt as a 3 nAtoms x 3 nAtoms matrix in atomic units.

dipoleMoment If true, calculate the dipole moment and put it in dipolemoment.txt in atomic units, in one
line with three numbers.

properties This is set to true if AMS considers this “geometry” important and wants the engine to calculate
further properties that the user might be interested in. In practice this is set to “true” for e.g. the final converged
step in a geometry optimization, so that the user can then let the engine calculate e.g. the band structure, which
one would not want to do at all the steps during the optimization. AMS can’t do anything with the properties
that the engine might calculate, but the files will remain on disk for people to inspect them.

prevResults This is the title of a previous similar calculation that the engine has already performed. These results
can be accessed in ../$prevResults/, so for the example above GOStep28 can access the results from
the previous step in the geometry optimization in ../GOStep27/. This is just the directory in which the
interfacing script was run when the title field was set to GOStep27, so files that were written back then are
still accessible. They can in principle be used to restart for example the SCF of the engine from step to step. Of
course all of that has to be done by the interfacing script. The AMS driver does not know anything about how
to restart the external program and can only point the interfacing script to the right location.

That is really all there is to the external engine: AMS prepares a folder with system.xyz and request.json and
runs the user’s interfacing script in there, which has to take care of preparing the input for the external engine, running
it, and putting the results in the text files that AMS expects, e.g. gradients.txt.

Note for properties that are in one way or another derivatives of the energy, it is generally ok if the external engine does
not calculate what was requested by the AMS driver in request.json. If AMS requests, for example, the gradients
from the external engine, but then does not find the gradients.txt in the directory after the interfacing script has
run, it will just assume that the engine was not capable of calculating the gradient analytically. AMS will then just
do the gradient numerically by rerunning the external engine for displaced geometries, reading only the energy from
energy.txt. In this sense it is only absolutely required for the external engine to produce the energy, the rest can
be done numerically by AMS if required. It is of course best to let the engine do as much as possible, especially if
it implements analytical derivatives. Note that currently AMS can not calculate the Hessian numerically for engines
that do not provide gradients. This is just a technical limitation, as it is of course possible to do a second derivative
numerically, but it is just not implemented in AMS yet. (And it would also be a very slow way to calculate a Hessian.)

9.3. External programs as engines 193



AMS Manual, Amsterdam Modeling Suite 2020

In addition to the Execute keyword that specifies the interfacing script, it is also possible to use the ExecuteAtEnd
keyword to specify another command to be run at the end of the calculation, for example after the last step of a
geometry optimization or molecular dynamics simulation. This command is run in the results directory.

Moreover, the Engine External block can also contain some information about the capabilities of the external
engines:

Engine External
Execute {...}
ExecuteAtEnd {...}
Supports

DipoleMoment {true|false}
PeriodicityNone {true|false}
PeriodicityChain {true|false}
PeriodicitySlab {true|false}
PeriodicityBulk {true|false}

End
EndEngine

The normal engines that come with AMS (e.g. DFTB and BAND) produce the engine output files with extension
.rkf in the results directory, see here (page 15). These files are also produced when an external engine is used and
the information on them (anything related to the shape of the PES at that point, e.g. normal modes, phonons, . . . ) can
be visualized normally with the graphical interface. In addition to each engine output .rkf file, external engines will
also produce a correspondingly named folder per engine file, which is just the working directory of the interfacing
script for that particular invocation of the external program. These folders just contain the full output of the external
program and anything that the interfacing script might have produced. In this way users still have access to all results
from the external program, even if these results were not communicated back to the AMS driver.

This last point is probably best illustrated with a simple example. Consider the following job that uses an external
engine to do a linear transit calculation of ethane, going from the staggered to the eclipsed configuration, calculating
normal modes at all converged points along the path:

AMS_JOBNAME=ethane_torsion $AMSBIN/ams << EOF

Task PESScan

System
Atoms

C 0.00000000 0.00000000 0.76576000
C 0.00000000 0.00000000 -0.76576000
H -0.88668938 0.51193036 1.16677000
H 0.88668938 0.51193036 1.16677000
H 0.00000000 -1.02386071 1.16677000
H 0.00000000 1.02386071 -1.16677000
H -0.88668938 -0.51193036 -1.16677000
H 0.88668938 -0.51193036 -1.16677000

End
End

PESScan
CalcPropertiesAtPESPoints True
ScanCoordinate

nPoints 5
Dihedral 3 1 2 6 60.0 0.0

End
End

Properties
(continues on next page)

194 Chapter 9. Engines



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

NormalModes True
End

Engine External
...

EndEngine

EOF

If we run this job and look into the results folder, we will find the standard ams.log and ams.rkf as well as the
usual engine result files PESPoint(1).rkf to PESPoint(5).rkf. Just as if we had used one of the native AMS
engines, like DFTB. Each of these files can be opened in AMSspectra to visualize the normal modes for this particular
point. For an external engine we additionally have one folder per engine file, so for this example we would have
PESPoint(1)/ to PESPoint(5)/. These are the folders in which the interfacing script ran for these particular
points, so they contain all the native output files of the external program.

9.4 Toy engines

The AMS driver comes with a simple built-in toy engine that implements a Lennard-Jones potential. This can some-
times be useful for testing, as many properties of the Lennard-Jones gas/liquid/solid can be calculated analytically and
compared to the results from AMS. Note that the potential is exactly the same for all elements, i.e. the N-N bond has
exactly the same strength as the He-He bond.

The Lennard-Jones engine only has three keywords, which define the shape of the potential:

Engine LennardJones
RMin float
Eps float
Cutoff float

EndEngine

Cutoff

Type Float

Default value 15.0

Unit Angstrom

Description The distance at which the interaction is truncated.

Eps

Type Float

Default value 1.0

Unit Hartree

Description The depth of the potential well.

RMin

Type Float

Default value 1.0

Unit Angstrom

Description The distance of the potential minimum.

9.4. Toy engines 195



AMS Manual, Amsterdam Modeling Suite 2020

9.5 Engine add-ons

Engine add-ons can be used to augment the results returned from an engine.

9.5.1 Dispersion corrections

For engines that do not natively support Grimme’s D3 and D4 dispersion corrections, the D3Dispersion and
D4Dispersion engine add-ons can be used to add such corrections.

EngineAddons
D3Dispersion

Damping [BJ | Zero]
Enabled Yes/No
Functional string
a1 float
a2 float
s6 float
s8 float
sr6 float

End
D4Dispersion

Enabled Yes/No
Functional [...]
Verbosity [Silent | Normal | Verbose | VeryVerbose]
a1 float
a2 float
s6 float
s8 float
s9 float

End
End

EngineAddons

D3Dispersion

Type Block

Description This block configures the add-on that adds the Grimme D3 dispersion correction to
the engine’s energy, gradients, and stress tensor.

Damping

Type Multiple Choice

Default value BJ

Options [BJ, Zero]

Description Type of damping: BJ (Becke-Johnson) or Zero. BJ is recommended for most
applications.

Enabled

Type Bool

Default value No

Description Enables the D3 dispersion correction addon.

Functional

196 Chapter 9. Engines



AMS Manual, Amsterdam Modeling Suite 2020

Type String

Default value PBE

Description Use the D3 parameterization by Grimme for a given xc-functional. Accepts
the same values as the –func command line option of the official dftd3 program. Note:
the naming convention is different from elsewhere in the AMS suite. For example, BLYP
should be called b-lyp.

a1

Type Float

Description The a1 parameter. Only used if Damping is set to BJ. If set, it overwrites the a1
value for the chosen functional.

a2

Type Float

Description The a2 parameter. Only used if Damping is set to BJ. If set, it overwrites the a2
value for the chosen functional.

s6

Type Float

Description The s6 parameter, global scaling parameter. If set, it overwrites the s6 value for
the chosen functional.

s8

Type Float

Description The s8 parameter. If set, it overwrites the s8 value for the chosen functional.

sr6

Type Float

Description The sr6 parameter. Only used if Damping is set to Zero. If set, it overwrites the
sr6 value for the chosen functional.

D4Dispersion

Type Block

Description This block configures the addon that adds the Grimme D4(EEQ) dispersion correc-
tion to the engine’s energy and gradients.

Enabled

Type Bool

Default value No

Description Enables the D4 dispersion correction addon.

Functional

Type Multiple Choice

Default value PBE

Options [HF, BLYP, BPBE, BP86, BPW, LB94, MPWLYP, MPWPW91, OLYP, OPBE,
PBE, RPBE, REVPBE, PW86PBE, RPW86PBE, PW91, PW91P86, XLYP, B97, TPSS,
REVTPSS, SCAN, B1LYP, B3LYP, BHLYP, B1P86, B3P86, B1PW91, B3PW91, O3LYP,
REVPBE0, REVPBE38, PBE0, PWP1, PW1PW, MPW1PW91, MPW1LYP, PW6B95,

9.5. Engine add-ons 197



AMS Manual, Amsterdam Modeling Suite 2020

TPSSH, TPSS0, X3LYP, M06L, M06, OMEGAB97, OMEGAB97X, CAM-B3LYP,
LC-BLYP, LH07TSVWN, LH07SSVWN, LH12CTSSIRPW92, LH12CTSSIFPW92,
LH14TCALPBE, B2PLYP, B2GPPLYP, MPW2PLYP, PWPB95, DSDBLYP, DSDPBE,
DSDPBEB95, DSDPBEP86, DSDSVWN, DODBLYP, DODPBE, DODPBEB95, DODP-
BEP86, DODSVWN, PBE02, PBE0DH, B1B95, MPWB1K, REVTPSSH, GLYP,
REVPBE0DH, REVTPSS0]

Description Use the D4 parameterization by Grimme for a given xc-functional.

Verbosity

Type Multiple Choice

Default value Silent

Options [Silent, Normal, Verbose, VeryVerbose]

Description Controls the verbosity of the dftd4 code. Equivalent to the –silent, –verbose,
and –very-verbose command line switches of the official dftd4 program.

a1

Type Float

Description The a1 parameter, see D4 article. The physically reasonable range for a1 is
[0.0,1.0]. If set, it overwrites the a1 value for the chosen functional.

a2

Type Float

Description The a2 parameter, see D4 article. The physically reasonable range for a2 is
[0.0,7.0]. If set, it overwrites the a2 value for the chosen functional.

s6

Type Float

Description The s6 parameter, see D4 article. The physically reasonable range for s6 is
[0.0,1.0]. If set, it overwrites the s6 value for the chosen functional.

s8

Type Float

Description The s8 parameter, see D4 article. The physically reasonable range for s8 is
[0.0,3.0]. If set, it overwrites the s8 value for the chosen functional.

s9

Type Float

Description The s9 parameter, see D4 article. If set, it overwrites the s9 value for the chosen
functional.

9.5.2 Pressure

Pressure can be included using the following keyword (this can only be used for 3D periodic systems):

EngineAddons
Pressure float

End

EngineAddons

198 Chapter 9. Engines



AMS Manual, Amsterdam Modeling Suite 2020

Pressure

Type Float

Default value 0.0

Unit GPa

Description Add a hydrostatic pressure term to the engine’s energy and stress tensor. Can only
be used for 3D periodic boundary conditions.

The engine’s energy will include the following extra term: 𝑃 · 𝑉 , where 𝑉 is the volume of the unit cell. The engine’s
stress tensor will include the following extra term: 𝑃 · 1, where 1 is the identity matrix. This can only be used for
3D periodic boundary conditions (i.e. bulk). The energy and stress tensor printed in output and written to the .rkf
binary file will include these extra terms (i.e. the printed stress tensor is the sum of the internal stress and the external
stress do to pressure).

When studying the effect that pressure has on the structure and properties of your system, one should generally start by
optimizing the structure (page 41) including the lattice vectors under pressure. Properties such as phonons (page 155)
or elastic tensor (page 126) can then be computed at the relaxed geometry. If you are investigating phase transitions
under pressure (or if you simply expect some symmetry breaking) you should disable symmetry and/or perturb the
initial geometry of your system.

See also:

Example: Periodic lattice optimization under pressure (page 221)

Warning: If you want to include pressure in molecular dynamics (page 75) calculations, you should not use this
engine addon, but use the MD-specific pressure option.

9.5.3 Non-isotropic external stress

An non-isotropic external stress tensor can be included by using the following keywords:

EngineAddons
ExternalStress

StressTensorVoigt float_list
UpdateReferenceCell Yes/No

End
End

EngineAddons

ExternalStress

Type Block

Description This block configures the addon that adds external stress term to the engine’s energy
and stress tensor.

StressTensorVoigt

Type Float List

Unit a.u.

GUI name External stress tensor

9.5. Engine add-ons 199



AMS Manual, Amsterdam Modeling Suite 2020

Description The elements of the external stress tensor in Voigt notation. One should specify
6 numbers for 3D periodic system (order: xx,yy,zz,yz,xz,xy), 3 numbers for 2D periodic
systems (order: xx,yy,xy) or 1 number for 1D periodic systems.

UpdateReferenceCell

Type Bool

Default value No

Description Whether ot not the reference cell should be updated every time the system
changes (see documentation).

The energy and stress tensor printed in output and written to the .rkf binary file already include the corresponding
extra terms, i.e. the printed stress tensor is the sum of the internal stress and the input-specified external stress.

When studying the effect that an external stress has on the structure and properties of your system, one should generally
start by optimizing the structure (page 41) including the lattice vectors under the external stress (depending on the
magnitute of the applied external stress, you might have to adjust the stress energy per atom convergence threshold
(page 42)). If your system is symmetric, you should disable symmetry when optimizing structures under external
stress. Be aware that the geometry optimization might go completely astray (e.g. the material will break apart) if you
apply a) too large shear stress or b) too large tension stress (too large negative stresses for the diagonal values).

Following this paper4 from Parrinello and Rahman, the extra energy term due to a non-isotropic external stress5 is
defined with respect to a reference unit cell, which in our case is the unit cell at the beginning of the simulation.
If, during the simulation, large deformations of the unit cell occur, the above mentioned energy expression is only
approximately consistent with the stress tensor. This affects the calculation differently depending on whether the
stress tensor is computed by the engine or by AMS via numerical differentiation: a) If the stress tensor is computed
directly by the engine, for large unit-cell deformations the energy might increase during the optimization; b) If the
stress tensor is computed by AMS via numerical differentiation, the actual final value of the stress tensor might not
match perfectly the external stress specified in the input (for large cell deformations, this error can be in the order of
10%).

After the optimization under external stress is converged, it is therefore good practice to validate the results. To do this,
you should compute the stress tensor (page 125) at the optimized geometry by performing a single point calculation
(page 39) without applying the external stress. The values in the computed stress tensor should have opposite sign
compare to the external stress applied during the optimization. If the values differ too much, then you can run a second
geometry optimization under external stress starting from the optimized geometry.

See also:

Example: Boron nitride optimization under external stress (page 223)

An alternative option is to set the key ExternalStress%UpdateReferenceCell to True; this will update
the reference unit cell at every optimization step, effectively changing the definition of the energy expression at every
geometry optimization step. The energy might not consistently go down during the optimization, but the resulting
internal stress will match much better the applied external stress. This option should only be used during geometry
optimizations (i.e. it should not be used when computing properties such as the elastic tensor).

See also:

Example: Graphene optimization under external stress (page 225)

4 M. Parrinello, and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied Physics 52,
7182 (1981) (https://doi.org/10.1063/1.328693)

5 The energy term due to a non-isotropic external stress is:

𝐸stress = 𝑝ℎ(𝑉 − 𝑉0) +
1

2
𝑉0𝑇𝑟[(𝜎 − 𝑝ℎ1)(ℎ𝑇−1

0 ℎ𝑇 ℎℎ−1
0 − 1)]

where: 𝜎 is the external stress tensor, 𝑝ℎ is the hydrostatic pressure associated with 𝜎 (i.e. the average of the diagonal elements of 𝜎), 𝑉 is the
volume of the unit cell (for 2D periodic systems this is the area of the cell, and for 1D periodic systems is the length of the cell), 𝑉0 is the volume
of the reference unit cell, ℎ are the lattice vectors in matrix form, ℎ0 are the lattice vectors of the reference unit cell in matrix form and 1 is the
identity matrix.

200 Chapter 9. Engines

https://doi.org/10.1063/1.328693
https://doi.org/10.1063/1.328693


AMS Manual, Amsterdam Modeling Suite 2020

9.5.4 Atom energies

This add-on adds an element-dependent energy for each atom in a system, effectively applying an energy shift. It does
not affect any other property.

EngineAddons
AtomEnergies # Non-standard block. See details.

...
End

End

EngineAddons

Type Block

Description This block configures all the engine add-ons.

AtomEnergies

Type Non-standard block

Description Add an element-dependent energy per atom. On each line, give the chemical ele-
ment followed by the energy (in atomic units).

The below example will add -0.5 Hartree for every H atom and -5.0 Hartree for every C atom in the system to the total
energy. The add-on will ignore any atoms of other elements:

EngineAddons
AtomEnergies

H -0.5
C -5.0

End
End

9.5.5 Restraints

A restraint is potential energy function (a spring) attached to a certain coordinate, for example, an interatomic distance,
the minimum of the potential energy being at the specified optimal value. A restraint can have one or two parameters:
a ForceConstant and, for some types, a F(Inf) value. The ForceConstant parameter corresponds to second derivative
of the restraint potential energy 𝑑2𝑉 (𝑥)

𝑑𝑥2 for any 𝑥 (harmonic restraints) or only at 𝑥 = 0 (other restraints). Here, 𝑥 is a
deviation from the restraint’s optimal value.

Geometry restraints can be added using the following input block:

Restraints
Profile [Harmonic | Hyperbolic | Erf]
fInfinity float
Distance atomIdx1 atomIdx2 OptValue {Profile} {fInfinity}
Angle
Dihedral
SumDist
DifDist

End

The shape of the restraint potential function is defined by its profile type (Harmonic, Hyperbolic, or Erf) and
the appropriate parameter(s). The Harmonic profile is most suitable for geometry optimizations but may result is
very large forces that can be problematic in molecular dynamics. For MD simulations the Hyperbolic or Erf
may be more suitable because the restraint force is bounded by a user-defined value. A Harmonic restraint is

9.5. Engine add-ons 201



AMS Manual, Amsterdam Modeling Suite 2020

defined as 𝑉 (𝑥) = 𝐶 𝑥2

2 . A Hyperbolic restraint is defined as 𝑉 (𝑥) = 𝑎(
√︀

1 + (𝑏𝑥)2 − 1). An Erf restraint

is defined as 𝑉 (𝑥) = 𝑎(𝑏𝑥 · 𝑒𝑟𝑓(𝑏𝑥) + 𝑒−(𝑏𝑥)2−1√
𝜋

), which corresponds to an indefinite integral of the error function
𝑑𝑉 (𝑥)
𝑑𝑥 = 𝑎𝑏 · 𝑒𝑟𝑓(𝑏𝑥). The 𝑎 and 𝑏 parameters are calculated from the FInfinity and ForceConstant values. The

Erf profile is very similar to Hyperbolic however its derivative converges to F(Inf) much faster.

The following keys define global parameters for all restraints.

Restraints

Profile

Type Multiple Choice

Default value Harmonic

Options [Harmonic, Hyperbolic, Erf]

GUI name Default restraint profile

Description Select the default type of restraint profile. The harmonic profile is most suitable
for geometry optimizations but may result is very large forces that can be problematic in
molecular dynamic. For MD simulations the Hyperbolic or Erf may be more suitable because
the restraint force is bounded by a user-defined value. A per-restraint profile type can be
specified after the ForceConstant value on the corresponding restraint line.

FInfinity

Type Float

Default value 1.0

GUI name Default F(inf)

Description Specify the default asymptotic value for the restraint force for the Hyperbolic and
Erf profiles, in Hartree/Bohr or Hartree/radian. A per-restraint value can be specified after
the profile type on the corresponding restraint line.

The following keys define individual restraints. The force constant, profile type and the F(Inf) value can be set for
each restraint individually.

Restraints

Distance

Type String

Recurring True

Description Specify two atom indices followed by the distance in Angstrom and, optionally, by
the ForceConstant (default is 1.0 in a.u.), profile type and F(Inf) (in a.u.). This restraint will
try to keep the distance between the two specified atoms at the given value. For periodic
systems this restraint follows the minimum image convention.

Angle

Type String

Recurring True

Description Specify three atom indices i j k followed by an angle in degrees and, optionally, by
the ForceConstant (default is 0.3 in a.u.), profile type and F(Inf) (in a.u.). This restraint will
try to keep the i-j-k angle at the given value. For periodic systems this restraint follows the
minimum image convention.

Dihedral

202 Chapter 9. Engines



AMS Manual, Amsterdam Modeling Suite 2020

Type String

Recurring True

Description Specify four atom indices i j k l followed by an angle in degrees and, optionally, by
the ForceConstant (default is 0.1 in a.u.), profile type and F(Inf) (in a.u.). This restraint will
try to keep the i-j-k-l dihedral angle at the given value. For periodic systems this restraint
follows the minimum image convention.

DifDist

Type String

Recurring True

Description Specify four atom indices i j k l followed by the distance in Angstrom and, op-
tionally, by the ForceConstant (default is 1.0 in a.u.), profile type and F(Inf) (in a.u.). This
restraint will try to keep the difference R(ij)-R(kl) at the given value. For periodic systems
this restraint follows the minimum image convention.

SumDist

Type String

Recurring True

Description Specify four atom indices i j k l followed by the distance in Angstrom and, op-
tionally, by the ForceConstant (default is 1.0 in a.u.), profile type and F(Inf) (in a.u.). This
restraint will try to keep the sum R(ij)+R(kl) at the given value. For periodic systems this
restraint follows the minimum image convention.

A default value for the force constant depends on the restraint type: 1.0 Hartree/Bohr for Distance, SumDist and
DifDist, 0.3 Hartree/radian for Angle and 0.1 Hartree/radian for Dihedral.

Below is an example if the Restraints block.

Restraints
Profile Hyperbolic # Change the default profile type
fInfinity 10.0 # Change the asymptotic value for the restraint force away

→˓from optimum
# Type Atoms OptValue FC Profile F(Inf)

Distance 1 2 5.0 1.0 Erf 1.0
Angle 1 2 3 90.0
Dihedral 4 1 2 3 180.0 0.1

# The next two together are equivalent to imposing two distance restraints: R(23) to
→˓0.85 Angstrom and R(14) to 0.65 Angstrom

SumDist 1 4 2 3 1.5 # Keep R(14)+R(23) as close to 1.5 Angstrom as possible
DifDist 1 4 2 3 0.2 # Keep R(14)-R(23) as close to 0.2 Angstrom as possible

End

9.5. Engine add-ons 203



AMS Manual, Amsterdam Modeling Suite 2020

204 Chapter 9. Engines



CHAPTER

TEN

UTILITIES

10.1 ChemTraYzer

10.1.1 General information

The ChemTraYzer scripts, developed in the Leonhard group (http://www.ltt.rwth-
aachen.de/forschung/molekulare_thermodynamik/molekulare_thermodynamik/project/ChemTraYzer_Modellierung_chemi/)
at Aachen University, provide a methodology for deducing quantitative reaction models from reactive molecular
dynamics (MD) simulations by identifying, quantifying, and evaluating elementary reactions of MD trajectories.

For usage with AMS, the scripts have been slightly modified and use RDKit instead of the openbabel-bindings. The
original paper, Automated Discovery of Reaction Pathways, Rate Constants, and Transition States Using Reactive
Molecular Dynamics Simulations, can be found here (http://dx.doi.org/10.1021/acs.jctc.5b00201).

10.1.2 Graphical user interface

See the combustion ReaxFF tutorial .

10.1.3 Command line execution

1. Open a terminal:

• on Linux: Ctrl+Alt+T usually works, otherwise browse your application menus

• on Windows: double click adf_command_line.bat in your ADF installation directory (e.g. C:/ADF2016.106),
enter ‘sh’ to go to a shell

2. cd into the directory where your trajectories are located with the terminal

3. Assuming your trajectory file is located in directory called jobname.results, running ChemTraYzer is a two
step procedure

• run the processing step (with default values)

$AMSBIN/amspython $AMSHOME/scripting/standalone/chemtrayzer/processing_scm.py
jobname.results

• run the analysis step (with default values)

$AMSBIN/amspython $AMSHOME/scripting/standalone/chemtrayzer/analyzing_scm.py
jobname.results

205

http://www.ltt.rwth-aachen.de/forschung/molekulare_thermodynamik/molekulare_thermodynamik/project/ChemTraYzer_Modellierung_chemi/
http://dx.doi.org/10.1021/acs.jctc.5b00201
../../Tutorials/MolecularDynamicsAndMonteCarlo/BurningMethane.html#step-5-analyze-it-create-a-reaction-network


AMS Manual, Amsterdam Modeling Suite 2020

You will probably want to adjust the settings. A list of all available options is shown by calling the scripts
without arguments, e.g. $AMSBIN/amspython $AMSHOME/scripting/standalone/chemtrayzer/
analyzing_scm.py

10.1.4 Results

ChemTraYzer creates several output files, the most relevant ones being:

reac.spec.tab

1st line: indices of the species, e.g. S1;S2;S3;etc. . .

2nd line: SMILES of the species, e.g. ;C;CC;CCO;CCOO;CO;O;[H];etc. . .

3rd - end: timestep, counts of the species, e.g. 150;0;0;2;. . . // step 150, current count of S3 == 2

reac.rate.tab

1st line: indices of the reactions, e.g. t [steps];R0;R0*;R1;R1*; // a “*” marks the back reaction

2nd line: the reactions formulated with the species indices, e.g. S0 + S0 + S0 + S13 -> S65; // see reac.spec.tab

3rd line: the reactions formulated with sum formulas, e.g. CH3 + H -> CH4, etc. . .

4th -. . . : timestep; rate constant of the reaction; rate constant of the back reaction; etc. . .

reac.pic/

folder containing the 2D structures (if obabel was able to create them) reac.pic/xyz/ xyz files of the species as they
first appeared in the trajectory

10.2 Trajectory Analysis

analysis is a standalone program that performs analysis of molecular dynamics trajectories created with AMS. It
can produce histograms and radial distribution functions. It is also used under the hood in AMSmovie (MD Properties
menu bar).

This is an example showing how to compute the oxygen-oxygen radial distribution function of a MD simulation using
the analysis utility program:

$AMSBIN/analysis <<eor

Task RadialDistribution

TrajectoryInfo
Trajectory

KFFilename ams.results/ams.rkf
Range 1 1000 2

End
End

RadialDistribution
NBins 1000
AtomsFrom

Element O
End
AtomsTo

Element O

(continues on next page)

206 Chapter 10. Utilities

../../GUI/AMSmovie.html


AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

End
End
eor

The analysis program reads one or more trajectory files (filename.rkf) from an AMS molecular dynamics (MD) or
a Grand Canonical Monte Carlo (GCMC) simulation. The file information is supplied in the TrajectoryInfo
input block. In this block, a separate Trajectory subblock needs to be supplied for each trajectory file. The
Trajectory subblock contains a mandatory keyword KFFilename, and an optional keyword Range. The latter
contains the initial frame to be read, the final frame to be read, and optionally the stepsize. By default all frames on
the trajectory file are read.

TrajectoryInfo
NBlocksToCompare integer
Trajectory

KFFilename string
Range integer_list

End
End

TrajectoryInfo

Type Block

Description All the info regarding the reading of the trajectory files.

NBlocksToCompare

Type Integer

Default value 1

Description Get an error estimate by comparing histograms for NBLocks time blocks of the
trajectory.

Trajectory

Type Block

Recurring True

Description All info regarding the reading of a single trajectory file.

KFFilename

Type String

Default value ams.rkf

Description The name of the AMS trajectory file.

Range

Type Integer List

Description Two or three values: start frame, end frame, step size.

All tools in the analysis program provide an option to obtain information on the equilibration of the simulation. If
the optional keyword NBlocksToCompare in the TrajectoryInfo block is set to a value 𝑁 higher than 1, the
trajectory is divided into 𝑁 blocks, and the analysis results for each block are compared. The variation in the analysis
result is provided as a standard deviation.

10.2. Trajectory Analysis 207



AMS Manual, Amsterdam Modeling Suite 2020

10.2.1 Radial Distribution Function (RDF)

The Analysis tool computes radial distribution functions 𝑔(𝑟) if the Task keyword is set to RadialDistribution.

Task [RadialDistribution | Histogram | AutoCorrelation]

Task

Type Multiple Choice

Options [RadialDistribution, Histogram, AutoCorrelation]

Description The analysis task.

Further details on the radial distribution functions are then set in the RadialDistribution block. If more than one
RadialDistribution block is present in the input, more than one radial distribution function will be computed.
The result is printed to output as text, as well as stored in a binary file (analysis.kf).

Description

A radial distribution function 𝑔(𝑟), or pair correlation function, is a density of distances between particles, relative
to the average distance density. The x-axis variable represents a distance 𝑟, while the y-axis represents the relative
density of that distance. For a complete homogeneous system of particles the 𝑔(𝑟) values for the distances between all
particles equals 1 everywhere.

Two sets of atoms Sfrom and Sto, of length 𝑛from and 𝑛to respectively, are specified with the keywords AtomsFrom and
AtomsTo in the RadialDistribution block. As a result the program computes 𝑛from *𝑛to distances 𝑟𝑠𝑖𝑗 between
atom 𝑖 in Sfrom and atom 𝑗 in Sto for each trajectory frame 𝑠 out of a total of 𝑛frames frames.

A normalized histogram is then computed from these distances, resulting in a function 𝑁(𝑟).

𝑁(𝑟) = 1
𝑛frames

∑︀𝑛frames
𝑠=1

∑︀𝑛from
𝑖=1

∑︀𝑛to
𝑗=1 𝛿(𝑟𝑠𝑖𝑗 − 𝑟).

This histogram is converted to a density, by dividing all values 𝑁(𝑟) with the volume 𝑉 (𝑟) = 4𝜋𝑟2𝑑𝑟 of a sphere-slice
at radius 𝑟 with thickness 𝑑𝑟.

The density is further converted to a relative density by dividing with the total density of the system 𝜌tot = 𝑛from*𝑛to
𝑉tot

,
yielding the final radial distribution function 𝑔(𝑟).

𝑔(𝑟) = 𝑁(𝑟)
𝑉 (𝑟)*𝜌tot

Options

Non-periodic systems The above equation assumes that the volume 𝑉tot of the system is a well-defined quantity. This
assumption is correct for systems with 3D periodicity, where the 𝑉tot is defined as the volume of the periodic cell. In
such a system the value of 𝑟 can be no larger than 𝑟max, the radius of the largest sphere that can be placed inside the
periodic cell.

If a system is non-periodic in one or more direction, then the program still computes a 𝑔(𝑟), only if the radius 𝑟𝑚𝑎𝑥 is
supplied by the user with the Range keyword in the RadialDistribution block. The radius is the second value
supplied.

RadialDistribution
Range float_list

End

RadialDistribution

Type Block

208 Chapter 10. Utilities



AMS Manual, Amsterdam Modeling Suite 2020

Recurring True

Description All input related to radial distribution functions.

Range

Type Float List

Description Either one, two, or three real values. If one it is the stepsize. If two, it is the
minimum value and the maximum value. If three, it is the minimum value, the maximum
value, and the stepsize. The stepsize overrides NBins.

In this case the volume 𝑉tot is assumed to be the volume of a sphere with radius 𝑟max.

NPT simulations The above equation further assumes that the volume 𝑉tot is constant throughout the simulation. The
𝑔(𝑟) of the trajectory from an NPT simulation can still be computed, and in this case 𝑉tot is the average value of the
volume of the periodic cell.

Simulations with varying numbers of atoms The above equation also assumes that 𝑛from and 𝑛to remain constant
throughout the simulation. However, in a Molecular Gun simulation particles can be added to the system, and in a
GCMC simulation particles can be both added and removed from the system. Nonetheless, the program still computes
a 𝑔(𝑟) in these situations.

If the AtomsFrom and AtomsTo blocks contain element names (supplied with the recurring Element keyword),
then every time atoms are added to or removed from the system, the sets of atoms Sfrom and Sto are re-evaluated.

If the AtomsFrom and AtomsTo blocks contain atom numbers (supplied with the recurring Atom keyword), these
numbers are updated in the sets S𝑓𝑟𝑜𝑚 and S𝑡𝑜 every time atoms are added to or removed from the system. If one of
the atoms from the set disappears, the number of distances contributing to the 𝑔(𝑟) decreases.

Note: Currently, the values of 𝑛𝑓𝑟𝑜𝑚 and 𝑛𝑡𝑜 in the normalization factor are taken from the last frame of the simulation.

Warning: If multiple trajectories are supplied, and the number of atoms changes between the end of one trajectory and
the beginning of another, this may result in an error in the atom numbers used by the program internally.

10.2.2 Histogram

The Analysis program computes histograms if the Task keyword is set to Histogram.

Task [RadialDistribution | Histogram | AutoCorrelation]

Task

Type Multiple Choice

Options [RadialDistribution, Histogram, AutoCorrelation]

Description The analysis task.

Further details on the histogram need to be specified in the Histogram block. If more than one Histogram block
is present in the input, more than one histogram will be computed. The result is printed to output as text, as well as
stored in a binary file (analysis.kf). By default the histogram contains the number of occurrences of a certain value,
but the normalized occurrence is provided if the keyword Normalized in the Histogram block is specified.

Histogram
Normalized Yes/No

End

Histogram

Normalized

10.2. Trajectory Analysis 209



AMS Manual, Amsterdam Modeling Suite 2020

Type Bool

Default value No

Description Give the normalized histogram.

Histograms can be computed for every quantity stored on the molecular dynamics trajectory file (ams.rkf) in the section
History. Example quantities are PotentialEnergy, KineticEnergy, TotalEnergy, Temperature. In the
histogram block, this quantity is selected with the keyword Variable in the Axis subblock. If more than one Axis
subblock is present, the dimensionality of the histogram is increased: Three Axis subblocks result in a 3D histogram.

For each histogram axis, the number of bins can be selected with the NBins keyword in the Axis block, in which
case the range of values along each axis is automatically determined. The default NBins value is 100.

Alternatively, a range and a stepsize can be selected with the keyword Range in the Axis subblock. The keyword
Range can contain one, two, or three values: 1: Only a stepsize. 2: A smallest value and a largest value. 3: A smallest
value, a largest value, and the stepsize.

Histogram
Axes

Axis
NBins integer
Range float_list
Variable string

End
End

End

Histogram

Type Block

Recurring True

Description All input related to histograms.

Axes

Type Block

Description Specifications for the histogram axes.

Axis

Type Block

Recurring True

Description Specifications for a single histogram axis.

NBins

Type Integer

Default value 100

Description The number of bins along the histogram axis.

Range

Type Float List

Description Either one, two, or three real values. If one it is the stepsize. If two, it is the
minimum value and the maximum value. If three, it is the minimum value, the maximum
value, and the stepsize. The stepsize overrides NBins.

210 Chapter 10. Utilities



AMS Manual, Amsterdam Modeling Suite 2020

Variable

Type String

Description The quantity along the histogram axis.

10.2.3 Autocorrelation Functions

The Analysis program computes autocorrelation functions (ACF) if the Task keyword is set to AutoCorrelation.

Task [RadialDistribution | Histogram | AutoCorrelation]

Task

Type Multiple Choice

Options [RadialDistribution, Histogram, AutoCorrelation]

Description The analysis task.

Further details need to be specified in the AutoCorrelation block. If more than one AutoCorrelation block
is present in the input, more than one ACF will be computed. The result is printed to output as text, as well as stored
in a binary file (analysis.kf).

AutoCorrelation
Atoms

Atom integer
Element string

End
DataReading [Auto | AtOnce | BlockWise]
InputValues

Values float_list
End
MaxStep integer
NPointsHighestFreq integer
Normalized Yes/No
Property [Velocities | DipoleMomentFromCharges | InputValues |

→˓DiffusionCoefficient]
TimeStep float
UseTimeDerivative

Enabled Yes/No
ProjectOutRotations Yes/No

End
End

AutoCorrelation

Atoms

Type Block

Description Relevant if Property is set to Velocities, DipoleMomentFromCharges, or Diffu-
sionCoefficient. Atom numbers or elements for the set of atoms for which the property is
read/computed. By default all atoms are used.

Atom

Type Integer

Recurring True

Description Atom number.

10.2. Trajectory Analysis 211



AMS Manual, Amsterdam Modeling Suite 2020

Element

Type String

Recurring True

Description Element Symbol Atom.

DataReading

Type Multiple Choice

Default value Auto

Options [Auto, AtOnce, BlockWise]

Description The KF data can be read in and handledt once, or blockwise. The former is memory
intensive, but mostly faster. If Auto is selected, the data is read at once if it is less than 1 GB,
and blockwise if it is more.

InputValues

Type Block

Description Relevant is Property is set to InputValues. All input values (a vector on each line).

Values

Type Float List

Recurring True

Description The values at each step (on a single line)

MaxStep

Type Integer

Description The maximum interval of the autocorrelation. The default is half of the number of
provided frames.

NPointsHighestFreq

Type Integer

Default value 4

Description The number of points (timesteps) used for the highest frequency displayed in spec-
trum. This determines up to which frequency the spectrum is displayed. If the spacing be-
tween time-steps used for the ACF is 1 fs, then by default the maximum frequency displayed
is 0.25 fs-1 (or 8339 cm-1). A higher number selected here, will result in a lower maximum
frequency returned by the program. The default value is 4. and the lowest possible value
(spectrum up to highest possible frequency) is 2.

Normalized

Type Bool

Default value Yes

Description Determines if the ACF is normalized. Keyword is overruled (set to False) if Prop-
erty is set to DiffusionCoefficient.

Property

Type Multiple Choice

Default value DipoleMomentFromCharges

212 Chapter 10. Utilities



AMS Manual, Amsterdam Modeling Suite 2020

Options [Velocities, DipoleMomentFromCharges, InputValues, DiffusionCoefficient]

Description Compute the ACF either from velocities (from rkf), the dipole moment (from
atomic charges in rkf), or from values specified in input. If DiffusionCoefficient is selected
the unnormalized velocity autocorrelation function is computed and integrated.

TimeStep

Type Float

Description Relevant if Property is set to InputValues. The time separating the entries (in fs). If
Property is set to Velocities, DipoleMomentFromCharges, or DiffusionCoefficient, then the
property can be obtained from an RKF file, and the timestep is read from the RKF file as
well. The read value then overrides this keyword.

UseTimeDerivative

Type Block

Description Possibly use the time derivative of the selected property (e.g. velocity or dipole
moments).

Enabled

Type Bool

Default value No

Description Enable the use of the time derivative of the property.

ProjectOutRotations

Type Bool

Default value No

Description Take the rotations out of the time derivative.

Description

An autocorrelation function 𝐶(𝑡) describes the average correlation (overlap) of a (vector) property A with itself as a
function of time.

𝐶(𝑡) = ⟨A(0) · A(𝑡))⟩

The average runs over all time-intervals (𝑡0, 𝑡0 + 𝑡) , (𝑡1, 𝑡1 + 𝑡) , ..., (𝑡𝑁 , 𝑡𝑁 + 𝑡), with 𝑡𝑁 = 𝑡𝑛 − 𝑡𝑚. Here 𝑛 is
the total number of simulation steps in the trajectory, and 𝑚 is the number of discrete 𝑡 values for which 𝐶(𝑡) is
computed. The value 𝑚 can be set with the keyword MaxStep, and defaults to half the total number of simulation
steps. If applicable, the average also runs over all possible contributions to A at each simulation timestep. The
normalized autocorrelation function 𝑐(𝑡) describes the decorrelation of the property with time, and always starts at 1.0
at 𝑡 = 0.

𝑐(𝑡) = ⟨A(0)·A(𝑡))⟩
⟨A(0)·A(0))⟩

In most cases short timescale fluctuations are important, so frequent storage of the desired property is required
(when preparing the molecular dynamics simulation, set the Frequency keyword in the Trajectory block of
the MolecularDynanimcs settings low, preferably to 1).

A power spectrum is automatically computed by Fourier transform of the autocorrelation function, and provides in-
formation on the frequencies of the signal. When the selected property is the dipole moment, the power spectrum
matches the IR spectrum.

10.2. Trajectory Analysis 213



AMS Manual, Amsterdam Modeling Suite 2020

Options

Autocorrelation functions can be computed for different simulation properties: 1) Dipole moments from atomic
charges 2) Velocities 3) User provided values.

AutoCorrelation
Property [Velocities | DipoleMomentFromCharges | InputValues |

→˓DiffusionCoefficient]
End

AutoCorrelation

Type Block

Recurring True

Description All input related to auto correlation functions.

Property

Type Multiple Choice

Default value DipoleMomentFromCharges

Options [Velocities, DipoleMomentFromCharges, InputValues, DiffusionCoefficient]

Description Compute the ACF either from velocities (from rkf), the dipole moment (from
atomic charges in rkf), or from values specified in input. If DiffusionCoefficient is selected
the unnormalized velocity autocorrelation function is computed and integrated.

With the keyword Normalized a normalized ACF is computed, and with the keyword MaxStep the number of
values 𝑛 in the autocorrelation function (𝑡 = [0, 𝑡1, 𝑡2, ...., 𝑡𝑛]) can be set. The default value is half of the total number
of simulation steps used.

A subset of atoms for which the property A should be selected/computed can be provided in the block Atoms. The
block can contain element names (recurring keyword Element), or individual atom numbers (recurring keyword
Atom).

AutoCorrelation
Atoms

Atom integer
Element string

End
End

AutoCorrelation

Type Block

Recurring True

Description All input related to auto correlation functions.

Atoms

Type Block

Description Relevant if Property is set to Velocities, DipoleMomentFromCharges, or Diffu-
sionCoefficient. Atom numbers or elements for the set of atoms for which the property is
read/computed. By default all atoms are used.

Atom

Type Integer

214 Chapter 10. Utilities



AMS Manual, Amsterdam Modeling Suite 2020

Recurring True

Description Atom number.

Element

Type String

Recurring True

Description Element Symbol Atom.

10.2.4 Diffusion Coefficient

The diffusion coefficient can be computed as the integral over the velocity autocorrelation function.

𝐷 = 1
3

∫︀ 𝑡=𝑡𝑚𝑎𝑥

𝑡=0
⟨v(0) · v(𝑡))⟩𝑑𝑡

The factor 1
3 corrects for the dimension of the system, which we assume to be always 3.

The diffusion coefficient is computed if the task AutoCorrelation is selected, and if in the AutoCorrelation
block DiffusionCoefficient is selected as the Property.

$AMSBIN/analysis <<eor
Task AutoCorrelation
AutoCorrelation

Property DiffusionCoefficient
End

eor

AutoCorrelation

Type Block

Recurring True

Description All input related to auto correlation functions.

Property

Type Multiple Choice

Default value DipoleMomentFromCharges

Options [Velocities, DipoleMomentFromCharges, InputValues, DiffusionCoefficient]

Description Compute the ACF either from velocities (from rkf), the dipole moment (from
atomic charges in rkf), or from values specified in input. If DiffusionCoefficient is selected
the unnormalized velocity autocorrelation function is computed and integrated.

Again, a subset of atoms can be selected with the sublock Atoms.

The value of the diffusion coefficient is written to the output, as well as to the KF file.

10.3 VCD Analysis: VCDtools

The auxiliary program VCDtools provides insight regarding the origin of the VCD intensity of a given normal mode.
This is done by analyzing and visualizing the various contributions to the total Electric (E) and Magnetic (M) Dipole
Transition Moments (DTM). e.g., the contributions from atoms, electrons, nuclei and molecular fragments. The VCD-
tools program is accessible through the AMS-GUI and allows one to:

10.3. VCD Analysis: VCDtools 215



AMS Manual, Amsterdam Modeling Suite 2020

1) Scale the size of the atoms with the magnitude of their atomic EDTM or MDTM contributions.

2) Visualize the various contributions to the EDTMs and MDTMs by arrows.

3) Perform a General Coupled Oscillator (GCO) analysis to evaluate the interactions between the different parts of
a molecule.

4) Decompose the total EDTM and MDTM into nuclear and electronic contributions to gain insight into effects
induced in the VCD spectra by charge transfer.

5) Perform a VCD robustness analysis.

See also:

Tutorial: Analysis of the VCD spectrum of Oxirane with VCDtools

VCDtools requires only the standard result file adf.rkf from an VCD calculation using the ADF engine. Once this file is
opened with AMSspectra the VCDtools program will be accessible through the standard user interface of AMSspectra.

VCDtools produces one ASCII file, VCDtools.out where all output from the program is printed. This file will be
located in the .results folder in the directory of the opened adf.rkf result file. Additionally, VCDtools will run on the
background every time a new normal mode is selected. It then computes the atomic EDTM and MDTM which can be
displayed inside AMSspectra in various ways.

The following references should be cited when publishing results obtained with VCDtools Refs.123.

10.3.1 General Theory

The VCD intensity associated with the fundamental vibrational transition for a given normal mode 𝑗 is given by the
rotational strength (RS):

𝑅01(𝑗) = −𝑖�⃗�𝑡𝑜𝑡
01 (𝑗) · �⃗� 𝑡𝑜𝑡

10 (𝑗)

where 𝐸𝑡𝑜𝑡
01 (𝑗) and 𝑀 𝑡𝑜𝑡

10 (𝑗) are the total EDTM and MDTM of normal mode 𝑗 , 𝑖 is the unit imaginary number.

Whiten the harmonic approximation the total EDTM and MDTM can be written as sums of atomic contributions:

�⃗�𝑡𝑜𝑡
01 (𝑗) =

𝑁∑︁
𝜆=1

�⃗�𝜆
01(𝑗)

�⃗� 𝑡𝑜𝑡
10 (𝑗) =

𝑁∑︁
𝜆=1

�⃗�𝜆
10(𝑗)

where 𝑁 is the total number of atoms in the molecule and 𝜆 runs over all atoms.

10.3.2 General Coupled Oscillator Analysis

The GCO analysis computes the contribution to total rotational strength from the interaction of two molecular frag-
ments. This information provides important insight regarding the source of the VCD intensity and the robustness of
the computed VCD sign. In the following, a brief summary of the GCO theory originally published in Ref.1 is given.

Following the original coupled oscillator VCD mechanism, the atoms of a molecule are grouped into three fragments:
A, B, and R. The fragments A and B represent the important Coupling Oscillator (CO) fragments, while fragment

1 V.P. Nicu, Revisiting an old concept: the coupled oscillator model for VCD. Part 1: the generalised coupled oscillator mechanism and its
intrinsic connection to the strength of VCD signals, Physical Chemistry Chemical Physics 18, 21202 (2016) (https://doi.org/10.1039/C6CP01282E)

2 V.P. Nicu, J. Neugebauer and E.J. Baerends, Effects of Complex Formation on Vibrational Circular Dichroism Spectra, Journal of Physical
Chemistry A 112, 6978 (2008) (https://doi.org/10.1021/jp710201q)

3 M.A.J. Koenis, O. Visser, L. Visscher, W.J. Buma, V.P. Nicu, GUI Implementation of VCDtools, A Program to Analyze Computed Vibrational
Circular Dichroism Spectra, J. Chem. Inf. Model 60, 259 (2020) (https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00956)

216 Chapter 10. Utilities

../../Tutorials/VibrationalSpectroscopy/AnalysisOfVCDSpectrumOfOxirane.html
https://doi.org/10.1039/C6CP01282E
https://doi.org/10.1021/jp710201q
https://doi.org/10.1021/jp710201q
https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00956


AMS Manual, Amsterdam Modeling Suite 2020

R is the ancillary fragment containing the rest of the atoms. As a result, the total RS can be decomposed in three
components:

𝑅01(𝑗) = 𝑅GCO
01 (𝑗) + 𝑅IF

01 (𝑗) + 𝑅R
01(𝑗)

The first contribution 𝑅GCO
01 (𝑗), is the GCO contribution to the RS and is given by the interaction between the EDTM

and MDTM of fragments A and B:

𝑅GCO
01 (𝑗) = −𝑖 ·

[︁
�⃗�A

01(𝑗) · �⃗�B
10(𝑗) + �⃗�B

01(𝑗) · �⃗�A
10(𝑗)

]︁
The 𝑅IF

01 (𝑗) term represents the contribution from the individual fragments (IF) A and B without any interaction with
other fragments:

𝑅IF
01 (𝑗) = −𝑖 ·

[︁
�⃗�A

01(𝑗) · �⃗�A
10(𝑗) + �⃗�B

01(𝑗) · �⃗�B
10(𝑗)

]︁
and the 𝑅R

01(𝑗) contribution contains all contributions from fragment R:

𝑅R
01(𝑗) =− 𝑖 ·

[︁
�⃗�A

01(𝑗) · �⃗�R
10(𝑗) + �⃗�R

01(𝑗) · �⃗�A
10(𝑗)

]︁
− 𝑖 ·

[︁
�⃗�B

01(𝑗) · �⃗�R
10(𝑗) + �⃗�R

01(𝑗) · �⃗�B
10(𝑗) + �⃗�R

01(𝑗) · �⃗�R
10(𝑗)

]︁
In the above equations �⃗�X

01(𝑗) and �⃗�X
01(𝑗), with X = (A,B,R), are the EDTM and MDTM associated with the three

fragments.

Using the origin dependency of the MDTM, the GCO contribution can be rewritten in a form similar to the original
CO term:

𝑅GCO
01 (𝑗) =

𝜋𝜈𝑗
𝑐
· �⃗� GCO(𝑗) ·

[︁
�⃗�A

01(𝑗)× �⃗�B
01(𝑗)

]︁
where �⃗� GCO(𝑗) is the general coupled oscillator vector.

As shown in ref.1 most normal modes of a molecule (i.e. not just the carbonyl stretching modes) can be interpreted in
terms of the GCO mechanism. That is, for most normal modes one can define the GCO fragments A and B fragments
in such a way that the 𝑅GCO

01 (𝑗) term represent the dominant contributions to the rotational strengths. This second
expression for 𝑅GCO

01 (𝑗) does not depend on the MDTM (which is origin dependent). As such, it allows one to
interpret the VCD intensity of a mode in terms of interacting EDTMs that are associated with the various moieties of
a molecule and their relative orientation.

The identification of the GCO fragments (which are normal mode dependent) is not always trivial, especially, in
molecules without symmetry. Consequently, VCDtools offers several options for dividing the molecule into fragments.
In AMSspectra these fragments are referred as ‘Regions’ in analogy to the regions in the AMSinput program. Under
the Regions-menu there are many options to set, alter and save the fragments. Additionally, VCDtools is able to make
a guess for fragments A and B as will be discussed in more detail below.

10.3.3 Available options

Beside the standard calculation and visualization of the atomic contributions to the normal mode (NM) motion, EDTM
and MDTM, VCDtools offers three more advanced tools that can be utilized when analyzing VCD spectra inside
AMSspectra:

• GCO Analysis

• Guess GCO Fragments

• NM Localization on Regions

10.3. VCD Analysis: VCDtools 217



AMS Manual, Amsterdam Modeling Suite 2020

The first option, “GCO Analysis”, uses the above equations to decompose the RS in its different contributions. Printing
both the values and important angles between the vectors. Before this option can be run two regions inside the molecule
should be defined as fragments A and B. It is important that these regions do not contain the same atoms. Also since
the decomposition is different for each NM, a specific NM should be selected.

The second option, “Guess Fragments”, guesses which atoms belong the fragments A and B for a selected normal
mode. In doing so the 𝑅GCO

01 (𝑗) is maximized while keeping 𝑅R
01(𝑗) low. Additionally, it ensures that the fragments

are localized on a part of the molecule.

The third option, “NM Localization on Regions”, computes the percentage of the mass-weighed normal mode motion
that is located on the atoms in the selected regions. One or multiple regions can be computed at the same time and the
localizations are determined for all modes within a selected frequency window.

218 Chapter 10. Utilities



CHAPTER

ELEVEN

EXAMPLES

11.1 Geometry optimization

11.1.1 Example: Simple geometry optimization

Download GO_formaldehyde_noSCC.run

#!/bin/sh

$AMSBIN/ams << EOF

Task GeometryOptimization

System
Atoms [Bohr]

C 0.0 0.0 -1.0
O 0.0 0.0 1.247
H 0.0 -1.738 -2.097
H 0.0 1.738 -2.097

End
End

Engine DFTB
ResourcesDir Dresden
Model DFTB0
DispersionCorrection Auto

EndEngine

EOF

11.1.2 Example: Two-stage geometry optimization with initial Hessian

Download 2StepGO.run

#!/bin/sh

# Preoptimization with DFTB and calculation of the Hessian
# ========================================================
#
# We will reuse the geometry optimized at the DFTB level as a starting point for
# the DFT geometry optimization. We will also calculate the real Hessian with

(continues on next page)

219



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

# DFTB and use that as the initial Hessian for the Quasi-Newton based
# optimization at the DFT level. DFTB is so fast compared to DFT, that all of
# this is basically instantaneous. Our goal here is really just to reduce the
# number of steps in the DFT geometry optimization. If we save just a single
# step there, the initial DFTB calculation will already have paid for itself ...

AMS_JOBNAME=dftb_preopt $AMSBIN/ams << EOF

# Specify the system geometry: Aspirin
System

Atoms
C 0.000000 0.000000 0.000000
C 1.402231 0.000000 0.000000
C 2.091015 1.220378 0.000000
C 1.373539 2.425321 0.004387
C -0.034554 2.451759 0.016301
C -0.711248 1.213529 0.005497
O -0.709522 3.637718 0.019949
C -2.141910 1.166077 -0.004384
O -2.727881 2.161939 -0.690916
C -0.730162 4.530447 1.037168
C -0.066705 4.031914 2.307663
H -0.531323 -0.967191 -0.007490
H 1.959047 -0.952181 -0.004252
H 3.194073 1.231720 -0.005862
H 1.933090 3.376356 -0.002746
O -2.795018 0.309504 0.548870
H -2.174822 2.832497 -1.125018
O -1.263773 5.613383 0.944221
H -0.337334 4.693941 3.161150
H 1.041646 4.053111 2.214199
H -0.405932 3.005321 2.572927

End
End

# Do a geometry optimization.
Task GeometryOptimization

# Also compute the Hessian at the optimized geometry.
Properties

Hessian True
End

# Settings for the DFTB engine:
Engine DFTB

Model DFTB3
ResourcesDir DFTB.org/3ob-3-1

EndEngine

EOF

# Geometry optimization with DFT
# ==============================

AMS_JOBNAME=dft_opt $AMSBIN/ams << EOF

(continues on next page)

220 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

# Start from the geometry that is already optimized at the DFTB level.
LoadSystem

File dftb_preopt.results/dftb.rkf
End
# (equivalent to loading the system from dftb_preopt.results/ams.rkf)

Task GeometryOptimization

GeometryOptimization
InitialHessian

# Load the DFTB Hessian as the initial Hessian for the
# Quasi-Newton based optimizer.
Type FromFile
File dftb_preopt.results

End
End

# Settings for the BAND engine:
Engine BAND

Basis Type=TZP
XC GGA=PBE

EndEngine

EOF

11.1.3 Example: Periodic lattice optimization under pressure

Download Diamond_under_pressure.run

#! /bin/sh

# Calculate the phonon dispersion curves for diamond under pressure.

# Loop over pressure values (in GPa):
for P in -40 0 40 160 ; do
AMS_JOBNAME=pressure_$P $AMSBIN/ams << EOF

Task GeometryOptimization

System
Atoms

C -0.44625 -0.44625 -0.44625
C 0.44625 0.44625 0.44625

End
Lattice

0.0 1.785 1.785
1.785 0.0 1.785
1.785 1.785 0.0

End
End

GeometryOptimization
OptimizeLattice Yes
Convergence Gradients=1e-5 StressEnergyPerAtom=1E-5
Method Quasi-Newton

(continues on next page)

11.1. Geometry optimization 221



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

End

EngineAddons
Pressure $P

End

Properties
# Request the calculation of phonons at the optimized geometry.
Phonons Yes

End

NumericalPhonons
SuperCell

2 0 0
0 2 0
0 0 2

End
End

Engine DFTB
Model SCC-DFTB
ResourcesDir DFTB.org/mio-1-1
KSpace

Type Symmetric
Symmetric KInteg=5

End
Technical AnalyticalStressTensor=False

EndEngine

EOF
done

11.1.4 Example: Phase Transition Due To External Nonuniform Stress

Download Diamond_from_pressure.run

#!/bin/sh

# Starting from hexagonal graphite we optimize the crystal
# under the influence of a non-uniform stress tensor.
# The system will undergo a phase transition to a diamond structure
AMS_JOBNAME=Graphite2Diamond $AMSBIN/ams << eor

Task GeometryOptimization
EngineAddons

ExternalStress
StressTensorVoigt 0 0 0.01 0 -0.0003 0

End
End
System

Atoms
C 0.0000 0.0000 1.6507
C 0.0000 0.0000 -1.6507
C 0.0000 -1.4225 1.6507
C 0.0000 1.4225 -1.6507

(continues on next page)

222 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

End
Lattice

1.2319 -2.1338 0.0000
1.2319 2.1338 0.0000
0.0000 0.0000 6.6029

End
End
GeometryOptimization

MaxIterations 300
OptimizeLattice Yes
Convergence

Energy 1.0e-6
Gradients 1.0e-5
Step 1.0e-4

End
End
UseSymmetry No
Engine DFTB

Model SCC-DFTB
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ
KSpace

Quality Basic
End

EndEngine

eor

# The diamond structure is still compressed under the influence of the external
→˓stress.
# We now disable this term and relax the unit cell with the same DFTB model
AMS_JOBNAME=DiamondRelaxation $AMSBIN/ams << eor

Task GeometryOptimization
LoadSystem

File Graphite2Diamond.results/ams.rkf
End
GeometryOptimization

MaxIterations 300
OptimizeLattice Yes
Convergence

Energy 1.0e-6
Gradients 1.0e-5
Step 1.0e-4

End
End
UseSymmetry No
LoadEngine Graphite2Diamond.results/dftb.rkf

eor

11.1.5 Example: Boron nitride optimization under external stress

Download ExternalStress_BN.run

11.1. Geometry optimization 223



AMS Manual, Amsterdam Modeling Suite 2020

#!/bin/sh

# Some (fairly arbitrary) external stress in atomic units:
external_stress='0.001 0.0003 -0.0007 0.0005 0.0004 0.001'

# The external stress applied here will result in pretty large deformations.
# Since the external stress energy term becomes more and more approximate the
# larger the deformation from the initial cell is, after the first optimization,
# one should run a second geometry optimization starting from the converged
# results of the first one.

# It is always good practice to validate the optimization under external stress
# by computing the stress tensor of the final optimized geometry: the stress
# tensor at the optimized geometry should match the external stress applied during
# the optimization, but with reversed signs.

AMS_JOBNAME=first_go $AMSBIN/ams << eor

Task GeometryOptimization

System
Atoms

B 0.0 0.0 0.0
N 0.905 0.905 0.905

End
Lattice

0.0 1.81 1.81
1.81 0.0 1.81
1.81 1.81 0.0

End
SuperCell 2 2 2

End

GeometryOptimization
OptimizeLattice Yes
# The convergence threshold should be samller than the applied external stress:
Convergence Gradients=1.0E-4

End

# We want the external stress to break the symmetry:
UseSymmetry No

EngineAddons
ExternalStress

StressTensorVoigt $external_stress
End

End

Engine ForceField
EndEngine
eor

# The second geometry optimization starting from the results of the first one:

AMS_JOBNAME=second_go $AMSBIN/ams << eor

Task GeometryOptimization

(continues on next page)

224 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

LoadSystem
File first_go.results/ams.rkf

End

GeometryOptimization
OptimizeLattice Yes
Convergence Gradients=1.0E-5

End

UseSymmetry No

EngineAddons
ExternalStress

StressTensorVoigt $external_stress
End

End

LoadEngine first_go.results/forcefield.rkf
eor

# In the final calculation we simply compute the stress tensor of the final
# geometry, which should be the opposite of the external stress tensor applied
# during the optimization.

AMS_JOBNAME=sp $AMSBIN/ams << eor

Task SinglePoint

LoadSystem
File second_go.results/ams.rkf

End

UseSymmetry No

Properties StressTensor=Yes

LoadEngine first_go.results/forcefield.rkf
eor

echo "Applied external stress tensor (order: xx,yy,zz,yz,xz,xy):"
echo $external_stress
echo "Resulting final stress tensor:"
$AMSBIN/amsreport sp.results/forcefield.rkf -r "AMSResults%StressTensor#12.6f##3"

11.1.6 Example: Graphene optimization under external stress

Download ExternalStress_graphene.run

#!/bin/sh

# Here we perform an optimization under external stress using the
# UpdateReferenceCell option. When using this option the energy during
# the geometry optimization will not necessairly go down, but the final
# stress will match the ExternalStress with much hihger accuracy.

(continues on next page)

11.1. Geometry optimization 225



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

AMS_JOBNAME=go $AMSBIN/ams << eor

Task GeometryOptimization

System

Atoms
C 0.0 0.0 0.0
C 1.23647204352 0.7138774661 0.0

End
Lattice

1.23647204352 -2.1416324015 0.0
1.23647204352 2.1416324015 0.0

End
End

UseSymmetry no

EngineAddons
ExternalStress

StressTensorVoigt 0.01 0.02 0.003
UpdateReferenceCell Yes

End
End

GeometryOptimization
Method SCMGO
OptimizeLattice Yes
Convergence Gradients=1.0E-4

End

Engine DFTB
Model SCC-DFTB
ResourcesDir DFTB.org/pbc-0-3
KSpace Quality=Normal

EndEngine
eor

# Here we compute the stress tensor at the optimized geometry to validate
# the optimization under stress

AMS_JOBNAME=sp $AMSBIN/ams << eor

Task SinglePoint

LoadSystem
File go.results/ams.rkf

End

UseSymmetry no

Properties
StressTensor Yes

End

LoadEngine go.results/dftb.rkf
(continues on next page)

226 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

eor

echo "Resulting final stress tensor:"
$AMSBIN/amsreport sp.results/dftb.rkf -r "AMSResults%StressTensor#12.6f##2"

11.1.7 Example: Constrained optimizations

Download constraints.run

#!/bin/sh

# This example demonstrates the setup of all different types of constraints.
# Note that all constraints types can be combined with each other, as long as
# the resulting set of constraints actually makes sense. (It must of course be
# possible to satisfy all of them at the same time. AMS is not able to check
# that and you might get really surprising results if that is not the case ...)

# 1. Angle constraints
# ====================

AMS_JOBNAME=angle "$AMSBIN/ams" << EOF

Task GeometryOptimization

GeometryOptimization
Convergence Step=1.0e-3

End

System
Atoms

O 0.001356 0.000999 0.000000
H 0.994442 -0.037855 0.000000
H -0.298554 0.948531 0.000000

End
End

Constraints
# Fix the H--O--H angle to 125 degrees.
Angle 3 1 2 125.0

End

Engine DFTB
Model SCC-DFTB
ResourcesDir Dresden
DispersionCorrection Auto

EndEngine

EOF

# 2. Distance constraints
# =======================

AMS_JOBNAME=dist "$AMSBIN/ams" << EOF

(continues on next page)

11.1. Geometry optimization 227



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Task GeometryOptimization

GeometryOptimization
Convergence Step=1.0e-3

End

System
Atoms

O 0.001356 0.000999 0.000000
H 0.994442 -0.037855 0.000000
H -0.298554 0.948531 0.000000

End
End

Constraints
# Fix the O--H bond distances to 1.03 Angstrom.
Distance 1 2 1.03
Distance 1 3 1.03

End

Engine DFTB
Model SCC-DFTB
ResourcesDir Dresden
DispersionCorrection Auto

EndEngine

EOF

# 3. Dihedral angle constraint
# ============================

AMS_JOBNAME=dihed "$AMSBIN/ams" << EOF

Task GeometryOptimization

GeometryOptimization
Convergence Step=1.0e-3

End

System
Atoms

C -0.004115 -0.000021 0.000023
C 1.535711 0.000022 0.000008
H -0.399693 1.027812 -0.000082
H -0.399745 -0.513934 0.890139
H -0.399612 -0.513952 -0.890156
H 1.931188 0.514066 0.890140
H 1.931432 0.513819 -0.890121
H 1.931281 -1.027824 0.000244

End
End

Constraints
# Fix the dihedral angle H(6)--C(2)--C(1)--H(3) to 20 degrees.
Dihedral 6 2 1 3 20.00

(continues on next page)

228 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

End

Engine DFTB
Model SCC-DFTB
ResourcesDir Dresden
DispersionCorrection Auto

EndEngine

EOF

# 4a. Fixed atom constraint (Atoms keyword)
# =========================================

AMS_JOBNAME=atom "$AMSBIN/ams" << EOF

Task GeometryOptimization

GeometryOptimization
Convergence Energy=1.0e-6 Gradients=1.0e-4 Step=1.0e-3
CoordinateType Cartesian

End

System
Atoms

C -0.2460249052 -1.70363153 0.0005128649944
O 1.152833576 -1.81594932 -0.0004409224206
C 1.489235475 0.61782051 10.0004771689226
O 0.5700116914 0.627761615 10.0005491194077

End
End

Constraints
# Fix atom 1 and 2 at their initial positions.
Atom 1
Atom 2

End

Engine DFTB
Model SCC-DFTB
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

# 4b. Fixed atom constraint (AtomList keyword)
# ============================================

AMS_JOBNAME=atomlist "$AMSBIN/ams" << EOF

Task GeometryOptimization

GeometryOptimization
Convergence Energy=1.0e-6 Gradients=1.0e-4 Step=1.0e-3
CoordinateType Cartesian

End
(continues on next page)

11.1. Geometry optimization 229



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

System
Atoms

C -0.2460249052 -1.70363153 0.0005128649944
O 1.152833576 -1.81594932 -0.0004409224206
C 1.489235475 0.61782051 10.0004771689226
O 0.5700116914 0.627761615 10.0005491194077

End
End

Constraints
# Fix atom 1 and 2 at their initial positions.
AtomList 1:2

End

Engine DFTB
Model SCC-DFTB
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

# 4c. Fixed atom constraint (FixedRegion keyword)
# ===============================================

AMS_JOBNAME=region "$AMSBIN/ams" << EOF

Task GeometryOptimization

GeometryOptimization
Convergence Energy=1.0e-6 Gradients=1.0e-4 Step=1.0e-3
CoordinateType Cartesian

End

System
Atoms

C -0.2460249052 -1.70363153 0.0005128649944 region=fixed
O 1.152833576 -1.81594932 -0.0004409224206 region=fixed
C 1.489235475 0.61782051 10.0004771689226
O 0.5700116914 0.627761615 10.0005491194077

End
End

Constraints
# Fix all atoms in region "fixed"
FixedRegion fixed

End

Engine DFTB
Model SCC-DFTB
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

(continues on next page)

230 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

# 4d. Fixed atom constraint (overlapping combination)
# ===================================================

AMS_JOBNAME=combination "$AMSBIN/ams" << EOF

Task GeometryOptimization

GeometryOptimization
Convergence Energy=1.0e-6 Gradients=1.0e-4 Step=1.0e-3
CoordinateType Cartesian

End

System
Atoms

C -0.2460249052 -1.70363153 0.0005128649944 region=fixed
O 1.152833576 -1.81594932 -0.0004409224206 region=fixed
C 1.489235475 0.61782051 10.0004771689226
O 0.5700116914 0.627761615 10.0005491194077

End
End

Constraints
Atom 1
AtomList 1 2
FixedRegion fixed

End

Engine DFTB
Model SCC-DFTB
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

# 5. Fixed coordinate constraint
# ==============================

AMS_JOBNAME=coord "$AMSBIN/ams" << EOF

Task GeometryOptimization

GeometryOptimization
Convergence Energy=1.0e-6 Gradients=1.0e-4 Step=1.0e-3
CoordinateType Cartesian

End

System
Atoms

C -0.2460249052 -1.70363153 0.0005128649944
O 1.152833576 -1.81594932 -0.0004409224206
C 1.489235475 0.61782051 10.0004771689226
O 0.5700116914 0.627761615 10.0005491194077

End
End

Constraints
(continues on next page)

11.1. Geometry optimization 231



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

# Fix the x-coordinate of all atoms.
Coordinate 1 x
Coordinate 2 x
Coordinate 3 x
Coordinate 4 x

End

Engine DFTB
Model SCC-DFTB
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

# 6. Fixed atom constraint (in periodic system)
# =============================================

AMS_JOBNAME=pbcatom "$AMSBIN/ams" << EOF

Task GeometryOptimization

GeometryOptimization
Convergence Step=1.0e-3

End

System
Atoms

C -1.23 -0.710140830 0.0
C -1.23 -0.710140830 3.8
C 0.0 0.0 0.4
C 0.0 -1.42028166 3.355

End

Lattice
1.23 -2.130422493309719 0.0
1.23 2.130422493309719 0.0

End
End

Constraints
# Fix atom 1 and 3 at their initial positions.
Atom 1
Atom 3

End

Engine DFTB
Model SCC-DFTB
ResourcesDir DFTB.org/mio-1-1
KSpace Quality=GammaOnly

EndEngine

EOF

# 7. Block constraints (with listing the atoms in a block)
# ========================================================

(continues on next page)

232 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

AMS_JOBNAME=block_list "$AMSBIN/ams" << EOF

Task GeometryOptimization

System
Atoms

C 0.5584839616765542 0.5023705181144142 -0.4625483159356394
C 1.07173137896726 0.2125484528111251 -1.892767990599312
C 1.699248504588085 -1.006061067555322 -2.191856791501442
C 2.242484629452111 -1.236470028363516 -3.455616615521399
C 2.18874580207099 -0.2444337131062739 -4.435483595049287
C 1.604409798904145 0.9866950282217637 -4.135465239465763
C 1.061086793296828 1.217355116664161 -2.871773146851866
H 1.763625603740592 -1.780903563899969 -1.431707209662057
H 2.716038261390732 -2.190869049673275 -3.672115451399807
H 2.611833078693977 -0.4241619800888815 -5.420308290235123
H 1.578029796368043 1.774138556616255 -4.884624561698751
H 0.6247213391616491 2.187200330357715 -2.64521108544713
C 1.303528070245188 -0.1416812092038768 0.7303699949711653
C 0.8164830922475474 -1.314631142230651 1.326337082260565
C 1.531799364672407 -1.947399963062604 2.342825210379356
C 2.757684862125068 -1.432061688813837 2.765634667957531
C 3.271640455523863 -0.2897364031184506 2.150731553729188
C 2.556535912403799 0.3432056352653093 1.134221563049466
H -0.128925843064934 -1.7366201913903 0.9939642396630857
H 1.133600273086767 -2.849990046242235 2.799740694330775
H 3.31486005979636 -1.925049398411132 3.557912279830031
H 4.236604921323707 0.1064455961800578 2.457138367063388
H 2.976510069814392 1.222131876866508 0.6510413538003352
C -0.930165749820548 0.9153412637395284 -0.5420710991631585
C -1.791729737216814 0.6892660986048864 0.5418285200469819
C -3.111373625199894 1.139542032267652 0.5090625363459357
C -3.586568528476239 1.843983986018719 -0.5977864609101087
C -2.726152821786783 2.111108432452229 -1.663369105880468
C -1.406454626777386 1.660929752085611 -1.63085383469072
H -1.428888457076976 0.1571120160719108 1.417905619994904
H -3.76723983501283 0.9462006794587581 1.35432032282366
H -4.614972346570283 2.194578435055282 -0.6233521468909432
H -3.080200905921361 2.678981846821393 -2.520207901691867
H -0.7413545301831963 1.891248563160919 -2.459672151335554
C 1.235557647765805 1.735720249011045 0.1803884343948648
C 1.377191890012647 1.826646222422494 1.573181692925026
C 1.905898822116255 2.975086608901246 2.16214311213053
C 2.280792642899383 4.061906342938987 1.371311861877147
C 2.105006642447361 3.998471351380415 -0.0115253875199488
C 1.576317094651283 2.850163227898022 -0.6007264381779673
H 1.072424817958776 0.9937816064904853 2.202306496283991
H 2.017471491684088 3.023369029562452 3.242524256706377
H 2.693031233132915 4.956641734238467 1.830324484771476
H 2.372569859099136 4.8485771293401 -0.6342066225733602
H 1.427765851939196 2.820397327218896 -1.677480576376967

End
End

GeometryOptimization
Convergence

(continues on next page)

11.1. Geometry optimization 233



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Energy 1.0e-6
Gradients 1.0e-4
Step 1.0e-4

End
End

Constraints
# Create blocks from the 4 phenyl groups by specifying the atom indices
# explicitly. (The indices follow the order in the System%Atoms block,
# where we happen to have the atoms belonging to the different phenyl
# groups consecutive.)
BlockAtoms 2 3 4 5 6 7 8 9 10 11 12
BlockAtoms 13 14 15 16 17 18 19 20 21 22 23
BlockAtoms 24 25 26 27 28 29 30 31 32 33 34
BlockAtoms 35 36 37 38 39 40 41 42 43 44 45

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ

EndEngine

EOF

# 8. Block constraints (with named blocks)
# ========================================

AMS_JOBNAME=block_names "$AMSBIN/ams" << EOF

Task GeometryOptimization

System
Atoms

C 0.5584839616765542 0.5023705181144142 -0.4625483159356394
C 1.07173137896726 0.2125484528111251 -1.892767990599312

→˓region=phenyl1
C 1.699248504588085 -1.006061067555322 -2.191856791501442

→˓region=phenyl1
C 2.242484629452111 -1.236470028363516 -3.455616615521399

→˓region=phenyl1
C 2.18874580207099 -0.2444337131062739 -4.435483595049287

→˓region=phenyl1
C 1.604409798904145 0.9866950282217637 -4.135465239465763

→˓region=phenyl1
C 1.061086793296828 1.217355116664161 -2.871773146851866

→˓region=phenyl1
H 1.763625603740592 -1.780903563899969 -1.431707209662057

→˓region=phenyl1
H 2.716038261390732 -2.190869049673275 -3.672115451399807

→˓region=phenyl1
H 2.611833078693977 -0.4241619800888815 -5.420308290235123

→˓region=phenyl1
H 1.578029796368043 1.774138556616255 -4.884624561698751

→˓region=phenyl1
H 0.6247213391616491 2.187200330357715 -2.64521108544713

→˓region=phenyl1 (continues on next page)

234 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

C 1.303528070245188 -0.1416812092038768 0.7303699949711653
→˓region=phenyl2

C 0.8164830922475474 -1.314631142230651 1.326337082260565
→˓region=phenyl2

C 1.531799364672407 -1.947399963062604 2.342825210379356
→˓region=phenyl2

C 2.757684862125068 -1.432061688813837 2.765634667957531
→˓region=phenyl2

C 3.271640455523863 -0.2897364031184506 2.150731553729188
→˓region=phenyl2

C 2.556535912403799 0.3432056352653093 1.134221563049466
→˓region=phenyl2

H -0.128925843064934 -1.7366201913903 0.9939642396630857
→˓region=phenyl2

H 1.133600273086767 -2.849990046242235 2.799740694330775
→˓region=phenyl2

H 3.31486005979636 -1.925049398411132 3.557912279830031
→˓region=phenyl2

H 4.236604921323707 0.1064455961800578 2.457138367063388
→˓region=phenyl2

H 2.976510069814392 1.222131876866508 0.6510413538003352
→˓region=phenyl2

C -0.930165749820548 0.9153412637395284 -0.5420710991631585
→˓region=phenyl3

C -1.791729737216814 0.6892660986048864 0.5418285200469819
→˓region=phenyl3

C -3.111373625199894 1.139542032267652 0.5090625363459357
→˓region=phenyl3

C -3.586568528476239 1.843983986018719 -0.5977864609101087
→˓region=phenyl3

C -2.726152821786783 2.111108432452229 -1.663369105880468
→˓region=phenyl3

C -1.406454626777386 1.660929752085611 -1.63085383469072
→˓region=phenyl3

H -1.428888457076976 0.1571120160719108 1.417905619994904
→˓region=phenyl3

H -3.76723983501283 0.9462006794587581 1.35432032282366
→˓region=phenyl3

H -4.614972346570283 2.194578435055282 -0.6233521468909432
→˓region=phenyl3

H -3.080200905921361 2.678981846821393 -2.520207901691867
→˓region=phenyl3

H -0.7413545301831963 1.891248563160919 -2.459672151335554
→˓region=phenyl3

C 1.235557647765805 1.735720249011045 0.1803884343948648
→˓region=phenyl4

C 1.377191890012647 1.826646222422494 1.573181692925026
→˓region=phenyl4

C 1.905898822116255 2.975086608901246 2.16214311213053
→˓region=phenyl4

C 2.280792642899383 4.061906342938987 1.371311861877147
→˓region=phenyl4

C 2.105006642447361 3.998471351380415 -0.0115253875199488
→˓region=phenyl4

C 1.576317094651283 2.850163227898022 -0.6007264381779673
→˓region=phenyl4

H 1.072424817958776 0.9937816064904853 2.202306496283991
→˓region=phenyl4 (continues on next page)

11.1. Geometry optimization 235



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

H 2.017471491684088 3.023369029562452 3.242524256706377
→˓region=phenyl4

H 2.693031233132915 4.956641734238467 1.830324484771476
→˓region=phenyl4

H 2.372569859099136 4.8485771293401 -0.6342066225733602
→˓region=phenyl4

H 1.427765851939196 2.820397327218896 -1.677480576376967
→˓region=phenyl4

End
End

GeometryOptimization
Convergence

Energy 1.0e-6
Gradients 1.0e-4
Step 1.0e-4

End
End

Constraints
# Use the region from System%Atoms to set up the block constraints.
Block phenyl1
Block phenyl2
Block phenyl3
Block phenyl4

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ

EndEngine

EOF

# 9. Frozen strain components
# ===========================

AMS_JOBNAME=freezestrain "$AMSBIN/ams" << EOF

Task GeometryOptimization

GeometryOptimization
OptimizeLattice Yes
Convergence Step=1.0e-3

End

Constraints
# Keeps first two lattice vectors orthogonal to the third. Also fixes the
# length of the third vector, keeping the graphene layer compressed.
FreezeStrain xz yz zz

End

System
Atoms

C 1.332002504889882e-05 -0.0005830055256093706 -8.209389319526933e-06
(continues on next page)

236 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

C -1.22799350000696 -0.7102112812520209 2.281155685325205e-06
C -0.0006872840163290542 -0.0003386565731411325 -1.981477647175959
C 1.2274512359848 0.7092866246929653 -1.981478017299119
C 2.455989750017203 -0.000767672446473915 -5.638209535859324e-06
C 1.227983749989149 -0.7105220051279582 3.556077144406634e-06
C 2.455553905980411 -0.0003697961984884611 -1.981476578954899
C 3.68349483597652 0.7093774139714127 -1.981475303736415
C 4.912014119974971 -0.0004697689000645081 8.202057640607653e-06
C 3.68401303002027 -0.7103327188132248 -6.644074866545941e-06
C 4.911561265976663 -0.0002732185613776612 -1.98147535090646
C -3.685503114025999 0.7094747213946447 -1.98147447813657
C -2.457004890026731 -0.0008782302621621878 8.760751751649826e-06
C -3.684994169978904 -0.7103491590560944 -6.913500704937906e-06
C -2.45740142402999 -0.0002120088132086839 -1.981473170030486
C -1.229200584026242 0.709517932531879 -1.98147439816519
C 1.227980230018157 2.127401471357515 -5.950364005944094e-06
C 9.469984377119545e-06 1.417970232416515 5.120417805695729e-06
C 1.227229005981529 2.127790824745807 -1.981476944534885
C 2.45544009594217 2.837313001498961 -1.981464045820237
C 3.683977240012926 2.127396400995821 -4.237131224100653e-06
C 2.456019429974761 1.41770041892015 8.271514976735398e-06
C 3.683520895940616 2.127826615636785 -1.981463536474189
C 4.911484545967099 2.837408990674362 -1.981472216079415
C 6.140019459971655 2.127636216669431 9.289406940173374e-06
C 4.912011129977858 1.417969521782559 7.256699431696856e-06
C 6.139527915931508 2.12792209328836 -1.981460550680031
C -2.457504644023984 2.837506078460876 -1.981475136785154
C -1.229001220032881 2.127025640069692 1.077705178964691e-05
C -2.457025360024441 1.417788944250494 8.010947395781608e-06
C -1.229428944072945 2.128012192586653 -1.981459091806229
C -0.001217694074323372 2.837543459113209 -1.981458639351295
C 2.455982410005773 4.255441598373883 -1.892083560740779e-06
C 1.228003499971814 3.545886142064043 9.237737681677788e-06
C 2.455221785970465 4.255792992279458 -1.981473318340598
C -1.228386974045185 -3.547700260767117 -1.981468190394571
C 4.911976899993052 4.255411828501257 2.27723146438149e-06
C 3.684014579960917 3.545723396055813 1.280915829951697e-05
C 4.911520375955087 4.255828023455356 -1.981468278811
C 1.227655395958869 -3.547614761418386 -1.98146951906497
C -2.457018900008975 4.255512695928259 2.943041159330732e-06
C 6.140026009993287 3.545891232143294 2.20060806891485e-06
C 7.367526315913146 4.255927240986645 -1.981454533470139
C -6.141340994042006 -3.547511474074143 -1.981469232026619
C -0.001002500050462096 4.255387679251578 1.654017565004685e-05
C -1.228981830007242 3.545851372434187 2.37503105142233e-06
C -0.00142595404759982 4.256013860539822 -1.981467396982039
C -3.685044664049419 -3.547477052980626 -1.981466802486946
C -1.227808819999351 -2.12938224692705 -2.127801149456805e-07
C -2.455832350038186 -2.838708610558109 1.251523005803983e-05
C -1.228620264037983 -2.129205540950233 -1.981470550283798
C -0.0004192140835714842 -1.419477849521901 -1.981455609514733
C 1.228193719957573 -2.129406616582517 1.390527520593389e-05
C 0.0001477699611014405 -2.839255138681037 1.274825905530347e-05
C 1.227684425953123 -2.129163359695275 -1.981467635427455
C 2.455626385910209 -1.419413169537493 -1.981453570671329
C -6.140842350045955 -2.129322170430451 1.506226938282425e-05
C 2.456153479955113 -2.839200210115958 1.47101339575357e-05

(continues on next page)

11.1. Geometry optimization 237



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

C 3.683689305925244 -2.129064842197087 -1.981458500475127
C -4.913374384079035 -1.419316522220884 -1.981457095053834
C -3.684843340052955 -2.129350560151249 1.735547419229382e-05
C -4.912808430047692 -2.839071261955975 1.563048016823986e-05
C -3.685268534086676 -2.128978772839927 -1.98145459141338
C -2.45712732409351 -1.419353221465499 -1.981452351546793
C -2.996192032925579e-05 -0.000699242152149526 3.962939886687566
C -1.228003971875175 -0.7103778453492622 3.962925088122617
C -0.000700355908038296 -0.0003332148789394825 1.981452859744668
C 1.227439704045832 0.7092909964964251 1.981467977918086
C 2.455972288079895 -0.000591484995550912 3.962939812711258
C 1.228003298120663 -0.7104549535647978 3.962926452096982
C 2.455542044092204 -0.0003647244468015716 1.981452779807835
C 3.683482354040657 0.7093820057289575 1.981469673526022
C 4.912000348117807 -0.0004686671456845799 3.96292738718769
C 3.683997778083127 -0.7103249572456309 3.962938753391991
C 4.911548884078128 -0.0002680168299863262 1.981457393146928
C -3.685515265933381 0.7094801331342701 1.981461165904004
C -2.457014661901717 -0.0008761383582568633 3.962933787286889
C -3.685007531928472 -0.7103425373777408 3.962942555784025
C -2.457412705931413 -0.0002065770405354501 1.981460520958165
C -1.229211335932976 0.7095228343414065 1.98146103281522
C 1.227967348110556 2.127386193561453 3.962929764672974
C -4.281883530521391e-06 1.417919455416095 3.96292782690195
C 1.227218624090811 2.127796526544795 1.981453236878594
C 2.455427384033809 2.83731889320433 1.981471917810995
C 3.683966438104317 2.127406352683383 3.962931809362267
C 2.456006178071116 1.417740879775001 3.962942690498066
C 3.683508864080636 2.127831077384122 1.981456571921596
C 4.911472874041424 2.837414422441095 1.981469423240322
C 6.140006188100173 2.127640908364754 3.96293316778528
C 4.912000948062944 1.417975193600739 3.962945368689221
C 6.139515384034993 2.127928054994523 1.981471530520008
C -2.457516635928298 2.837511270211092 1.981459501137365
C -1.229012451945974 2.127104470095207 3.962948291371187
C -2.457033631907664 1.417792836176979 3.962935736248542
C -1.229441855971066 2.128017364296635 1.981473516125039
C -0.001231065982844282 2.83754798082405 1.981477377543141
C 2.455970918062962 4.255446730162459 3.962945363741043
C 1.227990978068837 3.545888883850297 3.962943437699987
C 2.455207564067417 4.255798083939164 1.981460905296909
C -1.228397585936881 -3.54769452897796 1.981462310609218
C 4.911964488060532 4.255420650159205 3.962946159605713
C 3.684002968100828 3.545727757822979 3.962932953064215
C 4.911507194030889 4.25583213519047 1.981472875202606
C 1.22764468406568 -3.547609799614339 1.981461473160161
C -2.457027591902453 4.255510887977889 3.962934029953071
C 6.140011718057854 3.545898453762834 3.962947035832434
C 7.367513404018803 4.25593209270268 1.981476837527609
C -6.141352815949912 -3.547506482310592 1.981466583645511
C -0.001013701916043441 4.255385511194097 3.962938483249906
C -1.228995721948309 3.545866003895579 3.962949056786192
C -0.001438315946372004 4.256019262267359 1.98146542401001
C -3.68505504595736 -3.547472521146422 1.981469025022036
C -1.227817711946263 -2.129397354545356 3.962948386486201
C -2.45584760189824 -2.838693919188594 3.962932647309199
C -1.22863031596877 -2.129200899095368 1.981472763926178

(continues on next page)

238 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

C -0.0004312259786934947 -1.419471387806733 1.981476015973903
C 1.228183428085925 -2.129384525179524 3.962937836939656
C 0.0001342880538246494 -2.839225227582055 3.962948356816577
C 1.227671624025677 -2.129158527960262 1.981474583888431
C 2.455614294015247 -1.419407657803005 1.981478001551132
C -6.140855951953014 -2.129314868796188 3.962950599781267
C 2.456139408049645 -2.839212628030558 3.962949726809414
C 3.683677514018658 -2.12905939044384 1.98147688315868
C -4.913386125957436 -1.419311390469788 1.981469050050141
C -3.68485488196171 -2.129348928295441 3.96295344930467
C -4.91282016191732 -2.839063750265042 3.962938899273355
C -3.685281025994509 -2.12897353111013 1.981481200585353
C -2.457141595966529 -1.419347949824808 1.981472029890663

End
Lattice

9.825000579999999 0.0 0.0
4.91182904 8.51302256 0.0
0.0 0.0 8.0

End
End

Engine DFTB
Model DFTB
ResourcesDir DFTB.org/mio-1-1
KSpace

Quality GammaOnly
End

EndEngine

EOF

# 10. Equalized strain components
# ===============================

AMS_JOBNAME=equalstrain "$AMSBIN/ams" << EOF

Task GeometryOptimization

GeometryOptimization
OptimizeLattice Yes
Convergence Step=1.0e-3

End

Constraints
# Keep the cell cubic, but allow the size of the cube to vary.
FreezeStrain xy xz yz
EqualStrain xx yy zz

End

System
Atoms

C -0.132285 3.230196 3.399625
H 0.67231 2.571995 3.747816
H -0.546925 3.782407 4.25108
H -0.921872 2.627955 2.935193
H 0.267346 3.938428 2.664409

(continues on next page)

11.1. Geometry optimization 239



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

C 2.647972 3.79511 0.161215
H 2.745753 2.707187 0.254494
H 2.108302 4.189352 1.030219
H 2.093026 4.03506 -0.753279
H 3.644808 4.248843 0.113424
C -3.290954 -3.607704 -3.419879
H -4.099867 -4.000479 -4.046956
H -2.386445 -3.482146 -4.026458
H -3.088346 -4.309774 -2.602634
H -3.589157 -2.638419 -3.003466
C -3.900392 1.971446 -2.092972
H -2.821972 1.97396 -1.895882
H -4.303924 2.977719 -1.930439
H -4.394183 1.265761 -1.414725
H -4.081488 1.668344 -3.130841
C -3.143958 -3.520015 3.393796
H -3.128547 -4.088022 2.456262
H -3.994325 -3.845525 4.004334
H -3.24151 -2.450891 3.171766
H -2.211449 -3.695621 3.94282
C -0.31406 -0.626145 3.522914
H -0.044022 0.228271 4.154493
H -1.353702 -0.912447 3.720437
H 0.346904 -1.471041 3.749005
H -0.205421 -0.349364 2.467723
C 3.411151 -3.454122 0.161835
H 2.877462 -2.569463 0.528433
H 4.211866 -3.141886 -0.518755
H 2.711585 -4.107617 -0.372385
H 3.843691 -3.997522 1.010048
H -3.283653 -0.451758 -4.172013
H -1.922139 0.6502520000000001 -3.802207
H -2.586463 -0.412172 -2.523601
C -2.360175 -0.332772 -3.593334
H -1.648446 -1.117408 -3.875514
C 3.046249 -3.33059 3.76859
H 2.414628 -3.18136 2.88506
H 2.465863 -3.831302 4.55235
H 3.39517 -2.358701 4.136729
H 3.909333 -3.950995 3.500222
C -3.086408 3.73574 0.4638
H -2.559805 3.990117 -0.463465
H -2.394025 3.813016 1.310247
H -3.469203 2.710618 0.397221
H -3.922599 4.429208 0.611196
C 3.736451 0.338903 -0.234383
H 4.139844 -0.659226 -0.441391
H 4.286082 0.789262 0.6004350000000001
H 2.675343 0.256879 0.028602
H 3.844535 0.968696 -1.125179
C -0.953217 3.761489 -3.029722
H -0.738671 2.687271 -2.986546
H -2.017033 3.913231 -3.24677
H -0.349572 4.223228 -3.819817
H -0.707592 4.222226 -2.065757
C 3.438238 3.368005 3.536049
H 3.718968 3.030104 2.531632

(continues on next page)

240 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

H 4.305113 3.831685 4.021198
H 3.102844 2.509703 4.129906
H 2.62603 4.10053 3.461459
C -0.093351 2.447961 0.147782
H 0.412783 2.191741 -0.790311
H -1.100739 2.015519 0.149423
H -0.163522 3.53817 0.239205
H 0.478074 2.046413 0.99281
C -0.06737899999999999 -1.067744 -0.644773
H 0.831493 -1.69444 -0.611303
H -0.920384 -1.630791 -0.248288
H -0.271712 -0.77696 -1.681851
H 0.091087 -0.168785 -0.037648
C -3.13266 0.095347 1.684164
H -2.468956 -0.758832 1.506078
H -3.797646 -0.127993 2.526632
H -3.731911 0.285949 0.786162
H -2.532126 0.982263 1.917783
C -3.650862 -2.700373 -0.074687
H -4.155919 -2.467829 0.87013
H -2.740814 -3.276506 0.129574
H -3.385824 -1.767849 -0.58654
H -4.32089 -3.289309 -0.711913
C 3.803884 3.754796 -3.348637
H 3.946713 2.667857 -3.350306
H 2.769436 3.987861 -3.626912
H 4.48894 4.214494 -4.07059
H 4.010448 4.148971 -2.34674
C 2.868209 0.11231 2.894284
H 2.317604 0.914041 2.388417
H 2.406222 -0.09055000000000001 3.867554
H 3.909847 0.420825 3.041412
H 2.839161 -0.7950739999999999 2.279753
C -0.320765 -3.560008 1.887422
H -0.965068 -2.68183 2.011986
H 0.02585 -3.901247 2.869895
H 0.543227 -3.294315 1.26713
H -0.88707 -4.36264 1.400678
C 2.415398 -1.437717 -2.776235
H 1.964383 -1.676188 -3.746573
H 2.445411 -2.340763 -2.155392
H 1.816728 -0.668767 -2.274091
H 3.43507 -1.065149 -2.928883
C -3.625996 2.934989 3.78523
H -4.070333 2.734452 2.803299
H -3.043299 2.064066 4.107404
H -4.421782 3.131813 4.513121
H -2.968572 3.809626 3.717096
C 1.422335 1.538945 -3.931672
H 0.608488 0.8054 -3.894205
H 2.3282 1.060135 -4.321529
H 1.616409 1.921293 -2.92272
H 1.136242 2.368954 -4.588236
C 0.028875 -3.521123 -2.677443
H 0.240436 -2.624091 -3.271089
H -0.857142 -3.347281 -2.055678
H 0.888225 -3.744967 -2.034598

(continues on next page)

11.1. Geometry optimization 241



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

H -0.156019 -4.368152 -3.348409
End
Lattice

10.0 0.0 0.0
0.0 10.0 0.0
0.0 0.0 10.0

End
End

Engine DFTB
Model DFTB
ResourcesDir DFTB.org/mio-1-1
KSpace

Quality GammaOnly
End

EndEngine

EOF

11.2 Transition state search

11.2.1 Example: TS search starting from initial Hessian

Download COChainFreqTS.run

#! /bin/sh

# This example demonstrates in the first step how to calculate the Hessian.
# The second run uses the pre-calculated Hessian and performs a transition
# state search along the frequency mode with the smallest frequency.

# First run: Calculate Hessian
# ============================

AMS_JOBNAME=hessian $AMSBIN/ams << EOF

Task SinglePoint

Properties
Hessian True

End

System
Atoms

C 0.0 0.0 0.0
O 1.5 0.5 0.0

End
Lattice

3.2 0.0 0.0
End

End

Engine Band
(continues on next page)

242 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Basis Type=DZP
KSpace Quality=Good

EndEngine

EOF

# Second run: TS search with initial Hessian
# ==========================================

AMS_JOBNAME=TS $AMSBIN/ams << EOF

Task TransitionStateSearch

System
Atoms

C 0.0 0.0 0.0
O 1.5 0.5 0.0

End
Lattice

3.2 0.0 0.0
End

End

GeometryOptimization
Convergence Gradients=1.0e-4
InitialHessian

# Load the pre-calculated Hessian as the initial Hessian for the
# transition state search using the Quasi-Newton based optimizer.
Type FromFile
File hessian.results/band.rkf

End
End

Properties
# Also calculate normal modes in the end, so we can see if we actually
# found a transition state.
NormalModes True

End

Engine Band
Basis Type=DZP
KSpace Quality=Good

EndEngine

EOF

11.2.2 Example: PES scan and TS search for H2 on graphene

Download PESScan_and_TS_H2_on_Graphene.run

#! /bin/sh

# First we do a 2D PES scan varying the z-coordinate of the two hydrogen atoms
# In this example we will keep the graphene slab fixed. From a physical/chemical

(continues on next page)

11.2. Transition state search 243



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

# standpoint this is not a good approximation. The graphene slab is
# intentionally not perfectly symmetric.

AMS_JOBNAME=PESScan $AMSBIN/ams << EOF

Task PESScan

System
Atoms

H 0.0 1.53633037 1.1
H 0.0 -0.11341359 1.1
C 0.001 1.42028166 0.0
C 1.230 2.13042249 0.0
C 1.230 -0.71014083 0.0
C 2.460 0.00000000 0.0
C 2.460 1.42028167 0.0
C 0.000 0.00000000 0.0

End
Lattice

3.69 -2.13042249 0.0
0.00 4.26084499 0.0

End
End

PESScan
ScanCoordinate

nPoints 10
Coordinate 1 Z 1.1 2.0

End
ScanCoordinate

nPoints 10
Coordinate 2 Z 1.1 2.0

End
End

GeometryOptimization
Convergence Step=1.0e-3

End

Constraints
# Fix the entire graphene slab.
Atom 3
Atom 4
Atom 5
Atom 6
Atom 7
Atom 8

End

Engine DFTB
Model DFTB
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ
KSpace

Type Symmetric
Symmetric KInteg=3

End
(continues on next page)

244 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

EndEngine

EOF

# A human looks at the PES scan and picks a reasonable starting point for the
# TS search. (Normally you would do that in AMSMovie by looking at the PES and
# then exporting the geometry into an xyz file.)

# _ ____
# ___)) [ | \
# ) //o | | ]
# _ (_ > | | ]
# (O) \__< | | ]
# [/] / \) [__|/_
# [\]| ( \ __/___\_____
# [/]| \ \__ ___| |
# [\]| \___E/%%/|____________|_
# [/]|=====__ (_________________)

cat << EOF > initial_geometry_for_TS.xyz
8

H 0.4145668856457391 1.72927656037925 1.100000023839768 region=H2
H -0.05533871972549955 -0.06805093626643093 1.500000013242627 region=H2
C 0.001 1.42028166 0.0
C 1.230 2.13042249 0.0
C 1.230 -0.71014083 0.0
C 2.460 0.00000000 0.0
C 2.460 1.42028167 0.0
C 0.000 0.00000000 0.0
VEC1 3.69 -2.13042249 0.0
VEC2 0.0 4.26084499 0.0
EOF

# Compute the partial initial Hessian to be used in the transition state
# search. (The Hessian will be computed only for the hydrogen atoms.)

AMS_JOBNAME=Hessian $AMSBIN/ams << EOF

Task SinglePoint

System
# Load the geometry we just saved.
GeometryFile initial_geometry_for_TS.xyz

End

Properties
# Calculate the Hessian (implied when calculating normal modes) ...
NormalModes True
# ... but only the part related to the hydrogen atoms.
SelectedRegionForHessian H2

End

Engine DFTB
Model DFTB

(continues on next page)

11.2. Transition state search 245



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ
KSpace

Type Symmetric
Symmetric KInteg=3

End
EndEngine

EOF

echo "Extract the frequencies from the kf file using amsreport:"
$AMSBIN/amsreport Hessian.results/dftb.rkf -r "Vibrations%Frequencies[cm-1]##1"

# Do a transition state search using the initial Hessian just computed (the
# Graphene slab is constrained). Also compute the final Hessian for the
# hydrogen atoms to validate the TS.

AMS_JOBNAME=TS $AMSBIN/ams << EOF

Task TransitionStateSearch

System
# Load the geometry we just saved.
GeometryFile initial_geometry_for_TS.xyz

End

GeometryOptimization
Quasi-Newton

Step TrustRadius=0.05
End
Convergence Gradients=1.0e-4
InitialHessian

# Load previously calculated Hessian as initial Hessian for a
# transition state search with the Quasi-Newton optimizer.
Type FromFile
File Hessian.results/dftb.rkf

End
End

TransitionStateSearch
# Follow the mode with the smallest frequency.
ModeToFollow 1
# (This is also the default, we wouldn't need to specify this.)

End

Constraints
# Fix the entire graphene slab.
Atom 3
Atom 4
Atom 5
Atom 6
Atom 7
Atom 8

End

Properties
(continues on next page)

246 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

NormalModes Yes
SelectedRegionForHessian H2

End

Engine DFTB
Model DFTB
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ

KSpace
Type Symmetric
Symmetric KInteg=3

End
EndEngine

EOF

echo "Extract energy from the rkf file using amsreport:"
$AMSBIN/amsreport TS.results/dftb.rkf -r "AMSResults%Energy"

11.3 Nudged Elastic Band (NEB)

11.3.1 Nudged Elastic Band (NEB) Examples

Here are a few examples showing how the NEB method can be used to obtain the the path and transition state of a
reaction.

See also:

Nudged Elastic Band (NEB) Documentation (page 62)

HCN isomerization reaction with NEB

Download NEB_HCN.run

H2 dissociation on graphene

Download NEB_H2_on_graphene.run

Running multiple NEB calculations using PLAMS

Download NEB.plms

This example should be executed using PLAMS.

See also:

PLAMS documentation and tutorial

11.3. Nudged Elastic Band (NEB) 247

../../plams/index.html
../../plams/index.html
../../Tutorials/WorkflowsAndAutomation/PythonScriptingWithPLAMS.html


AMS Manual, Amsterdam Modeling Suite 2020

11.4 Intrinsic reaction coordinate (IRC)

11.4.1 Example: IRC for HCN

Download IRC_HCN.run

#!/bin/sh

# == IRC scan of the reaction path ==

# The IRC calculation is split in two steps to illustrate the Restart feature.

# In the first calculation only a few points are computed along the so-called
# 'forward' path. The definition of which is 'forward' and which is
# 'backward' depends on the sign of the largest component of the normal mode
# corresponding to the reaction coordinate.

# The RKF file from this partial IRC scan serves as restart file
# for the next calculations that will continue the IRC scan.

# The 'MaxPoints' key in the IRC block is used to limit the number of IRC
# points to compute.

AMS_JOBNAME=irc1 $AMSBIN/ams << eor

Task IRC
System

Atoms
C 0.000000000000 0.000000000000 0.000000000000
N 0.000000000000 0.000000000000 -1.182644220000
H -1.103250760411 0.000000000000 -0.322462130000

End
End

IRC
MaxPoints 5
Direction Forward
CoordinateType Cartesian
InitialHessian

Type Calculate
End

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1

EndEngine

eor

# In the second IRC run, the IRC scan is finished. We start with the RKF file
# from the previous run and omit the MaxPoints from the settings, which means
# that the default 100 will be used. Note that the 100 also includes any points
# computed in the previous calculation. The program starts on
# the forward path, continuing where the first calculation had stopped,

(continues on next page)

248 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

# and completes it. Since we set the Direction to Both
# then AMS proceeds to the backward path. After both paths are finished a summary
# of the path characteristics is printed at the end of the output file.

AMS_JOBNAME=irc2 $AMSBIN/ams << eor

Task IRC
System

Atoms
C 0.000000000000 0.000000000000 0.000000000000
N 0.000000000000 0.000000000000 -1.182644220000
H -1.103250760411 0.000000000000 -0.322462130000

End
End

IRC
Restart

File irc1.results/ams.rkf
End
! Change options from the ones found in the restart file
! (MaxIRCPoints and MaxPoints will be reset to defaults automatically)
Direction Both

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1

EndEngine

eor

11.4.2 Example: TS and IRC for Claisen reaction

Download TS_and_IRC_Claisen.run

#! /bin/sh

# Transition State Search (TS search) followed by Intrinsic Reaction
# Coordinates (IRC) for two similar Claisen rearrangement reactions.

# ============================================================
# Claisen rearrangement from C=CCC1C=CC=CC1=O to C=CCOc1ccccc1
# ============================================================

AMS_JOBNAME=TS_molecule $AMSBIN/ams << eor

Task TransitionStateSearch

System
Atoms

C -1.6622561642524 -1.4933421191817 0.6484353677288
C -2.6070283916282 -1.7718977641902 -0.3933564306530
C -2.7546368861548 -3.0534770331072 -0.8757259422474

(continues on next page)

11.4. Intrinsic reaction coordinate (IRC) 249



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

C -1.9443405437492 -4.1131780924428 -0.3870796280948
C -1.0139402388630 -3.8827189276564 0.5979937257975
C -0.7543606665660 -2.5518266272325 1.0788971265869
H -3.2590342954832 -0.9734836183880 -0.7410179986476
H -3.5074724102535 -3.2690301027846 -1.6324229738243
H -2.1044351565280 -5.1220091436618 -0.7615296311573
H -0.4323033724363 -4.7107876462166 1.0021729248699
H -0.3533176373037 -2.4841001370767 2.0927436180830
O -1.5058234397159 -0.2844936546832 1.1029538316409
C 0.1375150486634 0.3928947854321 0.4626789880484
C 1.0578648498087 -0.6180364119671 0.7737587143345
C 0.8861173890663 -1.8991002496105 0.2125497351161
H 0.5725481135101 -1.9591100578644 -0.8292382400922
H -0.2171264706145 0.4859594211539 -0.5641152540806
H 0.1902646842718 1.3359879065177 1.0025369222419
H 1.5779002347488 -0.5540482019233 1.7307360489935
H 1.6031168776346 -2.6724262749099 0.4842127285858

End
End

Properties NormalModes=Yes

GeometryOptimization
InitialHessian Type=Calculate

End

Engine DFTB
Model SCC-DFTB
ResourcesDir DFTB.org/3ob-3-1

EndEngine
eor

AMS_JOBNAME=IRC_molecule $AMSBIN/ams << eor

Task IRC

IRC
MaxIterations 1000
InitialHessian

Type FromFile
File TS_molecule.results

End
end

LoadSystem
File TS_molecule.results/ams.rkf

End

Engine DFTB
Model SCC-DFTB
ResourcesDir DFTB.org/3ob-3-1

EndEngine
eor

# ===========================================================================
(continues on next page)

250 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

# Claisen rearrangement for a (periodic) polymer containing the same aromatic
# ring of the previous calculation (from C=CCC1C=CC=CC1=O to C=CCOc1ccccc1)
# ===========================================================================

AMS_JOBNAME=TS_polymer $AMSBIN/ams << eor

Task TransitionStateSearch

System
Atoms

C 9.4367476128766 1.6156795441351 0.8542644025030
C 8.6813349262903 0.7302865575002 0.0170374963868
C 9.3238583586638 -0.1438417574104 -0.8314773024306
C 10.741095802442 -0.1538813927018 -0.9297572682512
C 11.499909556383 0.6929842950328 -0.1576524435776
C 10.884234857485 1.6861365363275 0.6817028097694
C 7.1928255650616 0.6847044785103 0.0090333093191
H 8.7472521390038 -0.8479982636647 -1.4293934603813
H 11.224348014063 -0.8771406786637 -1.5831686891584
C 12.930798908912 0.8113031163622 -0.1971191730819
H 11.474366091679 2.0120169601893 1.5412690799783
O 8.8401614254340 2.4539245100299 1.6503819438045
C 9.0152184164720 4.1939147755043 0.9354292967913
C 10.386800460742 4.3070474573655 0.6675488559614
C 10.983233806221 3.4166811386158 -0.2473786535066
H 10.425317882010 3.1661173633779 -1.1491528320010
H 8.3301833043316 4.0024301166114 0.1091130317749
H 8.5863952766270 4.7863410214548 1.7409077918798
H 11.023307058306 4.7274400682699 1.4475913648158
H 12.053474297431 3.5124067242738 -0.4244212846926
C 13.897191373368 -0.0308805104165 -0.7206407708622
C 15.267346128343 0.2274543686942 -0.4348415320624
C 16.387786908031 -0.4341710477973 -0.8962646879782
C 6.2048264493065 -0.0924013581064 -0.6266734325417
C 4.8694123304551 0.1638639419185 -0.3442585289372
C 3.7074226634814 -0.4584344973285 -0.8689206409329
C 2.4653410147781 0.0102007864139 -0.4848760767909
H 16.298210512111 -1.2787892169088 -1.5797017846452
H 3.7984002771976 -1.2806821291979 -1.5787594353897
H 6.8240750625775 1.4435007199212 0.7047818340481
H 13.314194383001 1.6434188966421 0.3984353613768
H 13.626424975736 -0.8770823766787 -1.3528414377622
H 15.451469431625 1.0743039058568 0.2322503424471
H 2.4641684561885 0.8477050600186 0.2182734314177
H 6.4819803798672 -0.8741436365939 -1.3339335062636
H 4.6807561767470 0.9698264886906 0.3703766590249

End
Lattice

15.210 0.0 0.0
End

End

Properties
NormalModes Yes

End

GeometryOptimization
(continues on next page)

11.4. Intrinsic reaction coordinate (IRC) 251



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Method Quasi-Newton
InitialHessian Type=Calculate

End

Engine DFTB
Model SCC-DFTB
ResourcesDir DFTB.org/3ob-3-1

EndEngine
eor

AMS_JOBNAME=IRC_polymer $AMSBIN/ams << eor

Task IRC

IRC
MaxIterations 1000
InitialHessian

Type FromFile
File TS_polymer.results

End
Direction Forward

end

LoadSystem
File TS_polymer.results/ams.rkf

End

Engine DFTB
Model SCC-DFTB
ResourcesDir DFTB.org/3ob-3-1

EndEngine
eor

11.5 PES scan

11.5.1 Example: Linear transit

Download LinearTransit.run

#!/bin/sh

echo "================="
echo "HCN isomerization"
echo "================="
echo

AMS_JOBNAME=HCN_isomerization $AMSBIN/ams << EOF

Task PESScan
# (Linear transit is just a PES scan with 1 scan coordinate.)

(continues on next page)

252 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

System
Atoms

C 0.00000000 0.00000000 1.04219000
H 0.00000000 0.00000000 -0.03324000
N 0.00000000 0.00000000 2.20064000

End
End

PESScan
ScanCoordinate

nPoints 25
Angle 2 1 3 180.0 0.0

End
End

Engine DFTB
Model DFTB0
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

echo
echo "==================="
echo "Water angle transit"
echo "==================="
echo

AMS_JOBNAME=water_angle $AMSBIN/ams << EOF

Task PESScan

System
Atoms

O 0.00000000 0.00000000 0.59372000
H 0.00000000 0.76544000 -0.00836000
H 0.00000000 -0.76544000 -0.00836000

End
End

PESScan
ScanCoordinate

nPoints 25
Angle 2 1 3 80.0 180.0

End
End

GeometryOptimization
! Delocalized coordinates currently have a problem with linear systems.
! So we will use cartesian coordinates here.
CoordinateType Cartesian

End

Engine DFTB
Model DFTB0

(continues on next page)

11.5. PES scan 253



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

ResourcesDir DFTB.org/mio-1-1
EndEngine

EOF

echo
echo "===================="
echo "Hydrocarbon reaction"
echo "===================="
echo

AMS_JOBNAME=hydcarb $AMSBIN/ams << EOF

Task PESScan

System
Atoms

C 0.14667300 -0.21503500 0.40053800
C 1.45297400 -0.07836900 0.12424400
C 2.23119700 1.15868100 0.12912100
C 1.78331500 2.39701500 0.38779700
H -0.48348000 0.63110600 0.67664100
H -0.33261900 -1.19332100 0.35411600
H 2.01546300 -0.97840100 -0.14506700
H 3.29046200 1.03872500 -0.12139700
H 2.45728900 3.25301000 0.35150400
H 0.74193400 2.60120700 0.64028800
C -0.75086900 1.37782400 -2.43303700
C -0.05392100 2.51281000 -2.41769100
H -1.78964800 1.33942600 -2.09651100
H -0.30849400 0.43896500 -2.76734700
H -0.49177100 3.45043100 -2.06789100
H 0.98633900 2.54913500 -2.74329400

End
End

PESScan
ScanCoordinate

nPoints 25
Distance 1 11 3.36 1.538
Distance 4 12 3.36 1.538

End
End

Engine DFTB
Model DFTB0
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

echo
echo "====================================="

(continues on next page)

254 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

echo "Retinal trans -> 11-cis isomerization"
echo "====================================="
echo

AMS_JOBNAME=retinal_transcis $AMSBIN/ams << EOF

Task PESScan

System
Atoms

H -2.10968473 -1.58238733 0.78224517
C -2.10306857 -0.54058322 0.46363503
C -0.89436995 0.04807217 0.25528247
H -0.85555481 1.05432693 -0.15803658
C 0.38987539 -0.58661182 0.49038464
C 1.53213446 0.09657801 0.14394773
H 1.40518949 1.08783970 -0.29205231
H 3.05232192 -1.34477492 0.72115301
C 2.88311454 -0.36358433 0.28105432
C 3.96024700 0.37378345 -0.12385974
H 3.77965758 1.35231793 -0.56821856
C 5.34627719 -0.04025647 -0.02249097
C 6.32191717 0.80135945 -0.49190463
H 6.00090638 1.74979100 -0.92101391
C -4.46825064 -0.90426552 -0.39585925
C -5.87277429 -0.25303564 -0.45007491
C -3.41139545 0.06493448 0.19516310
C -3.67932839 1.38221399 0.41656971
C -5.81598497 1.19032366 -0.92660753
C -5.00049358 2.01922634 0.05561242
C -4.58391145 -2.18782901 0.46346394
C -4.01729542 -1.30039402 -1.82272212
C -2.72429960 2.32303313 1.10290124
C 0.40919453 -1.96244629 1.09501374
C 5.64155973 -1.38034133 0.59419110
C 7.76996060 0.56699126 -0.48750226
O 8.57693167 1.36615612 -0.92976322
H -6.51997817 -0.84904979 -1.10100203
H -6.32039371 -0.28079023 0.54871092
H -5.36159995 1.23817633 -1.92112092
H -6.82595442 1.60207678 -1.01946858
H -5.58216571 2.18390764 0.97424181
H -4.81292271 3.01993001 -0.35246294
H -4.74166770 -1.94289144 1.51126095
H -5.43008715 -2.78247632 0.12572479
H -3.69644845 -2.81116549 0.38705593
H -3.02900804 -1.75403268 -1.79820003
H -4.71056940 -2.01489741 -2.26202914
H -3.97070839 -0.42860260 -2.47090348
H -2.16469005 2.92261100 0.38111736
H -3.27791517 3.02297911 1.72885233
H -2.00470188 1.79865198 1.72726573
H -0.13689001 -1.97717074 2.03825359
H -0.07664772 -2.68134154 0.43362393
H 1.41837401 -2.31391556 1.28591185
H 5.15278730 -2.17622743 0.03222328
H 6.70436647 -1.59729505 0.62729622

(continues on next page)

11.5. PES scan 255



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

H 5.25700064 -1.42489613 1.61313095
H 8.12614442 -0.41441814 -0.04549414

End
End

PESScan
ScanCoordinate

nPoints 25
Dihedral 6 9 10 12 180 0
Dihedral 8 9 10 11 180 0

End
End

Engine DFTB
Model DFTB0
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

11.5.2 Example: 2D PES scan

Download PESScan.run

#!/bin/sh

echo "=============="
echo "Ethane torsion"
echo "=============="
echo

AMS_JOBNAME=ethane_torsion $AMSBIN/ams << EOF

Task PESScan

System
Atoms

C 0.0 0.0 0.76576
C 0.0 0.0 -0.76576
H -0.88668938 0.51193036 1.16677
H 0.88668938 0.51193036 1.16677
H 0.0 -1.02386071 1.16677
H 0.0 1.02386071 -1.16677
H -0.88668938 -0.51193036 -1.16677
H 0.88668938 -0.51193036 -1.16677

End
End

PESScan
# First scan coordinate: C--C bond distance
ScanCoordinate

nPoints 5
Distance 1 2 1.3 1.7

End

(continues on next page)

256 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

# Second scan coordinate: One of the H--C--C--H dihedral angles (others will
→˓follow naturally)

ScanCoordinate
nPoints 21
Dihedral 3 1 2 6 60.0 0.0

End
End

GeometryOptimization
Convergence Step=1.0e-3

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ

EndEngine

EOF

echo "=============="
echo "Ethene torsion"
echo "=============="
echo

AMS_JOBNAME=ethene_torsion $AMSBIN/ams << EOF

Task PESScan

System
Atoms

C 0.0 0.0 0.66687
C 0.0 0.0 -0.66687
H 0.0 0.92974 -1.23912
H 0.0 0.92974 1.23912
H 0.0 -0.92974 1.23912
H 0.0 -0.92974 -1.23912

End
End

PESScan
# First scan coordinate: C--C bond distance
ScanCoordinate

nPoints 5
Distance 1 2 1.1 1.8

End
# Second scan coordinate: Two of the H--C--C--H dihedrals
ScanCoordinate

nPoints 21
Dihedral 4 1 2 3 0.0 60.0
Dihedral 5 1 2 6 0.0 60.0

End
End

GeometryOptimization
Convergence Step=1.0e-3

(continues on next page)

11.5. PES scan 257



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ

EndEngine

EOF

# Below are more technical examples, demonstrating the PES scan gap filling.
# The QUASINANO2015 parameter set shows some discontinuities in the PES,
# which leads to problems with convergence. The first job leaves the
# non-converged steps as is while the second job instructs AMS to
# attept a second optimization for non-converged point starting from
# a different initial geometry.

echo "============================="
echo "Ethane gap filling test (1/2)"
echo "============================="
echo

AMS_JOBNAME=ethane_nofillgaps $AMSBIN/ams << EOF

Task PESScan

System
Atoms

C -2.333834610464788 -2.268837915270455 -0.2417723425321957
C -0.8081611038872945 -2.334371994724881 -0.04271045326758349
H -0.2505615773096904 -1.473443563856088 -0.38077110593546
H -0.3249814761083244 -3.235478579439597 -0.3904810245975267
H -0.583247370537557 -2.349691649662279 1.013499336841977
H -2.817014238243758 -1.367731330555738 0.1059982287977475
H -2.891434137042391 -3.129766346139247 0.09628831013568076
H -2.558748343814525 -2.253518260333056 -1.297982132641757

End
End

GeometryOptimization
CoordinateType Cartesian
Convergence Step=1.0e-3

End

PESScan
FillUnconvergedGaps False
CalcPropertiesAtPESPoints True
ScanCoordinate

nPoints 10
Distance 1 2 1.4 1.7

End
ScanCoordinate

nPoints 10
Distance 7 1 1.0 1.2
Dihedral 7 1 2 3 60.0 180.0

(continues on next page)

258 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

End
End

Engine DFTB
Model SCC-DFTB
ResourcesDir QUASINANO2015

EndEngine

EOF

echo "============================="
echo "Ethane gap filling test (2/2)"
echo "============================="
echo

AMS_JOBNAME=ethane_fillgaps $AMSBIN/ams << EOF

Task PESScan

System
Atoms

C -2.333834610464788 -2.268837915270455 -0.2417723425321957
C -0.8081611038872945 -2.334371994724881 -0.04271045326758349
H -0.2505615773096904 -1.473443563856088 -0.38077110593546
H -0.3249814761083244 -3.235478579439597 -0.3904810245975267
H -0.583247370537557 -2.349691649662279 1.013499336841977
H -2.817014238243758 -1.367731330555738 0.1059982287977475
H -2.891434137042391 -3.129766346139247 0.09628831013568076
H -2.558748343814525 -2.253518260333056 -1.297982132641757

End
End

GeometryOptimization
CoordinateType Cartesian
Convergence Step=1.0e-3

End

PESScan
FillUnconvergedGaps True
CalcPropertiesAtPESPoints True
ScanCoordinate

nPoints 10
Distance 1 2 1.4 1.7

End
ScanCoordinate

nPoints 10
Distance 7 1 1.0 1.2
Dihedral 7 1 2 3 60.0 180.0

End
End

Engine DFTB
Model SCC-DFTB
ResourcesDir QUASINANO2015

EndEngine

(continues on next page)

11.5. PES scan 259



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

EOF

11.6 Molecular dynamics

11.6.1 Example: Simple MD for H2

Download MD_hydrogen_longrun.run

#!/bin/sh

$AMSBIN/ams << eor

Task MolecularDynamics

MolecularDynamics
nSteps 1000
TimeStep 0.1
InitialVelocities Type=zero
Thermostat Type=none
Trajectory SamplingFreq=100

End

System
Atoms [Bohr]

H -2.0 0.0 0.0
H 2.0 0.0 0.0

End
End

Engine DFTB
Model SCC-DFTB
ResourcesDir Dresden
Occupation Strategy=Fermi Temperature=5
Repulsion

forcePolynomial true
End
DispersionCorrection Auto

EndEngine

eor

11.6.2 Example: MD for a box of water

Download H2O_nreac.run

11.6.3 Example: Lattice deformations in MD

Download MD_Deformation.run

260 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

#!/bin/sh

# This example consists of three MD runs exercising the Deformation feature in MD:
# 1. Simple deformations of a 2D slab
# 2. Complex sequence of deformations of a 3D box including multiple simultaneous
→˓deformations
# 3. Combination of a uniaxial strain with barostatting the remaining directions

# This run first oscillates the lengths of the lattice vectors of the original non-
→˓orthogonal
# lattice of an argon slab to 20 and 12 Angstrom respectively and back to the
→˓original values,
# with a period of 125 fs. Afterwards, it linearly morphs the lattice to a 5 by 5
→˓Angstrom square.
AMS_JOBNAME=Ar-2D "$AMSBIN/ams" <<EOR
# Set the random number seed to ensure reproducible results for testing. Omit this in
→˓normal runs.
RNGSeed -2056449389 -1942239902 -422783941 -563204803 439708673 85320298 1328648683 -
→˓688288369

Task MolecularDynamics

MolecularDynamics
nSteps 1000
TimeStep 0.25
CalcPressure True
InitialVelocities Type=Zero
Trajectory SamplingFreq=10
Deformation

StopStep 500
Type Cosine
TargetLength 20 12
Period 125

End
Deformation

StartStep 500
Type Linear
TargetLattice

5 0 0
0 5 0

End
End

End

System
Atoms

Ar 0.5 0.6 0.7
Ar 3.0 3.2 3.4

End
Lattice

10.0 2.0 0.0
1.0 10.0 0.0

End
End

Engine LennardJones
Rmin 3.753962043231411

(continues on next page)

11.6. Molecular dynamics 261



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Eps 3.98e-4
Cutoff 12.0

EndEngine
EOR

# Print the evolution of the lattice parameters in the "fort.59" format
# of old standalone reaxff for testing purposes.
echo "BEGIN fort59 nobarostat"
"$AMSBIN/amspython" "$AMSHOME/scripting/standalone/reaxff-ams/fort59.py" Ar-2D.results
echo "END fort59"

# This run applies a sequence of deformations to a box of Lennard-Jones argon atoms.
AMS_JOBNAME=Ar-box "$AMSBIN/ams" <<EOR
# Set the random number seed to ensure reproducible results for testing. Omit this in
→˓normal runs.
RNGSeed 1450250278 2029462689 827312839 1518230169 1408825437 1769469410 -406759494 -
→˓1006638501

Task MolecularDynamics

MolecularDynamics
nSteps 10000
InitialVelocities Type=Random Temperature=300
Thermostat Type=NHC Temperature=300 Tau=100
Timestep 1
Trajectory SamplingFreq=100
CalcPressure True
# Compress the a and b vectors to 20 Angstrom and stretch the c vector to 40

→˓Angstrom over 2000 steps.
Deformation

StartStep 0
StopStep 2000
Type Linear
TargetLength 20 20 40

End
# Oscillate the c vector (z axis) from 40 to 30 Angstroms and back again with a

→˓period of 1000 fs.
Deformation

StartStep 2000
StopStep 3500
Type Cosine
TargetLattice

20.0 0.0 0.0
0.0 20.0 0.0
0.0 0.0 30.0

End
Period 1000

End
# Shear the box by tilting the c vector 10 A away from the z axis in the xz plane.
Deformation

StartStep 3500
StopStep 4000
Type Linear
TargetLattice

20.0 0.0 0.0
0.0 20.0 0.0

(continues on next page)

262 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

10.0 0.0 30.0
End

End
# The following two blocks apply simultaneous cosine and sine oscillations to the
# x and y components of the c vector. The amplitude of both oscillations is the

→˓same,
# indirectly defined by the maximum velocity (velocity at the inflection point).
# The c vector thus traces out a cone around the z axis over 2000 fs.
Deformation

StartStep 4000
StopStep 8000
Type Cosine
LatticeVelocity

0.0 0.0 0.0
0.0 0.0 0.0

-3e-2 0.0 0.0
End
Period 2000

End
Deformation

StartStep 4000
StopStep 8000
Type Sine
LatticeVelocity

0.0 0.0 0.0
0.0 0.0 0.0
0.0 3e-2 0.0

End
Period 2000

End
# This un-shears the box again, returning the c vector to the z axis.
Deformation

StartStep 8000
StopStep 8500
Type Linear
TargetLattice

20.0 0.0 0.0
0.0 20.0 0.0
0.0 0.0 30.0

End
End
# Finally, apply an exponential ("true") strain by compressing the c vector by 1/

→˓1000th every step.
Deformation

StartStep 8500
Type Exponential
LengthRate 0.0 0.0 -1e-3

End
End

System
Atoms

Ar 22.97333 5.533091 19.78068
Ar 5.255777 10.75370 3.164254
Ar 8.594419 0.957110 14.00514
Ar 8.407438 7.306515 2.762099
Ar 5.335001 18.10475 11.25000

(continues on next page)

11.6. Molecular dynamics 263



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Ar 13.84870 24.00523 1.485310
Ar 18.65495 8.812906 24.08580
Ar 23.50126 5.372569 24.77962
Ar 20.32336 23.84153 3.669808
Ar 7.692337 5.389691 10.57909
Ar 2.407753 7.779618 0.755645
Ar 1.520220 15.74803 13.75000
Ar 2.921397 15.34413 20.41981
Ar 1.660913 18.10666 3.895263
Ar 19.54458 18.76246 20.66279
Ar 3.853819 4.537228 14.15265
Ar 17.57174 15.47554 17.14501
Ar 8.601399 2.836638 1.872337
Ar 2.786004 3.601185 22.17957
Ar 0.047572 18.11282 24.78959
Ar 0.172965 0.035326 0.223982
Ar 6.604983 7.254174 21.83257
Ar 16.63254 15.02432 7.992034
Ar 7.941898 9.130224 17.89523
Ar 18.26063 20.70600 5.643385
Ar 22.63932 15.20789 23.33429
Ar 1.138343 21.37810 13.97294
Ar 0.461841 18.99572 6.401096
Ar 22.67542 22.89935 9.344785
Ar 7.215648 18.28717 3.411308

End
Lattice

25.0 0.0 0.0
0.0 25.0 0.0
0.0 0.0 25.0

end
end

Engine LennardJones
Eps 3.67e-4
RMin 3.4
Cutoff 12.0

EndEngine
EOR

# Print the evolution of the lattice parameters in the "fort.59" format
# of old standalone reaxff for testing purposes.
echo "BEGIN fort59 nobarostat"
"$AMSBIN/amspython" "$AMSHOME/scripting/standalone/reaxff-ams/fort59.py" Ar-box.
→˓results | cut -c 1-86
echo "END fort59"

# This run simulates an experiment to measure the mechanical properties of an argon
→˓box
# by stretching the lattice in the z direction by 100 ppm per timestep (1 fs) while
→˓simultaneously
# keeping the x and y axes relaxed using a barostat.
AMS_JOBNAME=Ar-box-barostat "$AMSBIN/ams" <<EOR
# Set the random number seed to ensure reproducible results for testing. Omit this in
→˓normal runs.
RNGSeed 877404503 1621112889 -559440914 -1857103174 -1082101960 -1842609385 -
→˓845245172 -279655974 (continues on next page)

264 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Task MolecularDynamics

MolecularDynamics
nSteps 8000
InitialVelocities Type=Random Temperature=300
Thermostat Type=NHC Temperature=300 Tau=100
Barostat Type=MTK Pressure=1e7 Tau=1000 Scale=XY Equal=XY
Timestep 1
Trajectory SamplingFreq=100
Deformation

Type Exponential
StrainRate

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 1e-4

End
End

End

System
Atoms

Ar 22.97333 5.533091 19.78068
Ar 5.255777 10.75370 3.164254
Ar 8.594419 0.957110 14.00514
Ar 8.407438 7.306515 2.762099
Ar 5.335001 18.10475 11.25000
Ar 13.84870 24.00523 1.485310
Ar 18.65495 8.812906 24.08580
Ar 23.50126 5.372569 24.77962
Ar 20.32336 23.84153 3.669808
Ar 7.692337 5.389691 10.57909
Ar 2.407753 7.779618 0.755645
Ar 1.520220 15.74803 13.75000
Ar 2.921397 15.34413 20.41981
Ar 1.660913 18.10666 3.895263
Ar 19.54458 18.76246 20.66279
Ar 3.853819 4.537228 14.15265
Ar 17.57174 15.47554 17.14501
Ar 8.601399 2.836638 1.872337
Ar 2.786004 3.601185 22.17957
Ar 0.047572 18.11282 24.78959
Ar 0.172965 0.035326 0.223982
Ar 6.604983 7.254174 21.83257
Ar 16.63254 15.02432 7.992034
Ar 7.941898 9.130224 17.89523
Ar 18.26063 20.70600 5.643385
Ar 22.63932 15.20789 23.33429
Ar 1.138343 21.37810 13.97294
Ar 0.461841 18.99572 6.401096
Ar 22.67542 22.89935 9.344785
Ar 7.215648 18.28717 3.411308

End
Lattice

25.0 0.0 0.0
0.0 25.0 0.0
0.0 0.0 25.0

(continues on next page)

11.6. Molecular dynamics 265



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

end
end

Engine LennardJones
Eps 3.67e-4
RMin 3.4
Cutoff 12.0

EndEngine
EOR

# Print the evolution of the lattice parameters in the "fort.59" format
# of old standalone reaxff for testing purposes.
echo "BEGIN fort59 barostat"
"$AMSBIN/amspython" "$AMSHOME/scripting/standalone/reaxff-ams/fort59.py" Ar-box-
→˓barostat.results | cut -c 1-86
echo "END fort59"

11.7 Vibrational analysis

11.7.1 Example: Mode Refinement

Download VATools_dydrogesterone.run

#! /bin/sh

# This example shows a mode refinement of the band associated with the
# C=O and C=C stretch modes in the dydrogesterone molecule. This was one
# of the example calculations in the original paper on mode refinement:
#
# J. Phys. Chem. Lett., 2018, 9 (23), pp 6878-6882

# Step 1: Get DFTB modes at the optimized DFT geometry
# ----------------------------------------------------

AMS_JOBNAME=FREQ_DFTB $AMSBIN/ams << EOF

System
Atoms

# Dydrogesterone geometry already optimized with DFT (BP86/TZP).
C 0.179402320119871 1.1462568499773749 -1.34045805553897
C -1.0397129548582973 1.4038864822738149 -0.42742864655449175
C -1.9187723039939633 0.15407663507305838 -0.2887082902723144
C 5.26339021966562 -0.0803229279006518 0.15901574737297627
C 4.387948120190181 -1.2500901532169464 0.1985138671042922
C 3.0305058270434313 -1.2006020082109579 0.06687676611264043
C 2.2733069275281843 0.12162323554336309 -0.08656132560038762
C 3.224495049036027 1.1562588842598234 -0.7427294996476081
C 4.589580248129175 1.2673670000240371 -0.055599205726051454
C -2.593712600512111 -0.1967276203097069 -1.6287069723510241
C -2.011183672049868 -2.0904848406306247 0.6637924766824627
C -3.24333170765593 -1.3040476226855777 1.1949612943873085
C -2.9910039148987044 0.19289628304945772 0.8647395097635705
C 1.8832501895313913 0.6066618903839885 1.3319251022509289

(continues on next page)

266 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

C -1.021215985785471 -0.9883577256376227 0.2595406535945511
C 0.950572917185341 -2.499497885394989 -0.17845795742396
C 2.2618422613458535 -2.429295894019406 0.12998062227671012
C 0.14931427176016024 -1.3398555308999998 -0.6810919840203331
C 1.0424571714734645 -0.11148243146945544 -1.0381151732514977
C -4.261014768367461 0.9709543041281233 0.5302962418813911
C -4.2770282131623745 2.4457823410117943 0.8829249061723259
O -5.23153866013212 0.4348316478674291 0.006835058476534351
O 6.486629619384615 -0.1787206146841789 0.3101830744372818
H 4.496419281348679 1.7413060958817603 0.9361407723186962
H 4.889108126023183 -2.2103967123783246 0.34783394165927906
H -2.5053803890738937 0.6948315694295174 1.7185731459759712
H 2.747947397670055 2.147017249296297 -0.7608107343500633
H 3.3788188981072294 0.8618896159833123 -1.7937886227370627
H 5.278515387629924 1.9033945262275014 -0.6280820487414189
H -0.313881863508176 -1.6818474813482587 -1.6263008186833716
H 2.7970964757389787 -3.3338033858599037 0.4312075853898926
H 0.4355882565839679 -3.460258453470549 -0.09628540747796212
H 2.7788926695047853 0.7904363143118734 1.939504792825026
H 1.3142558486724543 1.5445870277271823 1.281760102768146
H 1.2817550339094792 -0.13839730232383732 1.865618408504196
H 1.519857325493626 -0.37989780969443004 -1.9963570252289853
H -3.35526145791249 2.9466219355670638 0.5538746959825623
H -0.5844412872674496 -0.5966200898063014 1.193600037988863
H 0.8128688006525261 2.043605920072621 -1.3496094336049678
H -0.18858319204633375 1.0503960522723468 -2.3730012879550473
H -1.6112343483079186 2.2461900431605373 -0.8495116990527544
H -0.710640496667605 1.7174589936204205 0.5760379282354502
H -1.5937002785491352 -2.7672883134736264 1.4205298630102559
H -2.2836000112559893 -2.709635208733019 -0.2046201598348845
H -3.3761548431942434 -1.4386051747789588 2.276540650869438
H -4.174084527825135 -1.628156544022731 0.7132317870749941
H -1.860827847389362 -0.4325042173503644 -2.4102132115597854
H -3.2757258446436426 -1.0505046678063983 -1.5382984747892279
H -3.1932088604642455 0.6502553019056425 -1.9892714020438331
H -4.314908973244162 2.55066722711135 1.9790476680048945
H -5.155478941054673 2.9311753898910595 0.44480850527661253

End
End

Task SinglePoint

Properties
NormalModes Yes

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-freq-1-2

EndEngine

EOF

# Step 2: Mode refinement of the DFTB C=O and C=C stretch bands at the DFT level
# ------------------------------------------------------------------------------

(continues on next page)

11.7. Vibrational analysis 267



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

AMS_JOBNAME=ModeRefinement $AMSBIN/ams << EOF

LoadSystem
File FREQ_DFTB.results/dftb.rkf

End

Task VibrationalAnalysis

VibrationalAnalysis
Type ModeRefinement
NormalModes

ModeFile FREQ_DFTB.results/dftb.rkf
ModeSelect

FreqRange 1500 1800
End

End
End

Engine BAND
# Settings from the paper:
XC

GGA BP86
End
Basis

Type TZP
End
Relativity Level=None
# Just to make this test run faster:
NumericalQuality Basic

EndEngine

EOF

11.7.2 Example: Mode Tracking

Download VATools_cyclohexanone.run

#! /bin/sh

# This example demonstrates the usage of the AMS vibrational analysis tools
# on the cyclohexanone molecule.

# 1. Optimization with DFT
# ------------------------

AMS_JOBNAME=DFT $AMSBIN/ams << EOF

System
Atoms

C 0.000000 0.000000 0.000000
C 0.978606 1.950589 -1.251328
C 0.978606 1.950589 1.251328
C 0.812569 2.806732 0.000000
C -0.039622 0.802151 1.272926

(continues on next page)

268 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

C -0.039622 0.802151 -1.272926
O 0.062619 -1.251283 0.000000
H 0.123306 0.119861 2.122758
H -1.060012 1.229063 1.372200
H 0.871524 2.560541 2.167037
H 2.001065 1.521810 1.263746
H -0.196785 3.268312 0.000000
H 1.549313 3.631809 0.000000
H 0.871524 2.560541 -2.167037
H 2.001065 1.521810 -1.263746
H 0.123306 0.119861 -2.122758
H -1.060012 1.229063 -1.372200

End
End

Task GeometryOptimization

GeometryOptimization
Convergence Gradients=1.0e-4

End

Engine BAND
EndEngine

EOF

# 2. Obtain DFTB hessian and modes as preconditioner and guess
# ------------------------------------------------------------

AMS_JOBNAME=DFTB $AMSBIN/ams << EOF

LoadSystem
File DFT.results/ams.rkf

End

Task GeometryOptimization

GeometryOptimization
Convergence Gradients=1.0e-4

End

Properties
NormalModes Yes

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-freq-1-2

EndEngine

EOF

# 3. ModeScanning of DFTB C=O stretch mode with DFT
# -------------------------------------------------

(continues on next page)

11.7. Vibrational analysis 269



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

AMS_JOBNAME=ModeScanning $AMSBIN/ams << EOF

LoadSystem
File DFTB.results/ams.rkf

End
LoadEngine DFT.results/band.rkf

Task VibrationalAnalysis

VibrationalAnalysis
Type ModeScanning
NormalModes

ModeFile DFTB.results/dftb.rkf
ModeSelect

HighIR 1 # This should select the C=O stretch
End

End
End

EOF

# 4. Mode tracking with DFT starting from DFTB C=O stretch mode
# -------------------------------------------------------------

AMS_JOBNAME=ModeTracking $AMSBIN/ams << EOF

LoadSystem
File DFT.results/ams.rkf

End
LoadEngine DFT.results/band.rkf

Task VibrationalAnalysis

VibrationalAnalysis
Type ModeTracking
ModeTracking

HessianGuess File
HessianPath DFTB.results

End
NormalModes

ModeInputFormat File
ModeFile DFTB.results/dftb.rkf
ModeSelect

HighIR 1 # This should select the C=O stretch
End

End
End

EOF

# 5. Mode tracking with DFT starting from a pure C=O stretch
# ----------------------------------------------------------

AMS_JOBNAME=ModeTracking_COStretch $AMSBIN/ams << EOF

(continues on next page)

270 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

LoadSystem
File DFT.results/ams.rkf

End
LoadEngine DFT.results/band.rkf

Task VibrationalAnalysis

VibrationalAnalysis
Type ModeTracking
NormalModes

ModeInputFormat Inline
ModeInline

0.0 0.0 0.7071 # This is the C attached to the O
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 -0.7071 # This is the O
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

End
ModeSelect

HighIR 1 # This should select the C=O stretch
End

End
ModeTracking

HessianGuess File
HessianPath DFTB.results
TrackingMethod OverlapPrevious

# ^-- Probably better than the default.
# Our initial mode is not particularly close yet ...

→˓

End
End

EOF

11.7.3 Example: Vibronic-Structure Tracking

Download VST_pyrene.run

#!/bin/sh

# This example demonstrates the usage of vibronic-structure tracking
# on the pyrene molecule. Excited state calculations are performed within AMS and
# at the DFTB level

(continues on next page)

11.7. Vibrational analysis 271



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

# 1. Ground state optimization with DFTB
#---------------------------------------

AMS_JOBNAME=GroundState $AMSBIN/ams << eor

System
Atoms

C -0.01654981 1.36506537 0.00802668
C 0.00281590 -0.06808050 0.00051978
C 1.19835953 2.08859192 0.00127327
C -1.25056871 2.05539572 0.02157814
C 1.23682878 -0.75840671 -0.01375673
C -1.21209870 -0.79160461 0.00671225
C 2.44308841 1.35898462 -0.01256813
C 1.16450680 3.48665407 0.00772934
C -2.47512291 1.29231475 0.02824995
C -1.25452039 3.45386389 0.02759561
C 2.46138768 0.00467142 -0.01984509
C 1.24076149 -2.15686407 -0.02209661
C -2.45682219 -0.06199957 0.02121310
C -1.17826305 -2.18965609 -0.00177638
C -0.05432386 4.15935390 0.02049748
C 0.04055488 -2.86234799 -0.01620562
H 3.36596464 1.93801392 -0.01731234
H 2.09583666 4.04986513 0.00239299
H -3.41330596 1.84611463 0.03902307
H -2.20073438 3.99162601 0.03767421
H 3.39957176 -0.54912830 -0.03053168
H 2.18696724 -2.69462025 -0.03320657
H -3.37969722 -0.64102946 0.02611688
H -2.10959908 -2.75286422 0.00274662
H -0.06904859 5.24837501 0.02503968
H 0.05526108 -3.95135857 -0.02284989

End
End

Task GeometryOptimization

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-freq-1-2

EndEngine

eor

# 2. Get lowest singlet-singlet excitation of pyrene and
# compute the excited state gradient at the optimized GS geometry
#----------------------------------------------------------------

AMS_JOBNAME=ExcitedState $AMSBIN/ams << eor

Task SinglePoint
LoadSystem

File ./GroundState.results/dftb.rkf
End

(continues on next page)

272 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Properties
Gradients yes

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-freq-1-2
Properties

Excitations
TDDFTB

Calc Singlet
Lowest 1

End
TDDFTBGradients

Excitation 1
End

End
End

EndEngine

eor

# 3. Vibronic-structure tracking for this excitation
# --------------------------------------------------

AMS_JOBNAME=VibronicStructure $AMSBIN/ams << eor

LoadSystem
File ./GroundState.results/dftb.rkf

End

Task VibrationalAnalysis

VibrationalAnalysis
Type VibronicStructureTracking
ExcitationSettings

ExcitationInputFormat File
ExcitationFile ./ExcitedState.results/dftb.rkf
Singlet

A 1
End

End
AbsorptionSpectrum

AbsorptionRange -500.0 4000.0
LineWidth 100
FrequencyGridPoints 181

End
End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-freq-1-2

EndEngine

eor

# 4. Restart the VST run from the previous one
(continues on next page)

11.7. Vibrational analysis 273



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

# We have changed our mind and we want
# the peaks to be a little sharper
# ---------------------------------------------------------

AMS_JOBNAME=VibronicStructureRestart $AMSBIN/ams << eor

LoadSystem
File ./GroundState.results/dftb.rkf

End

Task VibrationalAnalysis

VibrationalAnalysis
Type VibronicStructureTracking
ExcitationSettings

ExcitationInputFormat File
ExcitationFile ./ExcitedState.results/dftb.rkf
Singlet

A 1
End

End
VSTRestartFile ./VibronicStructure.results/ams.rkf
AbsorptionSpectrum

AbsorptionRange -500.0 4000.0
LineWidth 50
FrequencyGridPoints 181

End
End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-freq-1-2

EndEngine

eor

11.8 PES point properties

11.8.1 Example: Phonons for graphene

Download Phonons_Graphene.run

#!/bin/sh

AMS_JOBNAME=graphene $AMSBIN/ams << EOF

Task GeometryOptimization

GeometryOptimization
! CoordinateType Cartesian

OptimizeLattice True
Convergence Gradients=1.0e-5
Method Quasi-Newton

End
(continues on next page)

274 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Properties
Phonons True

End

NumericalPhonons
SuperCell

2 0
0 2

End
End

System
Atoms

C 0.000000000 -0.000000000 0.00000
C 0.000000000 -1.420281662 0.00000

End

Lattice
1.230000000 -2.130422493 0.000000000
1.230000000 2.130422493 0.000000000

End
End

Engine DFTB
ResourcesDir Dresden
Model DFTB0
KSpace

Type Symmetric
Symmetric KInteg=9

End
Technical AnalyticalStressTensor=False # Not yet supported with symmetric k-

→˓space grid ...
EndEngine

EOF

echo ""
echo "Begin TOC of result file"

$AMSBIN/dmpkf -n 1 graphene.results/dftb.rkf --toc

echo "End TOC of result file"

11.8.2 Example: Phonons with isotopes

Download Phonons_Isotopes.run

#! /bin/sh

# ====================================
# Phonons with default nuclear masses:
# ====================================

(continues on next page)

11.8. PES point properties 275



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

AMS_JOBNAME=defmasses $AMSBIN/ams << EOF

Task SinglePoint

Properties
Phonons True

End

NumericalPhonons
StepSize 0.01
SuperCell

4
End

End

System
Atoms

C -2.42906152 -0.3445528299 -0.1353492062
C -1.146891508 -1.134644249 0.1353492061
H -2.429062041 0.004468895147 -1.185797304
H -2.429062011 0.5753101439 0.4803683017
H -1.146891017 -2.054507222 -0.4803683019
H -1.146890987 -1.483665974 1.185797304

End

Lattice
2.564338467 0.0 0.0

End
End

Engine DFTB
ResourcesDir QUASINANO2015
Model DFTB0
KSpace

Type Symmetric
Symmetric KInteg=9

End
EndEngine

EOF

echo ""
echo "Begin TOC of result file"
$AMSBIN/dmpkf -n 1 defmasses.results/dftb.rkf --toc
echo "End TOC of result file"

# =================================
# Phonons with two deuterium atoms:
# =================================

AMS_JOBNAME=usermasses $AMSBIN/ams << EOF

Task SinglePoint

Properties
Phonons true

(continues on next page)

276 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

End

NumericalPhonons
StepSize 0.01
SuperCell

4
End

End

System
Atoms

C -2.42906152 -0.3445528299 -0.1353492062
C -1.146891508 -1.134644249 0.1353492061
H -2.429062041 0.004468895147 -1.185797304
H -2.429062011 0.5753101439 0.4803683017
H -1.146891017 -2.054507222 -0.4803683019 mass=2.014
H -1.146890987 -1.483665974 1.185797304 mass=2.014

End
Lattice

2.564338467 0.0 0.0
End

End

Engine DFTB
ResourcesDir QUASINANO2015
Model DFTB0
KSpace

Type Symmetric
Symmetric KInteg=9

End
EndEngine

EOF

echo ""
echo "Begin TOC of result file"
$AMSBIN/dmpkf -n 1 usermasses.results/dftb.rkf --toc
echo "End TOC of result file"

11.8.3 Example: User-defined Brillouin zone for phonon dispersion

Download Phonons_UserBZPath.run

#!/bin/sh

# This example shows how to specify a user-defined path through the
# Brillouin zone (BZ) when computing the phonon dispersion curves.

# Note: when computing the phonons, you should first run a geometry
# optimization (including relaxation of lattice vectors).
# Here we use a pre-optimized structure.

AMS_JOBNAME=BoronNitrade $AMSBIN/ams << eor

Task SinglePoint

(continues on next page)

11.8. PES point properties 277



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

System
Atoms

B 0.0 0.0 0.0
N 0.92538708336681 0.92538708336681 0.92538708336681

End
Lattice

0.0 1.8507741667336 1.8507741667336
1.8507741667336 0.0 1.8507741667336
1.8507741667336 1.8507741667336 0.0

End
End

Properties
Phonons Yes

End

NumericalPhonons
SuperCell

2 0 0
0 2 0
0 0 2

End

# Disable the automatically generated path though the BZ

AutomaticBZPath No

BZPath
# In each 'Path' block you should define the vertices of the path
# in fractional coordinates (with respect to the reciprocal lattice
# vectors)

# First segment: Gamma-X-W-K
Path

0.0 0.0 0.0 G
0.5 0.0 0.5 X
0.5 0.25 0.75 W
0.375 0.375 0.75 K

End

# Second segment: Gamma-SomeRandomPoint
Path

0.0 0.0 0.0 G
0.1 0.2 0.3 RandomPoint

End
End

End

Engine DFTB
Model SCC-DFTB
ResourcesDir DFTB.org/matsci-0-3
KSpace Quality=Basic

EndEngine

eor

(continues on next page)

278 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

echo 'Content of phonon_curves section'
$AMSBIN/dmpkf BoronNitrade.results/dftb.rkf 'phonon_curves'
echo 'End content of phonon_curves section'

11.8.4 Example: Elastic tensor

Download ElasticTensor.run

#! /bin/sh

# === Diamond ===

AMS_JOBNAME=Diamond $AMSBIN/ams << EOF

Task GeometryOptimization

Properties
ElasticTensor Yes

End

System
Atoms

C 0.44625 0.44625 2.23125
C 2.23125 2.23125 2.23125
C -2.23125 -2.23125 -2.23125
C -0.44625 -0.44625 -2.23125
C -0.44625 -2.23125 -0.44625
C 1.33875 -0.44625 -0.44625
C -2.23125 -0.44625 -0.44625
C -0.44625 1.33875 -0.44625
C -0.44625 -0.44625 1.33875
C 1.33875 1.33875 1.33875
C -1.33875 -1.33875 -1.33875
C 0.44625 0.44625 -1.33875
C 0.44625 -1.33875 0.44625
C 2.23125 0.44625 0.44625
C -1.33875 0.44625 0.44625
C 0.44625 2.23125 0.44625

End
Lattice

0.0 3.57 3.57
3.57 0.0 3.57
3.57 3.57 0.0

End
End

GeometryOptimization
OptimizeLattice Yes
Convergence Gradients=1.0e-5 StressEnergyPerAtom=1.0e-5

End

Symmetry Tolerance=1e-6
ElasticTensor MaxGradientForGeoOpt=1e-5

(continues on next page)

11.8. PES point properties 279



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Engine DFTB
Model DFTB
ResourcesDir DFTB.org/mio-1-1
KSpace

Type Symmetric
Symmetric KInteg=3

End
Technical AnalyticalStressTensor=False # Not yet supported with symmetric k-

→˓space grid.
EndEngine

EOF

# === Boron-Nitride sheet ===

# 3x3 super-cell, default k-space sampling

AMS_JOBNAME=BN_sheet $AMSBIN/ams << EOF

Task GeometryOptimization

Properties
ElasticTensor Yes

End

System
Atoms

N 3.76095075 0.723795 0.0
N 5.01460112 2.89518114 0.0
B -3.76095112 -2.17138614 0.0
B -2.50730075 0.0 0.0
B -1.25365038 2.17138614 0.0
B -1.25365037 -2.17138614 0.0
B 0.0 0.0 0.0
B 1.25365037 2.17138614 0.0
B 1.25365038 -2.17138614 0.0
B 2.50730075 0.0 0.0
B 3.76095112 2.17138614 0.0
N -2.50730112 -1.44759114 0.0
N -1.25365075 0.723795 0.0
N -3.8e-07 2.89518114 0.0
N -3.7e-07 -1.44759114 0.0
N 1.25365 0.723795 0.0
N 2.50730037 2.89518114 0.0
N 2.50730038 -1.44759114 0.0

End
Lattice

7.52190225 0.0
3.76095111 6.51415842

End
End

GeometryOptimization
OptimizeLattice Yes
Convergence Gradients=1.0e-4

End
(continues on next page)

280 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

Engine DFTB
Model SCC-DFTB
ResourcesDir DFTB.org/matsci-0-3

EndEngine

EOF

# === Polyoxyethylene ===

# primitive cell with k-space sampling

AMS_JOBNAME=Polyoxyethylene $AMSBIN/ams << EOF

Task GeometryOptimization

Properties
ElasticTensor Yes

End

ElasticTensor
StrainStepSize 0.002
MaxGradientForGeoOpt 2.0e-4

End

System
Atoms

C -0.279368361 -0.125344097 -0.026221791
O 0.840592835 -0.919621431 -0.193214154
H -0.279527057 0.337014408 0.997733792
H -0.281697417 0.707951120 -0.778297849

End
Lattice

2.240292981
End

End

GeometryOptimization
OptimizeLattice Yes
Convergence Gradients=1.0e-4

End

Engine DFTB
Model SCC-DFTB
ResourcesDir DFTB.org/3ob-3-1
KSpace

Type Symmetric
Symmetric KInteg=5

End
Technical AnalyticalStressTensor=False # Not yet supported with symmetric k-

→˓space grid.
EndEngine

EOF

(continues on next page)

11.8. PES point properties 281



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

# Note: the elastic tensor is also printed to standard output.

echo ""
echo "Extract the elastic tensor of Diamond from the rkf file:"
$AMSBIN/amsreport Diamond.results/dftb.rkf -r "AMSResults%ElasticTensor#12.4f##6"

echo ""
echo "Extract the elastic tensor of Boron-Nitride from the rkf file:"
$AMSBIN/amsreport BN_sheet.results/dftb.rkf -r "AMSResults%ElasticTensor#12.4f##3"

echo ""
echo "Extract the elastic tensor of Polyoxyethylene from the rkf file:"
$AMSBIN/amsreport Polyoxyethylene.results/dftb.rkf -r "AMSResults%ElasticTensor#12.4f#
→˓#1"

11.9 Pipe interface

11.9.1 Example: ASE calculator as a pipe worker

Download Pipe_ASEWorker.run

#!/bin/sh
# This example uses a Python pipe worker based on ASE to evaluate the Lennard-Jones
→˓potential.
# First we do a single-point calculation including the gradients and the stress
→˓tensor and then
# a short MD run similar to the Pipe_AMSonAMS example.

export NSCM=1

AMS_JOBNAME=SP "$AMSBIN/ams" << eor
RNGSeed -538839488 972444872 -468448621 535232319 -953628259 777353319 -1036072
→˓387155213

Task SinglePoint

Properties
Gradients True
StressTensor True

End

System
Atoms

Ar 0.03374714 -0.02579634 -0.03864485
Ar -2.47202773 -2.57754100 -0.02505375
Ar -2.54465030 -0.00587811 -2.49637860
Ar -4.98237672 -2.60930954 -2.49495517
Ar -0.03221746 -2.51967081 -2.47883073
Ar -2.52675554 -5.12905072 -2.48152312
Ar -2.54445364 -2.45619404 -5.02601013
Ar -4.95645981 -5.14903666 -4.95752059

End
Lattice

0.00000000 5.00000000 5.00000000
(continues on next page)

282 Chapter 11. Examples



AMS Manual, Amsterdam Modeling Suite 2020

(continued from previous page)

5.00000000 0.00000000 5.00000000
5.00000000 5.20000000 0.00000000

End
End

Engine Pipe
WorkerCommand "$AMSBIN/amspython" "$TEST_DIRECTORY/ASE-LJ-worker.py"

EndEngine

eor

AMS_JOBNAME=MD "$AMSBIN/ams" << eor
RNGSeed -538839488 972444872 -468448621 535232319 -953628259 777353319 -1036072
→˓387155213

Task MolecularDynamics

MolecularDynamics
nSteps 200
TimeStep 5.0
Thermostat Type=NHC Temperature=298.15 Tau=100
Trajectory SamplingFreq=20
InitialVelocities Type=random Temperature=200

End

System
Atoms

Ar 0.0 0.0 0.0
Ar 1.605 0.9266471820493496 2.605

End
Lattice

3.21 0.0 0.0
1.605 2.779941546148048 0.0
0.0 0.0 5.21

End
SuperCell 4 4 4

End

Engine Pipe
WorkerCommand "$AMSBIN/amspython" "$TEST_DIRECTORY/ASE-LJ-worker.py"

EndEngine

eor

Download ASE-LJ-worker.py

from scm.amspipe import ASEPipeWorker
from ase.calculators.lj import LennardJones

calculator = LennardJones()
calculator.parameters.epsilon = 0.0102996
calculator.parameters.sigma = 3.4
calculator.parameters.rc = 12.0

engine = ASEPipeWorker(calculator=calculator)
engine.run()

11.9. Pipe interface 283



AMS Manual, Amsterdam Modeling Suite 2020

11.9.2 Example: AMS as a pipe worker

Download Pipe_AMSonAMS.run

#!/bin/sh
# This example runs two separate AMS processes communicating over AMSPipe. One of
→˓them is the PipeWorker
# calculating Lennard-Jones energies and the other as the PipeMaster drives the MD
→˓simulation.

export NSCM=1
export NSCM_AMSEXTERNAL=1

cat - > worker.in << eor
Task Pipe

Engine LennardJones
Rmin 3.81637
Eps 3.785e-4
Cutoff 12.0

EndEngine
eor

"$AMSBIN/ams" << eor
RNGSeed -538839488 972444872 -468448621 535232319 -953628259 777353319 -1036072
→˓387155213

Task MolecularDynamics

MolecularDynamics
nSteps 200
TimeStep 5.0
Thermostat Type=NHC Temperature=298.15 Tau=100
Trajectory SamplingFreq=20
InitialVelocities Type=random Temperature=200

End

System
Atoms

Ar 0.0 0.0 0.0
Ar 1.605 0.9266471820493496 2.605

End
Lattice

3.21 0.0 0.0
1.605 2.779941546148048 0.0
0.0 0.0 5.21

End
SuperCell 4 4 4

End

Engine Pipe
WorkerCommand "$AMSBIN/ams" < ../../worker.in > worker.out 2>&1

EndEngine
eor

echo "Worker output:"
cat ams.results/*/worker.out

284 Chapter 11. Examples



CHAPTER

TWELVE

APPENDICES

12.1 Extended XYZ file format

The .xyz file format is a simple text based format for molecular geometries. .xyz files have the number of atoms in
the first line, followed by a comment line, followed by one line per atom, specifying the element as well as the x, y,
and z coordinates of this atom.

However, the standard .xyz file format does not include lattice vectors. AMS therefore uses an extended .xyz file
format which is also suitable for periodic systems. In this extended format the lattice vectors are specified at the end
of the .xyz file via the keys VEC1, VEC2 and VEC3. For 1D periodic systems (chains) only VEC1 is needed. For 2D
periodic systems (slabs) only VEC1 and VEC2 are needed. An example extended .xyz for graphene looks like this:

2

C 0.0 0.0 0.0
C 1.23 0.71014 0.0
VEC1 2.46 0.0 0.0
VEC2 1.23 2.13042 0.0

Note that the extended .xyz format is also understood by the AMS GUI for importing and exporting geometries
from/to .xyz files.

12.2 Developer options

Print
Timers [None | Normal | Detail | TooMuchDetail]

End

Print

Type Block

Description This block controls the printing of additional information to stdout.

Timers

Type Multiple Choice

Default value None

Options [None, Normal, Detail, TooMuchDetail]

Description Printing timing details to see how much time is spend in which part of the code.

285



AMS Manual, Amsterdam Modeling Suite 2020

EngineDebugging
CheckInAndOutput Yes/No
ForceContinousPES Yes/No
IgnoreGradientsRequest Yes/No
IgnorePreviousResults Yes/No
IgnoreStressTensorRequest Yes/No
NeverQuiet Yes/No
RandomFailureChance float
RandomNoiseInEnergy float
RandomNoiseInGradients float
RandomStopChance float

End

EngineDebugging

Type Block

Description This block contains some options useful for debugging the computational engines.

CheckInAndOutput

Type Bool

Default value No

Description Enables some additional checks on the input and output of and engine, e.g. for NaN
values.

ForceContinousPES

Type Bool

Default value No

Description If this option is set, the engine will always run in continuous PES mode. For many
engines this disables the use of symmetry, as this one always leads to a discontinuous PES
around the symmetric points: Basically there is jump in the PES at the point where the
symmetry detection starts classifying the system as symmetric. Normally the continuous
PES mode of the engine (often disabling the symmetry) is only used when doing numerical
derivatives, but this flag forces the engine to continuously run in this mode.

IgnoreGradientsRequest

Type Bool

Default value No

Description If this option is set, the engine will not do analytical gradients if asked for it, so that
gradients will have to be evaluated numerically by AMS.

IgnorePreviousResults

Type Bool

Default value No

Description If this option is set, the engine will not receive information from previous calcula-
tions. Typically this information is used to restart the self consistent procedure of the engine.

IgnoreStressTensorRequest

Type Bool

Default value No

286 Chapter 12. Appendices



AMS Manual, Amsterdam Modeling Suite 2020

Description If this option is set, the engine will not calculate an analytical stress tensor if asked
for it, so that the stress tensor will have to be evaluated numerically by AMS.

NeverQuiet

Type Bool

Default value No

Description Makes the engine ignore the request to work quietly.

RandomFailureChance

Type Float

Default value 0.0

Description Makes the engine randomly report failures, even though the results are actually fine.
Useful for testing error handling on the application level.

RandomNoiseInEnergy

Type Float

Default value 0.0

Unit Hartree

Description Adds a random noise to the energy returned by the engine. The random contribution
is drawn from [-r,r] where r is the value of this keyword.

RandomNoiseInGradients

Type Float

Default value 0.0

Unit Hartree/Angstrom

Description Adds a random noise to the gradients returned by the engine. A random number in
the range [-r,r] (where r is the value of this keyword) is drawn and added separately to each
component of the gradient.

RandomStopChance

Type Float

Default value 0.0

Description Makes the engine randomly stop. Can be used to simulate crashes.

12.3 Symmetry

12.3.1 Schönfliess symbols and symmetry labels

A survey of all molecular point groups that are recognized by AMS is given below. The table contains the Schönfliess
symbols together with the names of the subspecies of the irreducible representations as they are used by AMS to label
normal modes.

12.3. Symmetry 287



AMS Manual, Amsterdam Modeling Suite 2020

Table 12.1: Schönfliess symbols and the labels of the irreducible
representations.

Point Schönfliess Irreducible representations
Group Symbol in AMS
C1 NOSYM A
C∞v C(LIN) Sigma Pi
D∞h D(LIN) Sigma.g Sigma.u Pi.g Pi.u
I I A T1 T2 G H
Ih I(H) A.g A.u T1.g T1.u T2.g T2.u G.g G.u H.g H.u
O O A1 A2 E T1 T2
Oh O(H) A1.g A1.u A2.g A2.u E.g E.u T1.g T1.u T2.g T2.u
T T A E T
Th T(H) A.g A.u E.g E.u T.g T.u
Td T(D) A1 A2 E T1 T2
Ci C(I) A.g A.u
Sn S(N) n=4: A B E

n=6: A.g A.u E.g E.u
n=8: A B E1 E2 E3

Cn C(N) n=2: A B
n=4: A B E
even n: A B E1 E2 . . .
n=3: A E
odd n: A E1 E2 . . .

Cnv C(NV) n=2: A1 A2 B1 B2
n=4: A1 A2 B1 B2 E
even n: A1 A2 B1 B2 E1 E2 . . .
n=3: A1 A2 E
odd n: A1 A2 E1 E2 . . .

Cs C(S) A’ A’‘
Cnh C(NH) n=2: A.g A.u B.g B.u

n=4: A.g A.u B.g B.u E.g E.u
even n: A.g A.u B.g B.u E1.g E1.u E2.g E2.u . . .
n=3: A’ A” E’ E’‘
odd n: A’ A” E1’ E1” E2’ E2” . . .

Dn D(N) n=2: A B1 B2 B3
n=4: A1 A2 B1 B2 E
even n A1 A2 B1 B2 E1 E2 . . .
n=3: A1 A2 E
odd n: A1 A2 E1 E2 . . .

Dnd D(ND) n=2: A1 A2 B1 B2 E
even n: A1 A2 B1 B2 E1 E2 . . .
n=3: A1.g A1.u A2.g A2.u E.g E.u
odd n: A1.g A1.u A2.g A2.u E1.g E1.u E2.g E2.u . . .

Dnh D(NH) n=2: A.g A.u B1.g B1.u B2.g B2.u B3.g B3.u
n=4: A.g A.u B1.g B1.u B2.g B2.u B3.g B3.u E.g E.u
even n: A.g A.u B1.g B1.u B2.g B2.u B3.g B3.u E1.g E1.u E2.g E2.u . . .
n=3: A1’ A1” A2’ A2” E’ E’‘
odd n: A1’ A1” A2’ A2” E1’ E1” E2’ E2” . . .

The symmetry labeling may depend on the choice of coordinate system. For instance, B1 and B2 representations in
Cnv are interchanged when you rotate the system by 90 degrees around the z-axis so that x-axis becomes y-axis and
vice-versa (apart from sign).

288 Chapter 12. Appendices



AMS Manual, Amsterdam Modeling Suite 2020

12.3.2 Molecular orientation requirements

In order that AMS recognizes the (sub)symmetry of a molecule, the molecule has to have a specific orientation in
space.

• The origin is a fixed point of the symmetry group.

• The z-axis is the main rotation axis.

• xy is the 𝜎h -plane (axial groups, C(s)).

• The x-axis is a C2 axis (D symmetries).

• The xz-plane is a 𝜎v -plane (Cnv symmetries).

• In Td and Oh the z-axis is a fourfold axis (S4 and C4 , respectively) and the (111)-direction is a threefold axis.

If the system is symmetrized (and no symmetry is given in the System block key) the molecular structure is rotranslated
into this standard orientation.

12.3. Symmetry 289



AMS Manual, Amsterdam Modeling Suite 2020

290 Chapter 12. Appendices



CHAPTER

THIRTEEN

REQUIRED CITATIONS

13.1 General references

When you publish results in the scientific literature that were obtained through the AMS driver program, you are
required to include a reference to the program package with the appropriate release number:

AMS 2020, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
Optionally, you may add the following list of authors and contributors: R. Rüger, M. Franchini, T. Trnka, A. Yakovlev,
E. van Lenthe, P. Philipsen, T. van Vuren, B. Klumpers, T. Soini

The engine used for a particular calculation might require you to include other references. Please refer to the specific
engine manuals (page 189) for required citations.

In addition to these general references, certain AMS features require additional citations, in case you have used them.
An overview of these is given in the Feature references section below.

Note: If you have used a modified (by yourself, for instance) version of the code, you should mention in the citation
that a modified version has been used.

13.2 Feature references

13.2.1 Frequencies, IR Intensities, Raman, VCD

Mode tracking M. Reiher, J. Neugebauer, A mode-selective quantum chemical method for tracking molecu-
lar vibrations applied to functionalized carbon nanotubes, Journal of Chemical Physics 118, 1634 (2003)
(https://doi.org/10.1063/1.1523908)

M. Reiher, J. Neugebauer, Convergence characteristics and efficiency of mode-tracking calcula-
tions on pre-selected molecular vibrations, Physical Chemistry Chemical Physics 6, 4621 (2004)
(http://dx.doi.org/10.1039/B406134A)

C. Herrmann, M. Reiher, J. Neugebauer, Finding a needle in a haystack: direct determination of vibrational
signatures in complex systems, New Journal of Chemistry 31, 818 (2007) (http://dx.doi.org/10.1039/B618769M)

Mode tracking based on intensities M. Reiher, J. Neugebauer, A mode-selective quantum chemical method for
tracking molecular vibrations applied to functionalized carbon nanotubes, Journal of Chemical Physics 118,
1634 (2003) (https://doi.org/10.1063/1.1523908)

S. Luber, J. Neugebauer, M. Reiher, Intensity tracking for theoretical infrared spectroscopy of large molecules,
Journal of Chemical Physics 130, 064105 (2009) (https://doi.org/10.1063/1.3069834)

291

http://www.scm.com
https://doi.org/10.1063/1.1523908
http://dx.doi.org/10.1039/B406134A
http://dx.doi.org/10.1039/B618769M
https://doi.org/10.1063/1.1523908
https://doi.org/10.1063/1.1523908
https://doi.org/10.1063/1.3069834


AMS Manual, Amsterdam Modeling Suite 2020

Mode refinement T.Q. Teodoro, M.A.J. Koenis, S.E. Galembeck, V.P. Nicu, W.J. Buma, L. Visscher, A fre-
quency range selection method for vibrational spectra, J. Phys. Chem. Lett., 9 (23), 6878 (2018)
(https://doi.org/10.1021/acs.jpclett.8b02963)

Mobile Block Hessian (MBH) A. Ghysels, D. Van Neck, V. Van Speybroeck, T. Verstraelen and M. Waroquier, Vi-
brational Modes in partially optimized molecular systems Journal of Chemical Physics 126, 224102 (2007)
(https://doi.org/10.1063/1.2737444)

Raman scattering S.J.A. van Gisbergen, J.G. Snijders and E.J. Baerends, Application of time-dependent
density functional response theory to Raman scattering, Chemical Physics Letters 259, 599 (1996)
(https://doi.org/10.1016/0009-2614(96)00858-5)

Resonance Raman: excited-state finite lifetime L. Jensen, L. Zhao, J. Autschbach and G.C. Schatz, Theory and
method for calculating resonance Raman scattering from resonance polarizability derivatives, Journal of Chem-
ical Physics 123, 174110 (2005) (https://doi.org/10.1063/1.2046670)

Resonance Raman: excited-state gradient J. Neugebauer, E.J. Baerends, E. Efremov, F. Ariese and C. Gooijer,
Combined Theoretical and Experimental Deep-UV Resonance Raman Studies of Substituted Pyrenes, Journal
of Physical Chemistry A 109, 2100 (2005) (https://doi.org/10.1021/jp045360d)

VROA: (Resonance) vibrational Raman optical activity L. Jensen, J. Autschbach, M. Krykunov, and G.C. Schatz,
Resonance vibrational Raman optical activity: A time-dependent density functional theory approach, Journal of
Chemical Physics 127, 134101 (2007) (https://doi.org/10.1063/1.2768533)

Vibrational Circular Dichroism (VCD) V.P. Nicu J. Neugebauer S.K. Wolff and E.J. Baerends, A vibra-
tional circular dichroism implementation within a Slater-type-orbital based density functional frame-
work and its application to hexa- and hepta-helicenes, Theoretical Chemical Accounts 119, 245 (2008)
(https://doi.org/10.1007/s00214-006-0234-x)

VCD analysis: VCDtools V.P. Nicu, J. Neugebauer and E.J. Baerends, Effects of Complex Formation
on Vibrational Circular Dichroism Spectra, Journal of Physical Chemistry A 112, 6978 (2008)
(https://doi.org/10.1021/jp710201q)

M.A.J. Koenis, O. Visser, L. Visscher, W.J. Buma, V.P. Nicu, GUI Implementation of VCDtools, A Pro-
gram to Analyze Computed Vibrational Circular Dichroism Spectra, J. Chem. Inf. Model 60, 259 (2020)
(https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00956)

V.P. Nicu, Revisiting an old concept: the coupled oscillator model for VCD. Part 1: the generalised coupled
oscillator mechanism and its intrinsic connection to the strength of VCD signals, Physical Chemistry Chemical
Physics 18, 21202 (2016) (https://doi.org/10.1039/C6CP01282E).

Franck-Condon factors J.S. Seldenthuis, H.S.J. van der Zant, M.A. Ratner and J.M. Thijssen, Vibrational Excita-
tions in Weakly Coupled Single-Molecule Junctions: A Computational Analysis, ACS Nano 2, 1445 (2008)
(https://doi.org/10.1021/nn800170h)

292 Chapter 13. Required citations

https://doi.org/10.1021/acs.jpclett.8b02963
https://doi.org/10.1063/1.2737444
https://doi.org/10.1016/0009-2614(96)00858-5
https://doi.org/10.1063/1.2046670
https://doi.org/10.1063/1.2046670
https://doi.org/10.1021/jp045360d
https://doi.org/10.1021/jp045360d
https://doi.org/10.1063/1.2768533
https://doi.org/10.1063/1.2768533
https://doi.org/10.1007/s00214-006-0234-x
https://doi.org/10.1021/jp710201q
https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00956
https://doi.org/10.1039/C6CP01282E
https://doi.org/10.1039/C6CP01282E
https://doi.org/10.1021/nn800170h


CHAPTER

FOURTEEN

EXTERNAL PROGRAMS AND LIBRARIES

Click here for the list of programs and/or libraries used in the AMS package. On some platforms optimized libraries
have been used and/or vendor specific MPI implementations.

293

../Ref_third_party/index.html


AMS Manual, Amsterdam Modeling Suite 2020

294 Chapter 14. External programs and Libraries



CHAPTER

FIFTEEN

KEYWORDS

15.1 Links to manual entries

ams:

• Constraints (page 67)
• ElasticTensor (page 126)
• Engine (page 189)
• EngineAddons (page 201)
• EngineDebugging (page 286)
• GCMC (page 113)
• GeometryOptimization (page 41)
• IRC (page 70)
• LoadSystem (page 35)
• MolecularDynamics (page 75)
• Molecules (page 187)
• NEB (page 64)
• NormalModes (page 133)
• NumericalDifferentiation (page 128)
• NumericalPhonons (page 156)
• PESPointCharacter (page 124)
• PESScan (page 59)
• Print (page 285)
• Properties (page 8)
• Raman (page 159)
• Restraints (page 202)
• Symmetry (page 31)
• System (page 27)
• System > ElectrostaticEmbedding (page 34)
• Task (page 8)
• Thermo (page 153)
• TransitionStateSearch (page 56)
• UseSymmetry (page 32)
• VibrationalAnalysis > NormalModes > ModeSelect (page 149)

analysis:

• AutoCorrelation (page 211)
• Histogram (page 209)
• RadialDistribution (page 208)
• Task (page 208)
• TrajectoryInfo (page 207)

295



AMS Manual, Amsterdam Modeling Suite 2020

pipe:

• WorkerCommand (page 25)

15.2 Summary of all keywords

Constraints

Type Block

Description The Constraints block allows geometry optimizations and potential energy surface
scans with constraints. The constraints do not have to be satisfied at the start of the calcula-
tion.

Angle

Type String

Recurring True

Description Fix the angle between three atoms. Three atom indices followed by an angle in
degrees.

Atom

Type Integer

Recurring True

Description Fix the position of an atom. Just one integer referring to the index of the atom in
the [System%Atoms] block.

AtomList

Type Integer List

Recurring True

Description Fix positions of the specified atoms. A list of integers referring to indices of atoms
in the [System%Atoms] block.

Block

Type String

Recurring True

Description Name of the region to constrain as a rigid block. Regions are specified in the Sys-
tem%Atoms block.

BlockAtoms

Type Integer List

Recurring True

Description List of atom indices for a block constraint, where the internal degrees of freedom
are frozen.

Coordinate

Type String

Recurring True

Description Fix a particular coordinate of an atom. Atom index followed by (x|y|z).

296 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

DifDist

Type String

Recurring True

Description Four atom indices i j k l followed by the distance in Angstrom. This will constrain
the difference R(ij)-R(kl) at the given value.

Dihedral

Type String

Recurring True

Description Fix the dihedral angle between four atoms. Four atom indices followed by an angle
in degrees.

Distance

Type String

Recurring True

Description Fix the distance between two atoms. Two atom indices followed by the distance in
Angstrom.

EqualStrain

Type String

Description Exclusively for lattice optimizations: Accepts a set of strain components [xx, xy, xz,
yy, yz, zz] which are to be kept equal. The applied strain will be determined by the average
of the corresponding stress tensors components. In AMSinput just check the corresponding
check buttons.

FixedRegion

Type String

Recurring True

Description Fix positions of all atoms in a region.

FreezeStrain

Type String

Description Exclusively for lattice optimizations: Freezes any lattice deformation correspond-
ing to a particular component of the strain tensor. Accepts a set of strain components [xx, xy,
xz, yy, yz, zz] to be frozen. In AMSinput just check the corresponding check buttons.

SumDist

Type String

Recurring True

Description Four atom indices i j k l followed by the distance in Angstrom. This will constrain
the sum R(ij)+R(kl) at the given value.

ElasticTensor

Type Block

Description Options for numerical evaluation of the elastic tensor.

MaxGradientForGeoOpt

15.2. Summary of all keywords 297



AMS Manual, Amsterdam Modeling Suite 2020

Type Float

Default value 0.0001

Unit Hartree/Angstrom

GUI name Maximum nuclear gradient

Description Maximum nuclear gradient for the relaxation of the internal degrees of freedom of
strained systems.

Parallel

Type Block

Description Options for double parallelization, which allows to split the available processor
cores into groups working through all the available tasks in parallel, resulting in a better
parallel performance. The keys in this block determine how to split the available processor
cores into groups working in parallel.

nCoresPerGroup

Type Integer

Description Number of cores in each working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

GUI name Cores per task

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

StrainStepSize

Type Float

Default value 0.001

Description Step size (relative) of strain deformations used for computing the elastic tensor
numerically.

Engine

Type Block

Description The input for the computational engine. The header of the block determines the type of
the engine.

EngineAddons

Type Block

Description This block configures all the engine add-ons.

AtomEnergies

Type Non-standard block

298 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Description Add an element-dependent energy per atom. On each line, give the chemical ele-
ment followed by the energy (in atomic units).

D3Dispersion

Type Block

Description This block configures the add-on that adds the Grimme D3 dispersion correction to
the engine’s energy, gradients, and stress tensor.

Damping

Type Multiple Choice

Default value BJ

Options [BJ, Zero]

Description Type of damping: BJ (Becke-Johnson) or Zero. BJ is recommended for most
applications.

Enabled

Type Bool

Default value No

Description Enables the D3 dispersion correction addon.

Functional

Type String

Default value PBE

Description Use the D3 parameterization by Grimme for a given xc-functional. Accepts
the same values as the –func command line option of the official dftd3 program. Note:
the naming convention is different from elsewhere in the AMS suite. For example, BLYP
should be called b-lyp.

a1

Type Float

Description The a1 parameter. Only used if Damping is set to BJ. If set, it overwrites the a1
value for the chosen functional.

a2

Type Float

Description The a2 parameter. Only used if Damping is set to BJ. If set, it overwrites the a2
value for the chosen functional.

s6

Type Float

Description The s6 parameter, global scaling parameter. If set, it overwrites the s6 value for
the chosen functional.

s8

Type Float

Description The s8 parameter. If set, it overwrites the s8 value for the chosen functional.

sr6

15.2. Summary of all keywords 299



AMS Manual, Amsterdam Modeling Suite 2020

Type Float

Description The sr6 parameter. Only used if Damping is set to Zero. If set, it overwrites the
sr6 value for the chosen functional.

D4Dispersion

Type Block

Description This block configures the addon that adds the Grimme D4(EEQ) dispersion correc-
tion to the engine’s energy and gradients.

Enabled

Type Bool

Default value No

Description Enables the D4 dispersion correction addon.

Functional

Type Multiple Choice

Default value PBE

Options [HF, BLYP, BPBE, BP86, BPW, LB94, MPWLYP, MPWPW91, OLYP, OPBE,
PBE, RPBE, REVPBE, PW86PBE, RPW86PBE, PW91, PW91P86, XLYP, B97, TPSS,
REVTPSS, SCAN, B1LYP, B3LYP, BHLYP, B1P86, B3P86, B1PW91, B3PW91, O3LYP,
REVPBE0, REVPBE38, PBE0, PWP1, PW1PW, MPW1PW91, MPW1LYP, PW6B95,
TPSSH, TPSS0, X3LYP, M06L, M06, OMEGAB97, OMEGAB97X, CAM-B3LYP,
LC-BLYP, LH07TSVWN, LH07SSVWN, LH12CTSSIRPW92, LH12CTSSIFPW92,
LH14TCALPBE, B2PLYP, B2GPPLYP, MPW2PLYP, PWPB95, DSDBLYP, DSDPBE,
DSDPBEB95, DSDPBEP86, DSDSVWN, DODBLYP, DODPBE, DODPBEB95, DODP-
BEP86, DODSVWN, PBE02, PBE0DH, B1B95, MPWB1K, REVTPSSH, GLYP,
REVPBE0DH, REVTPSS0]

Description Use the D4 parameterization by Grimme for a given xc-functional.

Verbosity

Type Multiple Choice

Default value Silent

Options [Silent, Normal, Verbose, VeryVerbose]

Description Controls the verbosity of the dftd4 code. Equivalent to the –silent, –verbose,
and –very-verbose command line switches of the official dftd4 program.

a1

Type Float

Description The a1 parameter, see D4 article. The physically reasonable range for a1 is
[0.0,1.0]. If set, it overwrites the a1 value for the chosen functional.

a2

Type Float

Description The a2 parameter, see D4 article. The physically reasonable range for a2 is
[0.0,7.0]. If set, it overwrites the a2 value for the chosen functional.

s6

Type Float

300 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Description The s6 parameter, see D4 article. The physically reasonable range for s6 is
[0.0,1.0]. If set, it overwrites the s6 value for the chosen functional.

s8

Type Float

Description The s8 parameter, see D4 article. The physically reasonable range for s8 is
[0.0,3.0]. If set, it overwrites the s8 value for the chosen functional.

s9

Type Float

Description The s9 parameter, see D4 article. If set, it overwrites the s9 value for the chosen
functional.

ExternalEngine

Type Block

Description External engine as an addon

Execute

Type String

GUI name Execute

Description execute command

ExternalStress

Type Block

Description This block configures the addon that adds external stress term to the engine’s energy
and stress tensor.

StressTensorVoigt

Type Float List

Unit a.u.

GUI name External stress tensor

Description The elements of the external stress tensor in Voigt notation. One should specify
6 numbers for 3D periodic system (order: xx,yy,zz,yz,xz,xy), 3 numbers for 2D periodic
systems (order: xx,yy,xy) or 1 number for 1D periodic systems.

UpdateReferenceCell

Type Bool

Default value No

Description Whether ot not the reference cell should be updated every time the system
changes (see documentation).

PipeEngine

Type Block

Description Pipe engine as an addon

WorkerCommand

Type String

15.2. Summary of all keywords 301



AMS Manual, Amsterdam Modeling Suite 2020

GUI name Worker command

Description pipe worker command

Pressure

Type Float

Default value 0.0

Unit GPa

Description Add a hydrostatic pressure term to the engine’s energy and stress tensor. Can only
be used for 3D periodic boundary conditions.

EngineDebugging

Type Block

Description This block contains some options useful for debugging the computational engines.

CheckInAndOutput

Type Bool

Default value No

Description Enables some additional checks on the input and output of and engine, e.g. for NaN
values.

ForceContinousPES

Type Bool

Default value No

Description If this option is set, the engine will always run in continuous PES mode. For many
engines this disables the use of symmetry, as this one always leads to a discontinuous PES
around the symmetric points: Basically there is jump in the PES at the point where the
symmetry detection starts classifying the system as symmetric. Normally the continuous
PES mode of the engine (often disabling the symmetry) is only used when doing numerical
derivatives, but this flag forces the engine to continuously run in this mode.

IgnoreGradientsRequest

Type Bool

Default value No

Description If this option is set, the engine will not do analytical gradients if asked for it, so that
gradients will have to be evaluated numerically by AMS.

IgnorePreviousResults

Type Bool

Default value No

Description If this option is set, the engine will not receive information from previous calcula-
tions. Typically this information is used to restart the self consistent procedure of the engine.

IgnoreStressTensorRequest

Type Bool

Default value No

302 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Description If this option is set, the engine will not calculate an analytical stress tensor if asked
for it, so that the stress tensor will have to be evaluated numerically by AMS.

NeverQuiet

Type Bool

Default value No

Description Makes the engine ignore the request to work quietly.

RandomFailureChance

Type Float

Default value 0.0

Description Makes the engine randomly report failures, even though the results are actually fine.
Useful for testing error handling on the application level.

RandomNoiseInEnergy

Type Float

Default value 0.0

Unit Hartree

Description Adds a random noise to the energy returned by the engine. The random contribution
is drawn from [-r,r] where r is the value of this keyword.

RandomNoiseInGradients

Type Float

Default value 0.0

Unit Hartree/Angstrom

Description Adds a random noise to the gradients returned by the engine. A random number in
the range [-r,r] (where r is the value of this keyword) is drawn and added separately to each
component of the gradient.

RandomStopChance

Type Float

Default value 0.0

Description Makes the engine randomly stop. Can be used to simulate crashes.

EngineRestart

Type String

Description The path to the file from which to restart the engine. Should be a proper engine result
file (like adf.rkf, band.rkf etc), or the name of the results directory containing it.

GCMC

Type Block

Description This block controls the Grand Canonical Monte Carlo (GCMC) task. By default,
molecules are added at random positions in the simulation box. The initial position is controlled
by

AccessibleVolume

Type Float

15.2. Summary of all keywords 303



AMS Manual, Amsterdam Modeling Suite 2020

Default value 0.0

Description Volume available to GCMC, in cubic Angstroms. AccessibleVolume should be
specified for “Accessible” and “FreeAccessible” [VolumeOption].

Box

Type Block

Description Boundaries of the insertion space, i.e. coordinates of the origin of an inserted
molecule (coordinates of an atom of the inserted system may fall outside the box). For a
periodic dimension it is given as a fraction of the simulation box (the full 0 to 1 range by de-
fault). For a non-periodic dimension it represents absolute Cartesian coordinates in Angstrom
(the system’s bounding box extended by the MaxDistance value by default).

Amax

Type Float

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Description Coordinate of the lower bound along the third axis.

Ensemble

Type Multiple Choice

Default value Mu-VT

Options [Mu-VT, Mu-PT]

Description Select the MC ensemble: Mu-VT for fixed volume or Mu-PT for variable volume.
When the Mu-PT ensemble is selected the [Pressure] and [VolumeChangeMax] should also
be specified.

Iterations

Type Integer

GUI name Number of GCMC iterations

304 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Description Number of GCMC moves.

MapAtomsToOriginalCell

Type Bool

Default value Yes

Description Keeps the atom (mostly) in the original cell by mapping them back before the ge-
ometry optimizations.

MaxDistance

Type Float

Default value 3.0

Unit Angstrom

GUI name Add molecules within

Description The max distance to other atoms of the system when adding the molecule.

MinDistance

Type Float

Default value 0.3

Unit Angstrom

GUI name Add molecules not closer than

Description Keep the minimal distance to other atoms of the system when adding the molecule.

Molecule

Type Block

Recurring True

GUI name Molecules

Description This block defines the molecule (or atom) that can be inserted/moved/deleted with
the MC method. The coordinates should form a reasonable structure. The MC code uses
these coordinates during the insertion step by giving them a random rotation, followed by a
random translation to generate a random position of the molecule inside the box. Currently,
there is no check to make sure all atoms of the molecule stay inside the simulation box. The
program does check that the MaxDistance/MinDistance conditions are satisfied.

ChemicalPotential

Type Float

Unit Hartree

Description Chemical potential of the molecule (or atom) reservoir. It is used when cal-
culating the Boltzmann accept/reject criteria after a MC move is executed. This value
can be derived from first principles using statistical mechanics, or equivalently, it can be
determined from thermochemical tables available in literature sources. For example, the
proper chemical potential for a GCMC simulation in which single oxygen atoms are ex-
changed with a reservoir of O2 gas, should equal 1/2 the chemical potential of O2 at the
temperature and pressure of the reservoir: cmpot = Mu_O(T,P) = 1/2*Mu_O2(T,P) = 1/2
* [Mu_ref(T,P_ref) + kT*Log(P/Pref) - E_diss] where the reference chemical potential
[Mu_ref(T,P_ref)] is the experimentally determined chemical potential of O2 at T and Pref;

15.2. Summary of all keywords 305



AMS Manual, Amsterdam Modeling Suite 2020

kT*Log(P/Pref) is the pressure correction to the free energy, and E_diss is the dissociation
energy of the O2 molecule.

NoAddRemove

Type Bool

Default value No

GUI name Fix molecule

Description Set to True to tell the GCMC code to keep the number of molecules/atoms of
this type fixed. It will thus disable Insert/Delete moves on this type, meaning it can only
do a displacement move, or volume change move (for an NPT ensemble).

SystemName

Type String

GUI name Molecule

Description String ID of a named [System] to be inserted. The lattice specified with this
System, if any, is ignored and the main system’s lattice is used instead.

NonAccessibleVolume

Type Float

Default value 0.0

GUI name Non-accessible volume

Description Volume not available to GCMC, in cubic Angstroms. NonAccessibleVolume may
be specified for the “Free” [VolumeOption] to reduce the accessible volume.

NumAttempts

Type Integer

Default value 1000

GUI name Max tries

Description Try inserting/moving the selected molecule up to the specified number of times
or until all constraints are satisfied. If all attempts fail a message will be printed and the
simulation will stop. If the MaxDistance-MinDistance interval is small this number may
have to be large.

Pressure

Type Float

Default value 0.0

Unit Pascal

Description Pressure used to calculate the energy correction in the Mu-PT ensemble. Set it to
zero for incompressible solid systems unless at very high pressures.

Removables

Type Non-standard block

Description The Removables can be used to specify a list of molecules that can be removed or
moved during this GCMC calculation. Molecules are specified one per line in the format
following format: MoleculeName atom1 atom2 . . . The MoleculeName must match a name
specified in one of the [Molecule] blocks. The atom indices refer to the whole input System

306 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

and the number of atoms must match that in the specified Molecule. A suitable Removables
block is written to the standard output after each accepted MC move. If you do so then you
should also replace the initial atomic coordinates with the ones found in the same file. If a
[Restart] key is present then the Removables block is ignored.

Restart

Type String

Description Name of an RKF restart file. Upon restart, the information about the GCMC in-
put parameters, the initial system (atomic coordinates, lattice, charge, etc.) and the MC
molecules (both already inserted and to be inserted) are read from the restart file. The global
GCMC input parameters and the MC Molecules can be modified from input. Any parameter
not specified in the input will use its value from the restart file (i.e. not the default value).
Molecules found in the restart file do not have to be present as named Systems in the input,
however if there is a System present that matches the name of a molecule from restart then
the System’s geometry will replace that found in the restart file. It is also possible to spec-
ify new Molecules in the input, which will be added to the pool of the MC molecules from
restart.

Temperature

Type Float

Default value 300.0

Unit Kelvin

Description Temperature of the simulation. Increase the temperature to improve the chance of
accepting steps that result in a higher energy.

UseGCPreFactor

Type Bool

Default value Yes

GUI name Use GC prefactor

Description Use the GC pre-exponential factor for probability.

VolumeChangeMax

Type Float

Default value 0.05

Description Fractional value by which logarithm of the volume is allowed to change at each step.
The new volume is then calculated as Vnew = exp(random(-1:1)*VolumeChangeMax)*Vold

VolumeOption

Type Multiple Choice

Default value Free

Options [Free, Total, Accessible, FreeAccessible]

GUI name Volume method

Description Specifies the method to calculate the volume used to calculate the GC pre-
exponential factor and the energy correction in the Mu-PT ensemble: Free: V = totalVol-
ume - occupiedVolume - NonAccessibleVolume; Total: V = totalVolume; Accessible: V =

15.2. Summary of all keywords 307



AMS Manual, Amsterdam Modeling Suite 2020

AccessibleVolume; FreeAccessible: V = AccessibleVolume - occupiedVolume. The Acces-
sibleVolume and NonAccessibleVolume are specified in the input, the occupiedVolume is
calculated as a sum of atomic volumes.

GeometryOptimization

Type Block

Description Configures details of the geometry optimization and transition state searches.

CalcPropertiesOnlyIfConverged

Type Bool

Default value Yes

Description Compute the properties requested in the ‘Properties’ block, e.g. Frequencies or
Phonons, only if the optimization (or transition state search) converged. If False, the proper-
ties will be computed even if the optimization did not converge.

Convergence

Type Block

Description Convergence is monitored for up to 4 quantities: the energy change, the Cartesian
gradients, the Cartesian step size, and for lattice optimizations the stress energy per atom.
Convergence criteria can be specified separately for each of these items.

Energy

Type Float

Default value 1e-05

Unit Hartree

GUI name Energy convergence

Description The criterion for changes in the energy. The energy is considered converged
when the change in energy is smaller than this threshold times the number of atoms.

Gradients

Type Float

Default value 0.001

Unit Hartree/Angstrom

GUI name Gradient convergence

Description Threshold for nuclear gradients.

Step

Type Float

Default value 0.01

Unit Angstrom

GUI name Step convergence

Description The maximum Cartesian step allowed for a converged geometry.

StressEnergyPerAtom

Type Float

308 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Default value 0.0005

Unit Hartree

Description Threshold used when optimizing the lattice vectors. The stress is considered
‘converged’ when the maximum value of stress_tensor * cell_volume / number_of_atoms
is smaller than this threshold (for 2D and 1D systems, the cell_volume is replaced by the
cell_area and cell_length respectively).

CoordinateType

Type Multiple Choice

Default value Auto

Options [Auto, Delocalized, Cartesian]

GUI name Optimization space

Description Select the type of coordinates in which to perform the optimization. ‘Auto’ au-
tomatically selects the most appropriate CoordinateType for a given Method. If ‘Auto’ is
selected, Delocalized coordinates will be used for the Quasi-Newton and SCMGO methods,
while Cartesian coordinates will be used for all other methods.

EngineAutomations

Type Block

Description The optimizer can change some settings of the engine, based for instance on the
error. The idea is to allow the engine to be a bit quicker at the start, and more accurate
towards the end. Automations are always engine specific.

Enabled

Type Bool

Default value Yes

Description Whether or not autotions are enabled at all.

Gradient

Type Block

Recurring True

Description A gradient-based automation.

FinalValue

Type Float

Description This value will be used whenever the gradient is less than GradientLow

HighGradient

Type Float

Default value 1.0

Unit Hartree/Angstrom

Description Defines a large gradient. When the actual gradient is between GradientHigh
and GradientLow a linear interpolation scheme is used for kT (on a log scale).

InitialValue

Type Float

15.2. Summary of all keywords 309



AMS Manual, Amsterdam Modeling Suite 2020

Description This value will be used at the first geometry, and whenever the gradient is
higher than GradientHigh

LowGradient

Type Float

Default value 1.0

Unit Hartree/Angstrom

Description Defines a small gradient, see GradientHigh

UseLogInterpolation

Type Bool

Default value Yes

Description Whether to use interpolation on a log (y) scale or not

Variable

Type String

Default value

Description variable to be tweaked for the engine.

Iteration

Type Block

Recurring True

Description Geometry step based automation.

FinalValue

Type Float

Description

FirstIteration

Type Integer

Default value 1

Description When the actual gradient is between the first and last iteration, a linear inter-
polation is used.

InitialValue

Type Float

Description This value will be used when the iteration number is smaller or equal to FirstIt-
eration

LastIteration

Type Integer

Default value 10

Description Where the automation should reach the FinalValue

UseLogInterpolation

Type Bool

310 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Default value Yes

Description Whether to use interpolation on a log (y) scale or not

Variable

Type String

Default value

Description variable to be tweaked for the engine.

FIRE

Type Block

Description This block configures the details of the FIRE optimizer. The keywords name corre-
spond the the symbols used in the article describing the method, see PRL 97, 170201 (2006).

AllowOverallRotation

Type Bool

Default value Yes

Description Whether or not the system is allowed to freely rotate during the optimization.
This is relevant when optimizing structures in the presence of external fields.

AllowOverallTranslation

Type Bool

Default value No

Description Whether or not the system is allowed to translate during the optimization. This
is relevant when optimizing structures in the presence of external fields.

MapAtomsToUnitCell

Type Bool

Default value No

Description Map the atoms to the central cell at each geometry step.

NMin

Type Integer

Default value 5

Description Number of steps after stopping before increasing the time step again.

alphaStart

Type Float

Default value 0.1

Description Steering coefficient.

dtMax

Type Float

Default value 1.0

Unit Femtoseconds

Description Maximum time step used for the integration.

15.2. Summary of all keywords 311



AMS Manual, Amsterdam Modeling Suite 2020

dtStart

Type Float

Default value 0.25

Unit Femtoseconds

Description Initial time step for the integration.

fAlpha

Type Float

Default value 0.99

Description Reduction factor for the steering coefficient.

fDec

Type Float

Default value 0.5

Description Reduction factor for reducing the time step in case of uphill movement.

fInc

Type Float

Default value 1.1

Description Growth factor for the integration time step.

strainMass

Type Float

Default value 0.5

Description Fictitious relative mass of the lattice degrees of freedom. This controls the
stiffness of the lattice degrees of freedom relative to the atomic degrees of freedom, with
smaller values resulting in a more aggressive optimization of the lattice.

HessianFree

Type Block

Description Configures details of the Hessian-free (conjugate gradients or L-BFGS) geometry
optimizer.

Step

Type Block

Description

MaxCartesianStep

Type Float

Default value 0.1

Unit Angstrom

Description Limit on a single Cartesian component of the step.

MinRadius

Type Float

312 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Default value 0.0

Unit Angstrom

Description Minimum value for the trust radius.

TrialStep

Type Float

Default value 0.0005

Unit Angstrom

Description Length of the finite-difference step when determining curvature. Should be
smaller than the step convergence criterion.

TrustRadius

Type Float

Default value 0.2

Unit Angstrom

Description Initial value of the trust radius.

InitialHessian

Type Block

Description Options for initial model Hessian when optimizing systems with either the Quasi-
Newton or the SCMGO method.

File

Type String

GUI name Initial Hessian from

Description KF file containing the initial Hessian (or the results dir. containing it). This
can be used to load a Hessian calculated in a previously with the [Properties%Hessian]
keyword.

Type

Type Multiple Choice

Default value Auto

Options [Auto, UnitMatrix, Swart, FromFile, Calculate, CalculateWithFastEngine]

GUI name Initial Hessian

Description Select the type of initial Hessian. Auto: let the program pick an initial model
Hessian. UnitMatrix: simplest initial model Hessian, just a unit matrix in the optimization
coordinates. Swart: model Hessian from M. Swart. FromFile: load the Hessian from the
results of a previous calculation (see InitialHessian%File). Calculate: compute the initial
Hessian (this may be computationally expensive and it is mostly recommended for Transi-
tionStateSearch calculations). CalculateWithFastEngine: compute the initial Hessian with
a faster engine.

KeepIntermediateResults

Type Bool

Default value No

15.2. Summary of all keywords 313



AMS Manual, Amsterdam Modeling Suite 2020

Description Whether the full engine result files of all intermediate steps are stored on disk. By
default only the last step is kept, and only if the geometry optimization converged. This can
easily lead to huge amounts of data being stored on disk, but it can sometimes be conve-
nient to closely monitor a tricky optimization, e.g. excited state optimizations going through
conical intersections, etc. . . .

MaxIterations

Type Integer

GUI name Maximum number of iterations

Description The maximum number of geometry iterations allowed to converge to the desired
structure.

Method

Type Multiple Choice

Default value Auto

Options [Auto, Quasi-Newton, SCMGO, FIRE, L-BFGS, ConjugateGradients]

GUI name Optimization method

Description Select the optimization algorithm employed for the geometry relaxation. Currently
supported are: the Hessian-based Quasi-Newton-type BFGS algorithm, the experimental
SCMGO optimizer, the fast inertial relaxation method (FIRE), the limited-memory BFGS
method, and the conjugate gradients method. The default is to choose an appropriate method
automatically based on the engine’s speed, the system size and the supported optimization
options.

OptimizeLattice

Type Bool

Default value No

Description Whether to also optimize the lattice for periodic structures. This is currently only
supported with the Quasi-Newton, FIRE, L-BFGS and SCMGO optimizers.

PretendConverged

Type Bool

Default value No

Description Normally a non-converged geometry optimization is considered an error. If this
keyword is set to True, the optimizer will only produce a warning and still claim that the
optimization is converged. (This is mostly useful for scripting applications, where one might
want to consider non-converged optimizations still successful jobs.)

Quasi-Newton

Type Block

Description Configures details of the Quasi-Newton geometry optimizer.

MaxGDIISVectors

Type Integer

Default value 0

Description Sets the maximum number of GDIIS vectors. Setting this to a number >0 en-
ables the GDIIS method.

314 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Step

Type Block

Description

TrustRadius

Type Float

Description Initial value of the trust radius.

UpdateTSVectorEveryStep

Type Bool

Default value Yes

GUI name Update TSRC vector every step

Description Whether to update the TS reaction coordinate at each step with the current
eigenvector.

SCMGO

Type Block

Description Configures details SCMGO.

ContractPrimitives

Type Bool

Default value Yes

Description Form non-redundant linear combinations of primitive coordinates sharing the
same central atom

NumericalBMatrix

Type Bool

Default value No

Description Calculation of the B-matrix, i.e. Jacobian of internal coordinates in terms of
numerical differentiations

Step

Type Block

Description

TrustRadius

Type Float

Default value 0.2

Description Initial value of the trust radius.

VariableTrustRadius

Type Bool

Default value Yes

Description Whether or not the trust radius can be updated during the optimization.

logSCMGO

15.2. Summary of all keywords 315



AMS Manual, Amsterdam Modeling Suite 2020

Type Bool

Default value No

Description Verbose output of SCMGO internal data

testSCMGO

Type Bool

Default value No

Description Run SCMGO in test mode.

IRC

Type Block

Description Configures details of the Intrinsic Reaction Coordinate optimization.

Convergence

Type Block

Description Convergence at each given point is monitored for two items: the Cartesian gradient
and the calculated step size. Convergence criteria can be specified separately for each of
these items. The same criteria are used both in the inner IRC loop and when performing
energy minimization at the path ends.

Gradients

Type Float

Default value 0.001

Unit Hartree/Angstrom

GUI name Gradient convergence

Description Convergence criterion for the max component of the residual energy gradient.

Step

Type Float

Default value 0.001

Unit Angstrom

GUI name Step convergence

Description Convergence criterion for the max component of the step in the optimization
coordinates.

CoordinateType

Type Multiple Choice

Default value Cartesian

Options [Cartesian, Delocalized]

GUI name Coordinates used for optimization

Description Select the type of coordinates in which to perform the optimization. Note that the
Delocalized option should be considered experimental.

Direction

Type Multiple Choice

316 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Default value Both

Options [Both, Forward, Backward]

Description Select direction of the IRC path. The difference between the Forward and the Back-
ward directions is determined by the sign of the largest component of the vibrational normal
mode corresponding to the reaction coordinate at the transition state geometry. The For-
ward path correspond to the positive sign of the component. If Both is selected then first the
Forward path is computed followed by the Backward one.

InitialHessian

Type Block

Description Options for initial Hessian at the transition state. The first eigenvalue of the initial
Hessian defines direction of the first forward or backward step. This block is ignored when
restarting from a previous IRC calculation because the initial Hessian found in the restart file
is used.

File

Type String

GUI name File

Description If ‘Type’ is set to ‘FromFile’ then in this key you should specifiy the RKF file
containing the initial Hessian (or the ams results dir. containing it). This can be used to
load a Hessian calculated previously with the ‘Properties%Hessian’ keyword. If you want
to also use this file for the initial geometry then also specify it in a ‘LoadSystem’ block.

Type

Type Multiple Choice

Default value Calculate

Options [Calculate, FromFile]

GUI name Initial Hessian

Description Calculate the exact Hessian for the input geometry or load it from the results of
a previous calculation.

KeepConvergedResults

Type Bool

Default value Yes

Description Keep the binary RKF result file for every converged IRC point. These files may
contain more information than the main ams.rkf result file.

MaxIRCSteps

Type Integer

GUI name Maximum IRC steps

Description Soft limit on the number of IRC points to compute in each direction. After the
specified number of IRC steps the program will switch to energy minimization and complete
the path. This option should be used when you are interested only in the reaction path area
near the transition state. Note that even if the soft limit has been hit and the calculation has
completed, the IRC can still be restarted with a ‘RedoBackward’ or ‘RedoForward’ option.

MaxIterations

15.2. Summary of all keywords 317



AMS Manual, Amsterdam Modeling Suite 2020

Type Integer

Default value 300

GUI name Maximum iterations

Description The maximum number of geometry iterations allowed to converge the inner IRC
loop. If optimization does not converge within the specified number of steps, the calculation
is aborted.

MaxPoints

Type Integer

Default value 100

GUI name Maximum points

Description Hard limit on the number of IRC points to compute in each direction. After the
specified number of IRC steps the program will stop with the current direction and switch
to the next one. If both ‘MaxPoints’ and ‘MaxIRCSteps’ are set to the same value then
‘MaxPoints’ takes precedence, therefore this option should be used to set a limit on the
number of IRC steps if you intend to use the results later for a restart.

MinEnergyProfile

Type Bool

Default value No

GUI name Minimum energy profile

Description Calculate minimum energy profile (i.e. no mass-weighting) instead of the IRC.

MinPathLength

Type Float

Default value 0.1

Unit Angstrom

Description Minimum length of the path required before switching to energy minimization. Use
this to overcome a small kink or a shoulder on the path.

Restart

Type Block

Description Restart options. Upon restart, the information about the IRC input parameters and
the initial system (atomic coordinates, lattice, charge, etc.) is read from the restart file. The
IRC input parameters can be modified from input. Except for ‘MaxPoints’ and ‘Direction’
all parameters not specified in the input will use their values from the restart file. The ‘Max-
Points’ and ‘Direction’ will be reset to their respective default values if not specified in the
input. By default, the IRC calculation will continue from the point where it left off. However,
the ‘RedoForward’ and/or ‘RedoBackward’ option can be used to enforce recalculation of a
part of the reaction path, for example, using a different ‘Step’ value.

File

Type String

GUI name Restart

318 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Description Name of an RKF restart file generated by a previous IRC calculation. Do not
use this key to provide an RKF file generated by a TransitionStateSearch or a SinglePoint
calculation, use the ‘LoadSystem’ block instead.

RedoBackward

Type Integer

Default value 0

Description IRC step number to start recalculating the backward path from. By default, if
the backward path has not been completed then start after the last completed step. If the
backward path has been completed and the ‘RedoBackward’ is omitted then no point on
the backward path will be recomputed.

RedoForward

Type Integer

Default value 0

Description IRC step number to start recalculating the forward path from. By default, if the
forward path has not been completed then start after the last completed step. If the forward
path has been completed and the ‘RedoForward’ is omitted then no point on the forward
path will be recomputed.

Step

Type Float

Default value 0.2

GUI name Step size

Description IRC step size in mass-weighted coordinates, sqrt(amu)*bohr. One may have to
increase this value when heavy atoms are involved in the reaction, or decrease it if the reactant
or products are very close to the transition state.

LoadEngine

Type String

Description The path to the file from which to load the engine configuration. Replaces the Engine
block.

LoadSystem

Type Block

Recurring True

Description Block that controls reading the chemical system from a KF file instead of the [System]
block.

File

Type String

Description The path of the KF file from which to load the system. It may also be the results
directory containing it.

Section

Type String

Default value Molecule

15.2. Summary of all keywords 319



AMS Manual, Amsterdam Modeling Suite 2020

Description The section on the KF file from which to load the system.

Log

Type Non-standard block

Description Configures the debugging loggers. Syntax: ‘Level LoggerName’. Possible Levels: All,
Debug, Info, Warning, Error, Fatal.

MolecularDynamics

Type Block

Description Configures molecular dynamics (with the velocity-Verlet algorithm) with and without
thermostats. This block allows to specify the details of the molecular dynamics calculation.

AddMolecules

Type Block

Recurring True

GUI name Add molecules

Description This block controls adding molecules to the system (a.k.a. the Molecule Gun).
Multiple occurrences of this block are possible. By default, molecules are added at random
positions in the simulation box with velocity matching the current system temperature. The
initial position can be modified using one of the following keywords: Coords, CoordsBox,
FractionalCoords, FractionalCoordsBox. The Coords and FractionalCoords keys can option-
ally be accompanied by CoordsSigma or FractionalCoordsSigma, respectively.

AtomTemperature

Type Float

Default value 0.0

Unit Kelvin

Description Add random velocity corresponding to the specified temperature to individual
atoms of the molecule. The total momentum of the added molecule is not conserved.

Coords

Type Float List

Unit Angstrom

Description Place molecules at or around the specified Cartesian coordinates. This setting
takes precedence over other ways to specify initial coordinates of the molecule: [Coords-
Box], [FractionalCoords], and [FractionalCoordsBox].

CoordsBox

Type Float List

Unit Angstrom

Description Place molecules at random locations inside the specified box in Cartesian co-
ordinates. Coordinates of the box corners are specified as: Xmin, Xmax, Ymin, Ymax,
Zmin, Zmax. This setting is ignored if Coords is used. In AMSinput, if this field is not
empty it will be used instead of the default Coords.

CoordsSigma

Type Float List

320 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Unit Angstrom

Description Sigma values (one per Cartesian axis) for a Gauss distribution of the initial
coordinates. Can only be used together with Coords.

Energy

Type Float

Unit Hartree

Description Initial kinetic energy of the molecule in the shooting direction.

EnergySigma

Type Float

Default value 0.0

Unit Hartree

Description Sigma value for the Gauss distribution of the initial kinetic energy around the
specified value. Should only be used together with Energy.

FractionalCoords

Type Float List

Description Place molecules at or around the specified fractional coordinates in the main
system’s lattice. For non-periodic dimensions a Cartesian value in Angstrom is expected.
This setting is ignored if [Coords] or [CoordsBox] is used.

FractionalCoordsBox

Type Float List

Description Place molecules at random locations inside the box specified as fractional coor-
dinates in the main system’s lattice. Coordinates of the box corners are specified as: Xmin,
Xmax, Ymin, Ymax, Zmin, Zmax. For non-periodic dimensions the Cartesian value in
Angstrom is expected. This setting is ignored if [Coords], [CoordsBox], or [FractionalCo-
ords] is used.

FractionalCoordsSigma

Type Float List

Description Sigma values (one per axis) for a Gauss distribution of the initial coordinates.
For non-periodic dimensions the Cartesian value in Angstrom is expected. Can only be
used together with FractionalCoords.

Frequency

Type Integer

Default value 0

Description A molecule is added every [Frequency] steps after the StartStep. There is never
a molecule added at step 0.

MinDistance

Type Float

Default value 0.0

Unit Angstrom

15.2. Summary of all keywords 321



AMS Manual, Amsterdam Modeling Suite 2020

Description Keep the minimal distance to other atoms of the system when adding the
molecule.

NumAttempts

Type Integer

Default value 10

Description Try adding the molecule up to the specified number of times or until the
MinDistance constraint is satisfied. If all attempts fail a message will be printed and the
simulation will continue normally.

Rotate

Type Bool

Default value No

Description Rotate the molecule randomly before adding it to the system.

StartStep

Type Integer

Default value 0

Description Step number when the first molecule should be added. After that, molecules
are added every Frequency steps. For example, ff StartStep=99 and Frequency=100 then a
molecule will be added at steps 99, 199, 299, etc. . . No molecule will be added at step 0,
so if StartStep=0 the first molecule is added at the step number equal to [Frequency].

StopStep

Type Integer

Description Do not add this molecule after the specified step.

System

Type String

Description String ID of the [System] that will be added with this ‘gun’. The lattice speci-
fied with this System is ignored and the main system’s lattice is used instead. AMSinput
adds the system at the coordinates of the System (thus setting Coords to the center of the
System).

Temperature

Type Float

Unit Kelvin

Description Initial energy of the molecule in the shooting direction will correspond to the
given temperature.

TemperatureSigma

Type Float

Default value 0.0

Unit Kelvin

Description Sigma value for the Gauss distribution of the initial temperature the specified
value. Should only be used together with TemperatureSigma.

Velocity

322 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Type Float

Unit Angstrom/fs

Description Initial velocity of the molecule in the shooting direction.

VelocityDirection

Type Float List

Description Velocity direction vector for aimed shooting. It will be random if not specified.
In AMSinput add one or two atoms (which may be dummies). One atom: use vector from
center of the system to add to that atom. Two atoms: use vector from the first to the second
atom.

VelocitySigma

Type Float

Default value 0.0

Unit Angstrom/fs

Description Sigma value for the Gauss distribution of the initial velocity around the specified
value. Should only be used together with Velocity.

Barostat

Type Block

Description This block allows to specify the use of a barostat during the simulation.

BulkModulus

Type Float

Default value 2200000000.0

Unit Pascal

Description An estimate of the bulk modulus (inverse compressibility) of the system for
the Berendsen barostat. This is only used to make Tau correspond to the true observed
relaxation time constant. Values are commonly on the order of 10-100 GPa (1e10 to 1e11)
for solids and 1 GPa (1e9) for liquids (2.2e9 for water). Use 1e9 to match the behavior of
standalone ReaxFF.

ConstantVolume

Type Bool

Default value No

Description Keep the volume constant while allowing the box shape to change. This is
currently supported only by the MTK barostat.

Duration

Type Integer List

Description Specifies how many steps should a transition from a particular pressure to the
next one in sequence take.

Equal

Type Multiple Choice

Default value None

15.2. Summary of all keywords 323



AMS Manual, Amsterdam Modeling Suite 2020

Options [None, XYZ, XY, YZ, XZ]

Description Enforce equal scaling of the selected set of dimensions. They will be barostatted
as one dimension according to the average pressure over the components.

Pressure

Type Float List

Unit Pascal

Description Specifies the target pressure. You can specify multiple pressures (separated by
spaces). In that case the Duration field specifies how many steps to use for the transition
from one p to the next p (using a linear ramp).

Scale

Type Multiple Choice

Default value XYZ

Options [XYZ, Shape, X, Y, Z, XY, YZ, XZ]

Description Dimensions that should be scaled by the barostat to maintain pressure. Selecting
Shape means that all three dimensions and also all the cell angles are allowed to change.

Tau

Type Float

Unit Femtoseconds

GUI name Damping constant

Description Specifies the time constant of the barostat.

Type

Type Multiple Choice

Default value None

Options [None, Berendsen, MTK]

GUI name Barostat

Description Selects the type of the barostat.

BondBoost

Type Block

Recurring True

Description Forced reaction (bond boost) definitions. Multiple BondBoost blocks may be spec-
ified, which will be treated independently.

Chain

Type Block

Description Specifications of a chain of atoms. When a chain is detected the distance re-
straints will be activated. No other chain of this type will be detected while any restraints
for this chain is active.

AtomNames

Type String

324 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Description Atom names specifying the chain. An atom name can optionally be followed
by ‘@’ and a region name, in this case only atoms of this type from the given region will
be matched. A leading ‘@’ followed by a number indicates that this position in the chain
must be occupied by the atom found earlier at the specified position in the chain. For
example “O H N C @1” indicates that the last atom in the chain of the five atoms must be
the first oxygen, thus defining a 4-membered ring. This is the only way to define a ring
because implicit rings will not be detected. For example, “O H N C O” does not include
rings.

MaxDistances

Type Float List

Unit Angstrom

Description Maximum distances for each pair of atoms in the chain. The number of dis-
tances must be one less than the number of AtomNames.

MinDistances

Type Float List

Unit Angstrom

Description Minimum distances for each pair of atoms in the chain. The number of dis-
tances must be one less than the number of AtomNames.

DistanceRestraint

Type String

Recurring True

Description Specify two atom indices followed by the distance in Angstrom, the ForceCon-
stant (in a.u.) and, optionally, the profile type and F(Inf) (in a.u.). This restraint will try to
keep the distance between the two specified atoms at the given value. For periodic systems
this restraint follows the minimum image convention. Each index indicates position of the
corresponding atom in the AtomNames key. Currently recognized restraint profile types:
Harmonic (default), Hyperbolic, Erf.

NSteps

Type Integer

GUI name Boost lifetime

Description Number of steps the restraints will remain active until removed. Atoms partici-
pating in one reaction are not available for the given number of steps.

NumInstances

Type Integer

Default value 1

GUI name Number of instances

Description Number of reactions of this type taking place simultaneously.

CRESTMTD

Type Block

GUI name CREST_MTD

Description Input for CREST metadynamics simulation.

15.2. Summary of all keywords 325



AMS Manual, Amsterdam Modeling Suite 2020

AddEnergy

Type Bool

Description Add the bias energy to the potential energy (to match the gradients)

GaussianScaling

Type Block

Description Options for gradual introduction of the Gaussians

ScaleGaussians

Type Bool

Default value Yes

Description Introduce the Gaussians gradually, using a scaling function

ScalingSlope

Type Float

Default value 0.03

Description Slope of the scaling function for the Gaussians with respect to time

Height

Type Float

Unit Hartree

Description The height of the Gaussians added

NGaussiansMax

Type Integer

Description Maximum number of Gaussians stored

NSteps

Type Integer

Description Interval of Gaussian placement

RestartFile

Type String

Description Filename for file from which to read data on Gaussians placed previously.

Width

Type Float

Unit Bohr

Description The width of the Gaussians added in terms of the RMSD

CVHD

Type Block

Recurring True

GUI name CVHD

Description Input for the Collective Variable-driven HyperDynamics (CVHD).

326 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Bias

Type Block

Description The bias is built from a series of Gaussian peaks deposited on the collective
variable axis every [Frequency] steps during MD. Each peak is characterized by its (possi-
bly damped) height and the RMS width (standard deviation).

DampingTemp

Type Float

Default value 0.0

Unit Kelvin

GUI name Bias damping T

Description During well-tempered hyperdynamics the height of the added bias is scaled
down with an exp(-E/kT) factor [PhysRevLett 100, 020603 (2008)], where E is the current
value of the bias at the given CV value and T is the damping temperature DampingTemp.
If DampingTemp is zero then no damping is applied.

Delta

Type Float

Description Standard deviation parameter of the Gaussian bias peak.

Height

Type Float

Unit Hartree

Description Height of the Gaussian bias peak.

ColVarBB

Type Block

Recurring True

GUI name Collective Variable

Description Description of a bond-breaking collective variable (CV) as described in [Bal &
Neyts, JCTC, 11 (2015)]. A collective variable may consist of multiple ColVar blocks.

at1

Type Block

Description Specifies the first bonded atom in the collective variable.

region

Type String

Default value *

Description Restrict the selection of bonded atoms to a specific region. If this is not set,
atoms anywhere in the system will be selected.

symbol

Type String

15.2. Summary of all keywords 327



AMS Manual, Amsterdam Modeling Suite 2020

Description Atom type name of the first atom of the bond. The name must be as it
appears in the System block. That is, if the atom name contains an extension (e.g C.1)
then the full name including the extension must be used here.

at2

Type Block

Description Specifies the second bonded atom in the collective variable.

region

Type String

Default value *

Description Restrict the selection of bonded atoms to a specific region. If this is not set,
atoms anywhere in the system will be selected.

symbol

Type String

Description Atom type name of the second atom of the bond. The value is allowed to be
the same as [at1], in which case bonds between atoms of the same type will be included.

cutoff

Type Float

Default value 0.3

GUI name Bond order cutoff

Description Bond order cutoff. Bonds with BO below this value are ignored when creating
the initial bond list for the CV. The bond list does not change during lifetime of the variable
even if some bond orders drop below the cutoff.

p

Type Integer

Default value 6

GUI name Exponent p

Description Exponent value p used to calculate the p-norm for this CV.

rmax

Type Float

Unit Angstrom

GUI name R max

Description Max bond distance parameter Rmax used for calculating the CV. It should be
close to the transition-state distance for the corresponding bond.

rmin

Type Float

Unit Angstrom

GUI name R min

Description Min bond distance parameter Rmin used for calculating the CV. It should be
close to equilibrium distance for the corresponding bond.

328 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Frequency

Type Integer

Description Frequency of adding a new bias peak, in steps. New bias is deposited every
[Frequency] steps after [StartStep] if the following conditions are satisfied: the current CV
value is less than 0.9 (to avoid creating barriers at the transition state), the step number is
greater than or equal to [StartStep], and the step number is less than or equal to [StopStep].

StartStep

Type Integer

Description If this key is specified, the first bias will be deposited at this step. Otherwise,
the first bias peak is added at the step number equal to the Frequency parameter. The bias
is never deposited at step 0.

StopStep

Type Integer

Description No bias will be deposited after the specified step. The already deposited bias
will continue to be applied until the reaction event occurs. After that no new CVHD will
be started. By default, the CVHD runs for the whole duration of the MD calculation.

WaitSteps

Type Integer

Description If the CV value becomes equal to 1 and remains at this value for this many steps
then the reaction event is considered having taken place. After this, the collective variable
will be reset and the bias will be removed.

CalcPressure

Type Bool

Default value No

Description Calculate the pressure in periodic systems. This may be computationally expensive
for some engines that require numerical differentiation. Some other engines can calculate the
pressure for negligible additional cost and will always do so, even if this option is disabled.

Checkpoint

Type Block

Description Sets the frequency for storing the entire MD state necessary for restarting the cal-
culation.

Frequency

Type Integer

Default value 1000

GUI name Checkpoint frequency

Description Write the MD state and engine-specific data to the respective .rkf files once
every N steps.

Deformation

Type Block

Recurring True

15.2. Summary of all keywords 329



AMS Manual, Amsterdam Modeling Suite 2020

Description Deform the periodic lattice of the system during the simulation.

LatticeVelocity

Type Non-standard block

Description Velocity of individual lattice vector components in Angstrom/fs. The format is
identical to the System%Lattice block. For Type Sine and Cosine, this defines the maxi-
mum velocity (at the inflection point).

LengthRate

Type Float List

Description Relative rate of change of each lattice vector per step.

LengthVelocity

Type Float List

Unit Angstrom/fs

Description Change the length of each lattice vector with this velocity. With
Type=Exponential, LengthVelocity is divided by the current lattice vector lengths on Start-
Step to determine a LengthRate, which is then applied on all subsequent steps. For Type
Sine and Cosine, this defines the maximum velocity (at the inflection point).

Period

Type Float

Unit Femtoseconds

Description Period of oscillation for Type Sine and Cosine.

ScaleAtoms

Type Bool

Default value Yes

Description Scale the atomic positions together with the lattice vectors. Disable this to
deform only the lattice, keeping the coordinates of atoms unchanged.

StartStep

Type Integer

Default value 1

Description First step at which the deformation will be applied.

StopStep

Type Integer

Default value 0

Description Last step at which the deformation will be applied. If unset or zero, nSteps will
be used instead.

StrainRate

Type Non-standard block

Description Strain rate matrix to be applied on every step. The format is identical to the
System%Lattice block.

TargetLattice

330 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Type Non-standard block

Description Target lattice vectors to be achieved by StopStep. The format is identical to the
System%Lattice block.

TargetLength

Type Float List

Unit Angstrom

Description Target lengths of each lattice vector to be achieved by StopStep. The number
of values should equal the periodicity of the system. If a value is zero, the corresponding
lattice vector will not be modified.

Type

Type Multiple Choice

Default value Linear

Options [Linear, Exponential, Sine, Cosine]

Description Function defining the time dependence of the deformed lattice parameters. Lin-
ear increments the lattice parameters by the same absolute amount every timestep. Expo-
nential multiplies the lattice parameters by the same factor every timestep. Only Strain-
Rate, LengthRate, and LengthVelocity are supported for Type=Exponential. Sine deforms
the system from the starting lattice to TargetLattice/TargetLength and then by the same
amount to the opposite direction, while Cosine deforms the system from the starting lattice
to the target and back.

HeatExchange

Type Block

Recurring True

GUI name Heat exchange

Description Input for the heat-exchange non-equilibrium MD (T-NEMD).

HeatingRate

Type Float

Unit Hartree/fs

Description Rate at which the energy is added to the Source and removed from the Sink. A
heating rate of 1 Hartree/fs equals to about 0.00436 Watt of power being transfered through
the system.

Method

Type Multiple Choice

Default value Simple

Options [Simple, HEX, eHEX]

Description Heat exchange method used. Simple: kinetic energy of the atoms of the source
and sink regions is modified irrespective of that of the center of mass (CoM) of the region
(recommended for solids). HEX: kinetic energy of the atoms of these regions is modified
keeping that of the corresponding CoM constant. eHEX: an enhanced version of HEX that
conserves the total energy better (recommended for gases and liquids).

Sink

15.2. Summary of all keywords 331



AMS Manual, Amsterdam Modeling Suite 2020

Type Block

Description Defines the heat sink region (where the heat will be removed).

AtomList

Type Integer List

GUI name Sink region

Description The atoms that are part of the sink. This key is ignored if the [Box] block or
[Region] key is present.

Box

Type Block

Description Part of the simulation box (in fractional cell coordinates) defining the heat sink.
If this block is specified, then by default, the whole box in each of the three dimensions is
used, which usually does not make much sense. Normally, you will want to set the bounds
along one of the axes.

Amax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the third axis.

332 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Region

Type String

GUI name Sink region

Description The region that is the sink. This key is ignored if the [Box] block is present.

Source

Type Block

Description Defines the heat source region (where the heat will be added).

AtomList

Type Integer List

GUI name Source region

Description The atoms that are part of the source. This key is ignored if the [Box] block or
[Region] key is present.

Box

Type Block

Description Part of the simulation box (in fractional cell coordinates) defining the heat
source. If this block is specified, then by default, the whole box in each of the three di-
mensions is used, which usually does not make much sense. Normally, you will want
to set the bounds along one of the axes. This block is mutually exclusive with the
FirstAtom/LastAtom setting.

Amax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Default value 1.0

15.2. Summary of all keywords 333



AMS Manual, Amsterdam Modeling Suite 2020

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the third axis.

Region

Type String

GUI name Source region

Description The region that is the source. This key is ignored if the [Box] block is present.

StartStep

Type Integer

Default value 0

Description Index of the MD step at which the heat exchange will start.

StopStep

Type Integer

Description Index of the MD step at which the heat exchange will stop.

InitialVelocities

Type Block

Description Sets the frequency for printing to stdout and storing the molecular configuration on
the .rkf file.

File

Type String

Description AMS RKF file containing the initial velocities.

Temperature

Type Float

Unit Kelvin

GUI name Initial temperature

Description Sets the temperature for the Maxwell-Boltzmann distribution when the type
of the initial velocities is set to random, in which case specifying this key is mandatory.
AMSinput will use the first temperature of the first thermostat as default.

Type

Type Multiple Choice

Default value Random

Options [Zero, Random, FromFile, Input]

GUI name Initial velocities

334 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Description Specifies the initial velocities to assign to the atoms. Three methods to assign
velocities are available. Zero: All atom are at rest at the beginning of the calculation. Ran-
dom: Initial atom velocities follow a Maxwell-Boltzmann distribution for the temperature
given by the [MolecularDynamics%InitialVelocities%Temperature] keyword. FromFile:
Load the velocities from a previous ams result file. Input: Atom’s velocities are set to the
values specified in the [MolecularDynamics%InitialVelocities%Values] block, which can
be accessed via the Expert AMS panel in AMSinput.

Values

Type Non-standard block

Description This block specifies the velocity of each atom, in Angstrom/fs, when [Molecu-
larDynamics%InitialVelocities%Type] is set to Input. Each row must contain three floating
point values (corresponding to the x,y,z component of the velocity vector) and a number
of rows equal to the number of atoms must be present, given in the same order as the
[System%Atoms] block.

NSteps

Type Integer

Default value 1000

GUI name Number of steps

Description The number of steps to be taken in the MD simulation.

Plumed

Type Block

Description Input for PLUMED. The parallel option is still experimental.

Input

Type Non-standard block

Description Input for PLUMED. Contents of this block is passed to PLUMED as is.

Parallel

Type Block

Description Options for double parallelization, which allows to split the available processor
cores into groups working through all the available tasks in parallel, resulting in a better
parallel performance. The keys in this block determine how to split the available processor
cores into groups working in parallel.

nCoresPerGroup

Type Integer

Description Number of cores in each working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

GUI name Cores per task

15.2. Summary of all keywords 335



AMS Manual, Amsterdam Modeling Suite 2020

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

Preserve

Type Block

Description Periodically remove numerical drift accumulated during the simulation to preserve
different whole-system parameters.

AngularMomentum

Type Bool

Default value Yes

GUI name : Angular momentum

Description Remove overall angular momentum of the system. This option is ignored for
2D and 3D-periodic systems.

CenterOfMass

Type Bool

Default value No

GUI name : Center of mass

Description Translate the system to keep its center of mass at the coordinate origin. This
option is not very useful for 3D-periodic systems.

Momentum

Type Bool

Default value Yes

GUI name Preserve: Total momentum

Description Remove overall (linear) momentum of the system.

Print

Type Block

Description This block controls the printing of additional information to stdout.

System

Type Bool

Default value No

Description Print the chemical system before and after the simulation.

Velocities

Type Bool

Default value No

Description Print the atomic velocities before and after the simulation.

Remap

Type Block

Description Control periodic remapping (backtranslation) of atoms into the PBC box.

336 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Type

Type Multiple Choice

Default value Atoms

Options [None, Atoms]

Description Select the method used to remap atoms into the unit cell. None: Disable remap-
ping completely. Atoms: Remap any atoms that leave the unit cell.

RemoveMolecules

Type Block

Recurring True

GUI name Remove molecules

Description This block controls removal of molecules from the system. Multiple occurrences
of this block are possible.

Formula

Type String

Description Molecular formula of the molecules that should be removed from the system.
The order of elements in the formula is very important and the correct order is: C, H, all
other elements in the strictly alphabetic order. Element names are case-sensitive, spaces in
the formula are not allowed. Digit ‘1’ must be omitted. Valid formula examples: C2H6O,
H2O, O2S. Invalid formula examples: C2H5OH, H2O1, OH, SO2. Invalid formulas are
silently ignored.

Frequency

Type Integer

Default value 0

Description The specified molecules are removed every so many steps after the StartStep.
There is never a molecule removed at step 0.

SafeBox

Type Block

Description Part of the simulation box where molecules may not be removed. Only one of
the SinkBox or SafeBox blocks may be present. If this block is present a molecule will
not be removed if any of its atoms is within the box. For a periodic dimension it is given
as a fraction of the simulation box (the full 0 to 1 range by default). For a non-periodic
dimension it represents absolute Cartesian coordinates in atomic units.

Amax

Type Float

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

15.2. Summary of all keywords 337



AMS Manual, Amsterdam Modeling Suite 2020

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Description Coordinate of the lower bound along the third axis.

SinkBox

Type Block

Description Part of the simulation box where molecules will be removed. By default,
molecules matching the formula will be removed regardless of their location. If this block
is present a molecule will be removed if any of its atoms is within the box. For a periodic
dimension it is given as a fraction of the simulation box (the full 0 to 1 range by default).
For a non-periodic dimension it represents absolute Cartesian coordinates in atomic units.

Amax

Type Float

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Description Coordinate of the lower bound along the third axis.

StartStep

Type Integer

338 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Default value 0

Description Step number when molecules are removed for the first time. After that,
molecules are removed every [Frequency] steps. For example, if StartStep=99 and Fre-
quency=100 then molecules will be removed at steps 99, 199, 299, etc. . . No molecule
will be removed at step 0, so if StartStep=0 the first molecules are removed at the step
number equal to [Frequency].

StopStep

Type Integer

Description Do not remove the specified molecules after this step.

ReplicaExchange

Type Block

Description This block is used for (temperature) Replica Exchange MD (Parallel Tempering)
simulations.

AllowWrongResults

Type Bool

Default value No

Description Allow combining Replica Exchange with other features when the combination
is known to produce physically incorrect results.

EWMALength

Type Integer

Default value 10

Description Length of the exponentially weighted moving average used to smooth swap
probabilities for monitoring. This value is equal to the inverse of the EWMA mixing
factor.

SwapFrequency

Type Integer

Default value 100

Description Attempt an exchange every N steps.

TemperatureFactors

Type Float List

Description This is the ratio of the temperatures of two successive replicas. The first value
sets the temperature of the second replica with respect to the first replica, the second value
sets the temperature of the third replica with respect to the second one, and so on. If there
are fewer values than nReplicas, the last value of TemperatureFactor is used for all the
remaining replicas.

Temperatures

Type Float List

Description List of temperatures for all replicas except for the first one. This is mutually
exclusive with TemperatureFactors. Exactly nReplicas-1 temperature values need to be
specified, in increasing order. The temperature of the first replica is given by [Thermo-
stat%Temperature].

15.2. Summary of all keywords 339



AMS Manual, Amsterdam Modeling Suite 2020

nReplicas

Type Integer

Default value 1

GUI name Number of replicas

Description Number of replicas to run in parallel.

Restart

Type String

GUI name Restart from

Description The path to the ams.rkf file from which to restart the simulation.

Thermostat

Type Block

Recurring True

Description This block allows to specify the use of a thermostat during the simulation. Depend-
ing on the selected thermostat type, different additional options may be needed to character-
ize the specific thermostat’ behavior.

BerendsenApply

Type Multiple Choice

Default value Global

Options [Local, Global]

GUI name Apply Berendsen

Description Select how to apply the scaling correction for the Berendsen thermostat: - per-
atom-velocity (Local) - on the molecular system as a whole (Global).

ChainLength

Type Integer

Default value 10

GUI name NHC chain length

Description Number of individual thermostats forming the NHC thermostat

Duration

Type Integer List

GUI name Duration(s)

Description Specifies how many steps should a transition from a particular temperature to
the next one in sequence take.

Region

Type String

Default value *

Description The identifier of the region to thermostat. The default ‘*’ applies the thermostat
to the entire system. The value can by a plain region name, or a region expression, e.g.
‘*-myregion’ to thermostat all atoms that are not in myregion, or ‘regionA+regionB’ to

340 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

thermostat the union of the ‘regionA’ and ‘regionB’. Note that if multiple thermostats are
used, their regions may not overlap.

Tau

Type Float

Unit Femtoseconds

GUI name Damping constant

Description The time constant of the thermostat.

Temperature

Type Float List

Unit Kelvin

GUI name Temperature(s)

Description The target temperature of the thermostat. You can specify multiple temperatures
(separated by spaces). In that case the Duration field specifies how many steps to use for
the transition from one T to the next T (using a linear ramp). For NHC thermostat, the
temperature may not be zero.

Type

Type Multiple Choice

Default value None

Options [None, Berendsen, NHC]

GUI name Thermostat

Description Selects the type of the thermostat.

TimeStep

Type Float

Default value 0.25

Unit Femtoseconds

Description The time difference per step.

Trajectory

Type Block

Description Sets the frequency for printing to stdout and storing the molecular configuration on
the .rkf file.

PrintFreq

Type Integer

GUI name Printing frequency

Description Print current thermodynamic properties to the output every N steps. By default
this is done every SamplingFreq steps.

SamplingFreq

Type Integer

Default value 100

15.2. Summary of all keywords 341



AMS Manual, Amsterdam Modeling Suite 2020

GUI name Sample frequency

Description Write the the molecular geometry (and possibly other properties) to the .rkf file
once every N steps.

TProfileGridPoints

Type Integer

Default value 0

Description Number of points in the temperature profile. If TProfileGridPoints > 0, a tem-
perature profile along each of the three unit cell axes will be written to the .rkf file. By
default, no profile is generated.

WriteBonds

Type Bool

Default value Yes

Description Write detected bonds to the .rkf file.

WriteCharges

Type Bool

Default value Yes

Description Write current atomic point charges (if available) to the .rkf file. Disable this to
reduce trajectory size if you do not need to analyze charges.

WriteGradients

Type Bool

Default value No

Description Write gradients (negative of the atomic forces) to the .rkf file.

WriteMolecules

Type Bool

Default value Yes

Description Write the results of molecule analysis to the .rkf file.

WriteVelocities

Type Bool

Default value Yes

Description Write velocities to the .rkf file. Disable this to reduce trajectory size if you do
not need to analyze the velocities.

Molecules

Type Block

Description Configures details of the molecular composition analysis enabled by the Proper-
ties%Molecules block.

AdsorptionSupportRegion

Type String

GUI name Adsorption support region

342 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Description Select region that will represent a support for adsorption analysis. Adsorbed
molecules will receive an ‘(ads)’ suffix after name of the element bonded to the support.
Such elements will be listed separate from atoms of the same element not bonded to the
support, for example, HOH(ads) for a water molecule bonded to a surface via one of its H
atoms.

BondOrderCutoff

Type Float

Default value 0.5

Description Bond order cutoff for analysis of the molecular composition. Bonds with bond
order smaller than this value are neglected when determining the molecular composition.

NEB

Type Block

Description Configures details of the Nudged Elastic Band optimization.

Climbing

Type Bool

Default value Yes

GUI name Climb highest image to TS

Description Use the climbing image algorithm to drive the highest image to the transition state.

ClimbingThreshold

Type Float

Default value 0.0

Unit Hartree/Bohr

GUI name CI force threshold

Description Climbing image force threshold. If ClimbingThreshold > 0 and the max perpen-
dicular force component is above the threshold then no climbing is performed at this step.
This entry can be used to get a better approximation for the reaction path before starting the
search for the transition state. A typical value is 0.01 Hartree/Bohr.

Images

Type Integer

Default value 8

GUI name Number of images

Description Number of NEB images (not counting the chain ends). Using more images will
result in a smoother reaction path and can help with convergence problems, but it will also
increase the computation time.

InterpolateInternal

Type Bool

Default value Yes

GUI name Interpolate in Internal coordinates

15.2. Summary of all keywords 343



AMS Manual, Amsterdam Modeling Suite 2020

Description The initial NEB image geometries are calculated by interpolating between the initial
and the final state. By default, for non-periodic systems the interpolation is performed in
Internal coordinates but the user can choose to do it in the Cartesian ones. For periodic
systems the interpolation is always done in Cartesian coordinates.

InterpolateShortest

Type Bool

Default value Yes

GUI name Interpolate across cell boundary

Description Allow interpolation across periodic cell boundaries. Set to false if an atom is in-
tended to move more than half across the simulation box during reaction.

Iterations

Type Integer

GUI name Maximum number of iterations

Description Maximum number of NEB iterations. The default value depends on the number of
degrees of freedom (number of images, atoms, periodic dimensions).

Jacobian

Type Float

GUI name Jacobian value

Description Scaling factor used to convert the lattice strain to a NEB coordinate value. De-
fault value: sqrt(N)*(V/N)^(1/d), where V - lattice volume (area for 2D, length for 1D), N -
number of atoms, and d - number of periodic dimensions.

MapAtomsToCell

Type Bool

Default value Yes

GUI name Map atoms to cell

Description Translate atoms to the [-0.5,0.5] cell before every step. This option cannot be dis-
abled for SS-NEB.

OldTangent

Type Bool

Default value No

GUI name Use old tangent

Description Turn on the old central difference tangent.

OptimizeEnds

Type Bool

Default value Yes

GUI name Optimize reactants/products

Description Start the NEB with optimization of the reactant and product geometries.

OptimizeLattice

Type Bool

344 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Default value No

GUI name Optimize lattice

Description Turn on the solid-state NEB (SS-NEB).

Parallel

Type Block

Description Options for double parallelization, which allows to split the available processor
cores into groups working through all the available tasks in parallel, resulting in a better
parallel performance. The keys in this block determine how to split the available processor
cores into groups working in parallel.

nCoresPerGroup

Type Integer

Description Number of cores in each working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

GUI name Cores per task

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

ReOptimizeEnds

Type Bool

Default value No

GUI name Re-optimize reactants/products

Description Re-optimize reactant and product geometries upon restart.

Restart

Type String

GUI name Restart from

Description Provide an ams.rkf file from a previous NEB calculation to restart from. It can be
an unfinished NEB calculation or one performed with different engine parameters.

Skewness

Type Float

Default value 1.0

GUI name Skewness

Description Degree of how much images are shifted towards or away from the TS, which may
help tackle problems with a long reaction path (for example involving a loose adsorption
complex) without needing too many images. A value greater than 1 will make sure that

15.2. Summary of all keywords 345



AMS Manual, Amsterdam Modeling Suite 2020

images are concentrated near the transition state. The optimal value depends on the path
length, the number of images (larger [Skewness] may be needed for a longer path and fewer
images). Technically [Skewness] is equal to the ratio between the optimized distances to the
lower and the higher neighbor image on the path.

Spring

Type Float

Default value 1.0

Unit Hartree/Bohr^2

GUI name Spring value

Description Spring force constant in atomic units.

NormalModes

Type Block

Description Configures details of a normal modes calculation.

BlockDisplacements

Type Block

Description Configures details of a Block Normal Modes (a.k.a. Mobile Block Hessian, or
MBH) calculation.

AngularDisplacement

Type Float

Default value 0.5

Unit Degree

Description Relative step size for rotational degrees of freedom during Block Normal Modes
finite difference calculations. It will be scaled with the characteristic block size.

BlockAtoms

Type Integer List

Recurring True

Description List of atoms belonging to a block. You can have multiple BlockAtoms.

BlockRegion

Type String

Recurring True

Description The region to to be considered a block. You can have multiple BlockRegions,
also in combination with BlockAtoms.

Parallel

Type Block

Description Configuration for how the individual displacements are calculated in parallel.

nCoresPerGroup

Type Integer

Description Number of cores in each working group.

346 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

GUI name Cores per task

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

RadialDisplacement

Type Float

Default value 0.005

Unit Angstrom

Description Step size for translational degrees of freedom during Block Normal Modes fi-
nite difference calculations.

Displacements

Type Multiple Choice

Default value Cartesian

Options [Cartesian, Symmetric, Block]

GUI name Displacements

Description Type of displacements. In case of symmetric displacements it is possible to choose
only the modes that have non-zero IR or Raman intensity. Block displacements take rigid
blocks into account.

Hessian

Type Multiple Choice

Default value Auto

Options [Auto, Analytical, Numerical]

Description Default Auto means that if possible by the engine the Hessian will be calculated
analytically, else the Hessian will be calculated numerically by AMS.

ReScanFreqRange

Type Float List

Default value [-10000000.0, 10.0]

Unit cm-1

Recurring True

GUI name Re-scan range

Description Specifies a frequency range within which all modes will be scanned. 2 numbers: an
upper and a lower bound.

ReScanModes

15.2. Summary of all keywords 347



AMS Manual, Amsterdam Modeling Suite 2020

Type Bool

Default value Yes

GUI name Re-scan modes

Description Whether or not to scan imaginary modes after normal modes calculation has con-
cluded.

SymmetricDisplacements

Type Block

Description Configures details of the calculation of the frequencies and normal modes of vibra-
tion in symmetric displacements.

Type

Type Multiple Choice

Default value All

Options [All, Infrared, Raman, InfraredAndRaman]

GUI name Symm Frequencies

Description For symmetric molecules it is possible to choose only the modes that have non-
zero IR or Raman intensity (or either of them) by symmetry. In order to calculate the
Raman intensities the Raman property must be requested.

NumericalDifferentiation

Type Block

Description Define options for numerical differentiations, that is the numerical calculation of gra-
dients, Hessian and the stress tensor for periodic systems.

NuclearStepSize

Type Float

Default value 0.005

Unit Bohr

Description Step size for numerical nuclear gradient calculation.

Parallel

Type Block

Description Options for double parallelization, which allows to split the available processor
cores into groups working through all the available tasks in parallel, resulting in a better
parallel performance. The keys in this block determine how to split the available processor
cores into groups working in parallel.

nCoresPerGroup

Type Integer

Description Number of cores in each working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

348 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

nNodesPerGroup

Type Integer

GUI name Cores per task

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

StrainStepSize

Type Float

Default value 0.001

Description Step size (relative) for numerical stress tensor calculation.

NumericalPhonons

Type Block

Description Configures details of a numerical phonons calculation.

AutomaticBZPath

Type Bool

Default value Yes

GUI name Automatic BZ path

Description If True, compute the phonon dispersion curve for the standard path through the
Brillouin zone. If False, you must specify your custom path in the [BZPath] block.

BZPath

Type Block

Description If [NumericalPhonons%AutomaticBZPath] is false, the phonon dispersion curve
will be computed for the user-defined path in the [BZPath] block. You should define the
vertices of your path in fractional coordinates (with respect to the reciprocal lattice vectors)
in the [Path] sub-block. If you want to make a jump in your path (i.e. have a discontinuous
path), you need to specify a new [Path] sub-block.

Path

Type Non-standard block

Recurring True

Description A section of a k space path. This block should contain multiple lines, and in
each line you should specify one vertex of the path in fractional coordinates. Optionally,
you can add text labels for your vertices at the end of each line.

BornEffCharge

Type Float

Default value 0.0

Description Input option to give the Born effective charges of the species.

DielectricConst

Type Float

Default value 1.0

15.2. Summary of all keywords 349



AMS Manual, Amsterdam Modeling Suite 2020

Description Input option to give the static dielectric constant of the species.

DoubleSided

Type Bool

Default value Yes

Description By default a two-sided (or quadratic) numerical differentiation of the nuclear gra-
dients is used. Using a single-sided (or linear) numerical differentiation is computationally
faster but much less accurate. Note: In older versions of the program only the single-sided
option was available.

Interpolation

Type Integer

Default value 100

Description Use interpolation to generate smooth phonon plots.

NDosEnergies

Type Integer

Default value 1000

Description Nr. of energies used to calculate the phonon DOS used to integrate thermodynamic
properties. For fast compute engines this may become time limiting and smaller values can
be tried.

Parallel

Type Block

Description Options for double parallelization, which allows to split the available processor
cores into groups working through all the available tasks in parallel, resulting in a better
parallel performance. The keys in this block determine how to split the available processor
cores into groups working in parallel.

nCoresPerGroup

Type Integer

Description Number of cores in each working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

GUI name Cores per task

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

StepSize

Type Float

Default value 0.04

350 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Unit Angstrom

Description Step size to be taken to obtain the force constants (second derivative) from the
analytical gradients numerically.

SuperCell

Type Non-standard block

Description Used for the phonon run. The super lattice is expressed in the lattice vectors. Most
people will find a diagonal matrix easiest to understand.

PESPointCharacter

Type Block

Description Options for the characterization of PES points.

Displacement

Type Float

Default value 0.04

Description Controls the size of the displacements used for numerical differentiation: The dis-
placed geometries are calculated by taking the original coordinates and adding the mass-
weighted mode times the reduced mass of the mode times the value of this keyword.

NegativeFrequenciesTolerance

Type Float

Default value -10.0

Unit cm-1

Description The threshold in frequency below which a mode is considered imaginary, i.e. indi-
cating a transition state. This is a small negative number, as very small negative frequencies
are normally due to numerical noise on an essentially flat PES and do not indicate true tran-
sition states.

NumberOfModes

Type Integer

Default value 2

Description The number of (lowest) eigenvalues that should be checked.

Tolerance

Type Float

Default value 0.016

Description Convergence tolerance for residual in iterative Davidson diagonalization.

PESScan

Type Block

Description Configures the details of the potential energy surface scanning task.

CalcPropertiesAtPESPoints

Type Bool

Default value No

15.2. Summary of all keywords 351



AMS Manual, Amsterdam Modeling Suite 2020

Description Whether to perform an additional calculation with properties on all the sampled
points of the PES. If this option is enabled AMS will produce a separate engine output file
for every sampled PES point.

FillUnconvergedGaps

Type Bool

Default value Yes

Description After the initial pass over the PES, restart the unconverged points from converged
neighboring points.

ScanCoordinate

Type Block

Recurring True

Description Specifies a coordinate along which the potential energy surface is scanned. If this
block contains multiple entries, these coordinates will be varied and scanned together as if
they were one.

Angle

Type String

Recurring True

Description Scan the angle between three atoms. Three atom indices followed by two real
numbers delimiting the transit range in degrees.

Coordinate

Type String

Recurring True

Description Scan a particular coordinate of an atom. Atom index followed by (x|y|z) fol-
lowed by two real numbers delimiting the transit range.

DifDist

Type String

Recurring True

Description Scan the difference distance between two pairs of atoms, R(12)-R(34). Four
atom indices followed by two real numbers delimiting the transit range in Angstrom.

Dihedral

Type String

Recurring True

Description Scan the dihedral angle between four atoms. Four atom indices followed by
two real numbers delimiting the transit angle in degrees.

Distance

Type String

Recurring True

Description Scan the distance between two atoms. Two atom indices followed by two real
numbers delimiting the transit distance in Angstrom.

352 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

SumDist

Type String

Recurring True

Description Scan the sum of distances between two pairs of atoms, R(12)+R(34). Four atom
indices followed by two real numbers delimiting the transit range in Angstrom.

nPoints

Type Integer

Default value 10

Description The number of points along the scanned coordinate. Must be greater or equal 2.

Print

Type Block

Description This block controls the printing of additional information to stdout.

Timers

Type Multiple Choice

Default value None

Options [None, Normal, Detail, TooMuchDetail]

Description Printing timing details to see how much time is spend in which part of the code.

Properties

Type Block

Description Configures which AMS level properties to calculate for SinglePoint calculations or
other important geometries (e.g. at the end of an optimization).

BondOrders

Type Bool

Default value No

Description Requests the engine to calculate bond orders. For MM engines these might just be
the defined bond orders that go into the force-field, while for QM engines, this might trigger
a bond order analysis based on the electronic structure.

Charges

Type Bool

Default value No

Description Requests the engine to calculate the atomic charges.

DipoleGradients

Type Bool

Default value No

Description Requests the engine to calculate the nuclear gradients of the electric dipole moment
of the molecule. This can only be requested for non-periodic systems.

DipoleMoment

Type Bool

15.2. Summary of all keywords 353



AMS Manual, Amsterdam Modeling Suite 2020

Default value No

Description Requests the engine to calculate the electric dipole moment of the molecule. This
can only be requested for non-periodic systems.

ElasticTensor

Type Bool

Default value No

Description Calculate the elastic tensor.

Gradients

Type Bool

Default value No

GUI name Nuclear gradients

Description Calculate the nuclear gradients.

Hessian

Type Bool

Default value No

Description Whether or not to calculate the Hessian.

Molecules

Type Bool

Default value No

Description Requests an analysis of the molecular components of a system, based on the bond
orders calculated by the engine.

NormalModes

Type Bool

Default value No

GUI name Frequencies

Description Calculate the frequencies and normal modes of vibration, and for molecules also
the corresponding IR intensities if the engine supports the calculation of dipole moments.

Other

Type Bool

Default value Yes

Description Other (engine specific) properties. Details are configured in the engine block.

PESPointCharacter

Type Bool

Default value No

GUI name Characterize PES point

Description Determine whether the sampled PES point is a minimum or saddle point. Note that
for large systems this does not entail the calculation of the full Hessian and can therefore be
used to quickly confirm the success of a geometry optimization or transition state search.

354 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Phonons

Type Bool

Default value No

Description Calculate the phonons (for periodic systems).

Polarizability

Type Bool

Default value No

Description Requests the engine to calculate the polarizability tensor of the system.

Raman

Type Bool

Default value No

Description Requests calculation of Raman intensities for vibrational normal modes.

SelectedRegionForHessian

Type String

GUI name Hessian only for

Description Compute the Hessian matrix elements only for the atoms in a particular region. If
not specified, the Hessian will be computed for all atoms.

StressTensor

Type Bool

Default value No

GUI name Stress tensor

Description Calculate the stress tensor.

VCD

Type Bool

Default value No

Description Requests calculation of VCD for vibrational normal modes.

VROA

Type Bool

Default value No

Description Requests calculation of VROA for vibrational normal modes.

Raman

Type Block

Description Configures details of the Raman or VROA calculation.

FreqRange

Type Float List

Unit cm-1

15.2. Summary of all keywords 355



AMS Manual, Amsterdam Modeling Suite 2020

Recurring True

GUI name Frequency range

Description Specifies a frequency range within which all modes will be scanned. 2 numbers: an
upper and a lower bound.

IncidentFrequency

Type Float

Default value 0.0

Unit eV

Description Frequency of incident light.

LifeTime

Type Float

Default value 0.0

Unit hartree

Description Specify the resonance peak width (damping) in Hartree units. Typically the lifetime
of the excited states is approximated with a common phenomenological damping parameter.
Values are best obtained by fitting absorption data for the molecule, however, the values do
not vary a lot between similar molecules, so it is not hard to estimate values. A typical value
is 0.004 Hartree.

Restraints

Type Block

Description The Restraints block allows to add soft constraints to the system. A restraint is a po-
tential energy function (a spring) attached to a certain coordinate, for example, an interatomic
distance, with its minimum at the specified optimal value. A restraint is defined using one or
two parameters: the ForceConstant and, for some types, the F(Inf) value. The ForceConstant
parameter corresponds to second derivative of the restraint potential energy d2V(x)/dx^2 for
any x (harmonic restraints) or only at at x=0 (other restraints). Here, x is a deviation from the
restraint’s optimal value.

Angle

Type String

Recurring True

Description Specify three atom indices i j k followed by an angle in degrees and, optionally, by
the ForceConstant (default is 0.3 in a.u.), profile type and F(Inf) (in a.u.). This restraint will
try to keep the i-j-k angle at the given value. For periodic systems this restraint follows the
minimum image convention.

DifDist

Type String

Recurring True

Description Specify four atom indices i j k l followed by the distance in Angstrom and, op-
tionally, by the ForceConstant (default is 1.0 in a.u.), profile type and F(Inf) (in a.u.). This
restraint will try to keep the difference R(ij)-R(kl) at the given value. For periodic systems
this restraint follows the minimum image convention.

Dihedral

356 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Type String

Recurring True

Description Specify four atom indices i j k l followed by an angle in degrees and, optionally, by
the ForceConstant (default is 0.1 in a.u.), profile type and F(Inf) (in a.u.). This restraint will
try to keep the i-j-k-l dihedral angle at the given value. For periodic systems this restraint
follows the minimum image convention.

Distance

Type String

Recurring True

Description Specify two atom indices followed by the distance in Angstrom and, optionally, by
the ForceConstant (default is 1.0 in a.u.), profile type and F(Inf) (in a.u.). This restraint will
try to keep the distance between the two specified atoms at the given value. For periodic
systems this restraint follows the minimum image convention.

FInfinity

Type Float

Default value 1.0

GUI name Default F(inf)

Description Specify the default asymptotic value for the restraint force for the Hyperbolic and
Erf profiles, in Hartree/Bohr or Hartree/radian. A per-restraint value can be specified after
the profile type on the corresponding restraint line.

Profile

Type Multiple Choice

Default value Harmonic

Options [Harmonic, Hyperbolic, Erf]

GUI name Default restraint profile

Description Select the default type of restraint profile. The harmonic profile is most suitable
for geometry optimizations but may result is very large forces that can be problematic in
molecular dynamic. For MD simulations the Hyperbolic or Erf may be more suitable because
the restraint force is bounded by a user-defined value. A per-restraint profile type can be
specified after the ForceConstant value on the corresponding restraint line.

SumDist

Type String

Recurring True

Description Specify four atom indices i j k l followed by the distance in Angstrom and, op-
tionally, by the ForceConstant (default is 1.0 in a.u.), profile type and F(Inf) (in a.u.). This
restraint will try to keep the sum R(ij)+R(kl) at the given value. For periodic systems this
restraint follows the minimum image convention.

RigidMotions

Type Block

Description Specify which rigid motions of the total system are allowed. An external field is not
considered part of the system. Normally the automatic option is doing what you want. However
this feature can be used as a means of geometry constraint.

15.2. Summary of all keywords 357



AMS Manual, Amsterdam Modeling Suite 2020

AllowRotations

Type Multiple Choice

Default value Auto

Options [Auto, None, All, X, Y, Z, XY, XZ, YZ]

Description Which overall rotations of the system are allowed

AllowTranslations

Type Multiple Choice

Default value Auto

Options [Auto, None, All, X, Y, Z, XY, XZ, YZ]

Description Which overall transitions of the system are allowed

Tolerance

Type Float

Default value 1e-06

Description Tolerance for detecting linear molecules. A large value means larger deviation from
linearity is permitted.

RNGSeed

Type Integer List

Description Initial seed for the (pseudo)random number generator. This should be omitted in most
calculations to avoid introducing bias into the results. If this is unset, the generator will be
seeded randomly from external sources of entropy. If you want to exactly reproduce an older
calculation, set this to the numbers printed in its output.

SCMMatrix

Type Block

Description Technical settings for programs using the AMT matrix system. Currently this is only
used by DFTB

DistributedMatrix

Type Block

Description Technical settings for Distributed matrices

ColBlockSize

Type Integer

Default value 64

Description See comment of RowBlockSize.

RowBlockSize

Type Integer

Default value 64

Description The matrix is divided into blocks of size RowBlockSize x ColBlockSize. The
smaller the blocks the better the distribution, but at the expense of increased communica-
tion overhead

358 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Type

Type Multiple Choice

Default value Elpa

Options [Auto, Reference, ScaLapack, Elpa]

Description Determines which implementation is used to support the AbstractMatrixType.

Symmetry

Type Block

Description Specifying details about the details of symmetry detection and usage.

SymmetrizeTolerance

Type Float

Default value 0.05

Description Tolerance used to detect symmetry in case symmetrize is requested.

Tolerance

Type Float

Default value 1e-07

Description Tolerance used to detect symmetry in the system.

System

Type Block

Recurring True

Description Specification of the chemical system. For some applications more than one system may
be present in the input. In this case, all systems except one must have a non-empty string ID
specified after the System keyword. The system without an ID is considered the main one.

AllowCloseAtoms

Type Bool

Default value No

Description If AllowCloseAtoms is set to False, the AMS driver will stop with an error if it
detects almost-coinciding atomic coordinates. If set to True, the AMS driver will try to carry
on with the calculation.

Atoms

Type Non-standard block

Description The atom types and coordinates. Unit can be specified in the header. Default unit
is Angstrom.

BondOrders

Type Non-standard block

Description Defined bond orders. May by used by MM engines.

Charge

Type Float

Default value 0.0

15.2. Summary of all keywords 359



AMS Manual, Amsterdam Modeling Suite 2020

GUI name Total charge

Description The system’s total charge in atomic units (only for non-periodic systems).

ElectrostaticEmbedding

Type Block

Description Container for electrostatic embedding options, which can be combined.

ElectricField

Type Float List

Unit V/Angstrom

Description External homogeneous electric field with three Cartesian components: ex, ey,
ez, the default unit being V/. In atomic units: Hartree/(e bohr) = 27.211 V/bohr; the rela-
tion to SI units is: 1 Hartree/(e bohr) = 5.14 . . . e11 V/m. Supported by the engines adf,
band, dftb and mopac. For periodic systems the field may only have nonzero components
orthogonal to the direction(s) of periodicity (i.e. for 1D periodic system the x-component
of the electric field should be zero, while for 2D periodic systems both the x and y compo-
nents should be zero. This options cannot be used for 3D periodic systems.

MultipolePotential

Type Block

Description External point charges (and dipoles).

ChargeModel

Type Multiple Choice

Default value Point

Options [Point, Gaussian]

Description The charges may represented as simple points (with a singular potential at the
charge location) or may represented by a spherical Gaussian distribution.

ChargeWidth

Type Float

Default value -1.0

Description A width parameter in a.u. in case a Gaussian charge model is chosen. A
negative value means that the width will be chosen automatically.

Coordinates

Type Non-standard block

Description Positions (in ) and values of multipole charges, one per line. Each line de-
scribes a singe point charge like: x y z q, or x y z q py pz px. Here x, y, z are the
coordinates, q is the charge (in atomic units of charge) and py, pz, px are the (optional)
dipole components (in atomic units, i.e. e/Bohr). Periodic systems are not supported.

FractionalCoords

Type Bool

Default value No

Description Whether the atomic coordinates in the Atoms block are given in fractional coordi-
nates of the lattice vectors. Requires the presence of the Lattice block.

360 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

GeometryFile

Type String

Description Read the geometry from a file (instead of from Atoms and Lattice blocks). Sup-
ported formats: .xyz

GuessBonds

Type Bool

Default value No

Description Whether or not UFF bonds should be guessed.

Lattice

Type Non-standard block

Description Up to three lattice vectors. Unit can be specified in the header. Default unit is
Angstrom.

LatticeStrain

Type Float List

Description Deform the input system by the specified strain. The strain elements are in Voigt
notation, so one should specify 6 numbers for 3D periodic system (order: xx,yy,zz,yz,xz,xy),
3 numbers for 2D periodic systems (order: xx,yy,xy) or 1 number for 1D periodic systems.

LoadForceFieldAtomTypes

Type Block

Description This is a mechanism to set the ForceField.Type attribute in the input. This informa-
tion is currently only used by the ForceField engine.

File

Type String

Description Name of the (kf) file. It needs to be the result of a forcefield calculation.

LoadForceFieldCharges

Type Block

Recurring True

Description This is a mechanism to set the ForceField.Charge attribute in the input. This infor-
mation is currently only used by the ForceField engine.

CheckGeometryRMSD

Type Bool

Default value No

Description Whether the geometry RMSD test should be performed, see MaxGeome-
tryRMSD. Otherwise only basic tests are performed, such as number and atom types. Not
doing the RMSD test allows you to load molecular charges in a periodic system.

File

Type String

Description Name of the (kf) file

MaxGeometryRMSD

15.2. Summary of all keywords 361



AMS Manual, Amsterdam Modeling Suite 2020

Type Float

Default value 0.1

Unit Angstrom

Description The geometry of the charge producing calculation is compared to the one of the
region, and need to be the same within this tolerance.

Region

Type String

Default value *

Description Region for which the charges should be loaded

Section

Type String

Default value AMSResults

Description Section name of the kf file

Variable

Type String

Default value Charges

Description Variable name of the kf file

MapAtomsToUnitCell

Type Bool

Default value No

Description For periodic systems the atoms will be moved to the central cell.

PerturbCoordinates

Type Float

Default value 0.0

Unit Angstrom

Description Perturb the atomic coordinates by adding random numbers between [-
PerturbCoordinates,PerturbCoordinates] to each Cartesian component. This can be useful
if you want to break the symmetry of your system (e.g. for a geometry optimization).

PerturbLattice

Type Float

Default value 0.0

Description Perturb the lattice vectors by applying random strain with matrix elements between
[-PerturbLattice,PerturbLattice]. This can be useful if you want to deviate from an ideal
symmetric geometry, for example if you look for a phase change due to high pressure.

RandomizeAtomOrder

Type Bool

Default value No

362 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Description Whether or not the order of the atoms should be randomly changed. Intended for
some technical testing purposes only. Does not work with bond information.

ShiftCoordinates

Type Float List

Unit Bohr

Description Translate the atoms by the specified shift (three numbers).

SuperCell

Type Integer List

Description Create a supercell of the input system (only possible for periodic systems). The
integer numbers represent the diagonal elements of the supercell transformation; you should
specify as many numbers as lattice vectors (i.e. 1 number for 1D, 2 numbers for 2D and 3
numbers for 3D periodic systems).

SuperCellTrafo

Type Integer List

Description Create a supercell of the input system (only possible for periodic systems)
�⃗�′𝑖 =

∑︀
𝑗 𝑇𝑖𝑗 �⃗�𝑗 . The integer numbers represent the supercell transformation 𝑇𝑖𝑗 : 1

number for 1D PBC, 4 numbers for 2D PBC corresponding to a 2x2 matrix (order:
(1,1),(1,2),(2,1),(2,2)) and 9 numbers for 3D PBC corresponding to a 3x3 matrix (order:
(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)).

Symmetrize

Type Bool

Default value No

Description Whether to symmetrize the input structure. This might also rototranslate the struc-
ture into a standard orientation. This will symmetrize the atomic coordinates to machine
precision. Useful if the system is almost symmetric or to rototranslate a symmetric molecule
into a standard orientation.

Symmetry

Type Multiple Choice

Default value AUTO

Options [AUTO, NOSYM, C(LIN), D(LIN), C(I), C(S), C(2), C(3), C(4), C(5), C(6), C(7),
C(8), C(2V), C(3V), C(4V), C(5V), C(6V), C(7V), C(8V), C(2H), C(3H), C(4H), C(5H),
C(6H), C(7H), C(8H), D(2), D(3), D(4), D(5), D(6), D(7), D(8), D(2D), D(3D), D(4D),
D(5D), D(6D), D(7D), D(8D), D(2H), D(3H), D(4H), D(5H), D(6H), D(7H), D(8H), I, I(H),
O, O(H), T, T(D), T(H), S(4), S(6), S(8)]

Description Use (sub)symmetry with this Schoenflies symbol. Can only be used for molecules.
Orientation should be correct for the (sub)symmetry. If used icw Symmetrize, the sym-
metrization will not reorient the molecule.

Task

Type Multiple Choice

Options [SinglePoint, GeometryOptimization, TransitionStateSearch, IRC, PESScan, NEB, Vibra-
tionalAnalysis, MolecularDynamics, GCMC]

15.2. Summary of all keywords 363



AMS Manual, Amsterdam Modeling Suite 2020

Description Specify the computational task to perform: • Single Point: keep geometry as is • Ge-
ometry Optimization: optimize the geometry • Transition State: search for the transition state •
IRC: intrinsic reaction coordinate • PES Scan: scan the potential energy surface • NEB: Nudged
elastic band for reaction path optimization • Vibrational Analysis: perform one of the analysis
types selected on the options page • Molecular Dynamics: perform MD simulation • GCMC:
Grand Canonical Monte Carlo simulation

Thermo

Type Block

Description Options for thermodynamic properties (assuming an ideal gas). The properties are
computed for all specified temperatures.

LowFrequencyCorrector

Type Block

Description Options for the dampener-powered free rotor interpolator that corrects
thermodynamic quantities for low frequencies. See DOI:10.1021/jp509921r and
DOI:10.1002/chem.201200497.

Alpha

Type Float

Default value 4.0

Description The exponent term used in the dampener.

Frequency

Type Float

Default value 100.0

Unit cm-1

Description The frequency around which the dampener interpolates between harmonic os-
cillator and free rotor quantities.

MomentOfInertia

Type Float

Default value 1e-44

Unit kg m^2

GUI name Averaging Moment of Inertia

Description The moment of inertia used to restrict entropy results for very small frequencies
(generally around less than 1 cm-1).

Pressure

Type Float

Default value 1.0

Unit atm

Description The pressure at which the thermodynamic properties are computed.

Temperatures

Type Float List

364 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Default value [298.15]

Unit Kelvin

Description List of temperatures at which the thermodynamic properties will be calculated.

TransitionStateSearch

Type Block

Description Configures some details of the transition state search.

ModeToFollow

Type Integer

Default value 1

Description In case of Transition State Search, here you can specify the index of the normal
mode to follow (1 is the mode with the lowest frequency).

ReactionCoordinate

Type Block

Description Specify components of the transition state reaction coordinate (TSRC) as a linear
combination of internal coordinates (distances or angles).

Angle

Type String

Recurring True

Description The TSRC contains the valence angle between the given atoms. Three atom
indices followed by the weight.

Dihedral

Type String

Recurring True

Description The TSRC contains the dihedral angle between the given atoms. Four atom
indices followed by the weight.

Distance

Type String

Recurring True

Description The TSRC contains the distance between the given atoms. Two atom indices
followed by the weight.

UseSymmetry

Type Bool

Default value Yes

Description Whether to use the system’s symmetry in AMS. Symmetry is recognized within a tol-
erance as given in the Symmetry key.

VibrationalAnalysis

Type Block

Description Input data for all vibrational analysis utilities in the AMS driver.

15.2. Summary of all keywords 365



AMS Manual, Amsterdam Modeling Suite 2020

AbsorptionSpectrum

Type Block

Description Settings related to the integration of the spectrum for vibronic tasks.

AbsorptionRange

Type Float List

Default value [-200.0, 4000.0]

Unit cm-1

Recurring True

Description Specifies frequency range of the vibronic absorption spectrum to compute. 2
numbers: an upper and a lower bound.

FrequencyGridPoints

Type Integer

Default value 400

Description Number of grid points to use for the spectrum

LineWidth

Type Float

Default value 200.0

Unit cm-1

Description Lorentzian line-width.

SpectrumOffset

Type Multiple Choice

Default value relative

Options [absolute, relative]

Description Specifies whether provided frequency range are absolute frequencies or fre-
quencies relative to computed 0-0 excitation energy.

Displacement

Type Float

Description Step size for finite difference calculations.

ExcitationSettings

Type Block

Description Block that contains settings related to the excitation for vibronic tasks.

EnergyInline

Type Float

Unit hartree

Description Vertical excitation energy, used when [ExcitationInfo] = [Inline].

ExcitationFile

Type String

366 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Description Path to a .rkf/.t21 file containing the excited state information (gradients, tran-
sition dipoles and energies).

ExcitationInputFormat

Type Multiple Choice

Default value File

Options [File, Inline]

Description Select how the application should retrieve the excited state information (energy,
gradient).

GradientInline

Type Non-standard block

Description Excited state gradient at ground state equilibrium geometry, used when [Exci-
tationInfo] = [Inline].

Singlet

Type Non-standard block

Description Symmetry labels + integer indices of desired singlet transitions (VG-FC absorp-
tion spectra support only 1 at a time)

Triplet

Type Non-standard block

Description Symmetry labels + integer indices of desired triplet transitions (VG-FC absorp-
tion spectra support only 1 at a time)

ModeTracking

Type Block

Description Input data for Mode Tracking.

HessianGuess

Type Multiple Choice

Default value CalculateWithFastEngine

Options [Unit, File, CalculateWithFastEngine]

GUI name Guess Hessian

Description Sets how to obtain the guess for the Hessian used in the preconditioner (if one
is to be used).

HessianInline

Type Non-standard block

Description Initial guess for the (non-mass-weighted) Hessian in a 3N x 3N block, used
when [HessianGuess] = [Inline].

HessianPath

Type String

Description Path to a .rkf file containing the initial guess for the Hessian, used when [Hes-
sianGuess] = [File]. It may also be the name of the results folder containing the engine
file.

15.2. Summary of all keywords 367



AMS Manual, Amsterdam Modeling Suite 2020

ToleranceForBasis

Type Float

Default value 0.0001

Description Convergence tolerance for the contribution of the newest basis vector to the
tracked mode.

ToleranceForNorm

Type Float

Default value 0.0005

Description Convergence tolerance for residual RMS value.

ToleranceForResidual

Type Float

Default value 0.0005

Description Convergence tolerance for the maximum component of the residual vector.

ToleranceForSpectrum

Type Float

Default value 0.01

Description Convergence tolerance for the spectrum in Vibronic Structure Tracking.

TrackingMethod

Type Multiple Choice

Default value OverlapInitial

Options [OverlapInitial, DifferenceInitial, FreqInitial, IRInitial, OverlapPrevious, Differ-
encePrevious, FreqPrevious, IRPrevious, HighestFreq, HighestIR, LowestFreq, Low-
estResidual]

Description Set the tracking method that will be used. Vibronic Structure Tracking uses
Largest Displacement.

UpdateMethod

Type Multiple Choice

Options [JD, D, I]

Description Chooses the method for expanding the Krylov subspace: (I) No preconditioner
(VST default), (D) Davidson or (JD) vdVorst-Sleijpen variant of Jacobi-Davidson (Mode
tracking default).

NormalModes

Type Block

Description All input related to processing of normal modes. Not available for vibronic structure
tracking (as no modes are required there).

MassWeightInlineMode

Type Bool

Default value Yes

368 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Description MODE TRACKING ONLY: The supplied modes must be mass-weighted. This
tells the program to mass-weight the supplied modes in case this has not yet been done.
(True means the supplied modes will be mass-weighted by the program, e.g. the supplied
modes are non-mass-weighted.)

ModeFile

Type String

Description Path to a .rkf or .t21 file containing the modes which are to be scanned. Which
modes will be scanned is selected using the criteria from the [ModeSelect] block.) This
key is optional for Resonance Raman and Vibronic Structure. These methods can also
calculate the modes using the engine.

ModeInline

Type Non-standard block

Recurring True

Description MODE TRACKING ONLY: Coordinates of the mode which will be tracked in
a N x 3 block (same as for atoms), used when [ModeInputFormat] = [Inline]. Rows must
be ordered in the same way as in the [System%Atoms] block. Mode Tracking only.

ModeInputFormat

Type Multiple Choice

Default value File

Options [File, Inline, Hessian]

GUI name Tracked mode source

Description Set how the initial guesses for the modes are supplied. Only mode tracking
supports the Inline and Hessian options.

ModeSelect

Type Block

Description Pick which modes to read from file.

DisplacementBound

Type Float

Description Vibronic Structure (Refinement), Resonance Raman: Select all modes with a
dimensionless oscillator displacement greater than the specified value.

FreqAndIRRange

Type Float List

Unit cm-1 and km/mol

Recurring True

Description Specifies a combined frequency and IR intensity range within which all modes
will be selected. First 2 numbers are the frequency range, last 2 numbers are the IR
intensity range.

FreqRange

Type Float List

Unit cm-1

15.2. Summary of all keywords 369



AMS Manual, Amsterdam Modeling Suite 2020

Recurring True

Description Specifies a frequency range within which all modes will be selected. 2 num-
bers: an upper and a lower bound. Calculating all modes higher than some frequency can
be achieved by making the upper bound very large.

Full

Type Bool

Default value No

GUI name All modes

Description Select all modes. This only make sense for Mode Scanning calculations.

HighFreq

Type Integer

GUI name # High frequencies

Description Select the N modes with the highest frequencies.

HighIR

Type Integer

GUI name # High IR

Description Select the N modes with the largest IR intensities.

IRRange

Type Float List

Unit km/mol

Recurring True

Description Specifies an IR intensity range within which all modes will be selected. 2
numbers: an upper and a lower bound.

ImFreq

Type Bool

Default value No

GUI name All imaginary frequencies

Description Select all modes with imaginary frequencies.

LargestDisplacement

Type Integer

Description Vibronic Structure (Refinement), Resonance Raman: Select the N modes with
the largest VG-FC displacement.

LowFreq

Type Integer

GUI name # Low frequencies

Description Select the N modes with the lowest frequencies. Includes imaginary modes
which are recorded with negative frequencies.

LowFreqNoIm

370 Chapter 15. Keywords



AMS Manual, Amsterdam Modeling Suite 2020

Type Integer

GUI name # Low positive frequencies

Description Select the N modes with the lowest non-negative frequencies. Imaginary
modes have negative frequencies and are thus omitted here.

LowIR

Type Integer

GUI name # Low IR

Description Select the N modes with the smallest IR intensities.

ModeNumber

Type Integer List

GUI name Mode numbers

Description Indices of the modes to select.

ScanModes

Type Bool

Default value No

GUI name Scan after refining

Description Supported by: Mode Tracking, Mode Refinement, Vibronic Structure Refine-
ment: If enabled an additional displacement will be performed along the new modes at
the end of the calculation to obtain refined frequencies and IR intensities. Equivalent to
running the output file of the mode tracking calculation through the AMS ModeScanning
task.

ResonanceRaman

Type Block

Description Block that contains settings for the calculation of Resonance Raman calculations

IncidentFrequency

Type Float

Unit cm-1

Description Frequency of incident light. Also used to determine most important excitation
in case more than one is provided.

LifeTime

Type Float

Default value 0.00045

Unit hartree

Description Lifetime of Raman excited state.

RamanOrder

Type Integer

Default value 2

Description Order up to which to compute Raman transitions

15.2. Summary of all keywords 371



AMS Manual, Amsterdam Modeling Suite 2020

RamanRange

Type Float List

Default value [0.0, 2000.0]

Unit cm-1

Recurring True

Description Specifies frequency range of the Raman spectrum to compute. 2 numbers: an
upper and a lower bound.

Type

Type Multiple Choice

Options [ModeScanning, ModeTracking, ModeRefinement, VibronicStructure, VibronicStruc-
tureTracking, VibronicStructureRefinement, ResonanceRaman]

Description Specifies the type of vibrational analysis that should be performed

VSTRestartFile

Type String

Description Path to a .rkf file containing restart information for VST.

372 Chapter 15. Keywords



INDEX

A
Add molecules (molecular dynamics), 92
Add-ons, 195
ADF, 189
Adiabatic Hessian Franck-Condon, 167
AMS input file, 9
ams.log, 15
ams.rkf, 15
AMS_JOBNAME, 16
AMS_RESULTSDIR, 16
AMS_SWITCH_LOGFILE_AND_STDOUT, 16
AMSPipe, 21
Applications, 38
APT, 165
Atom energies, 200
Atomic charges, 184
Atomic masses, 33
Atomic polar tensor, 165
Autocorrelation function, 211
Available engines, 189

B
BAND, 189
Barostats, 84
Binary output files, 15
Block constraints, 45
Block normal modes, 134
Bond Boost method, 105
Bond energy calculation, 39
Bond orders, 186
Bulk modulus, 125

C
Cell optimization, 44
Charge, 33
Compute clusters, 13
Conjugate gradients (geometry optimizer), 54
Constrained optimization, 44
Constraints, 44
CREST metadynamics, 99
CVHD, 100

D
D3 dispersion add-on, 196
D4 dispersion add-on, 196
D5 dispersion add-on, 196
Developer options, 285
DFTB, 189
Diffusion coefficient, 215
Dipole moment, 184
Double group symmetry, 287
Double parallelism, 17
Driver level parallelism, 17

E
eHEX method (NEMD), 107
Elastic properties, 125
Elastic tensor, 125
Electric field, 33
Engine add-ons, 195
Engine input, 189
Engine output files, 15
Engines, 187
Enthalpy, 151
Entropy, 151
Environment variables, 16
Examples, 218
Excited state optimizations, 74
External engines, 191

F
FCF, 167
FCF module, 167
FIRE (geometry optimizer), 49
Fixed atoms, 45
Fluorescence, 167
Forces, 121
Fractional coordinates, 29
Franck-Condon factors, 166, 167
Free rotor interpolation corrections,

151

G
GCMC, 111

373



AMS Manual, Amsterdam Modeling Suite 2020

Geometry, 27
Geometry constraints, 44
Geometry convergence, 43
Geometry optimization, 41
Geometry optimization methods, 46
Geometry relaxation, 41
Gibbs free energy, 151
Grand canonical Monte Carlo, 111

H
Heat capacity, 151
Heat exchange (molecular dynamics), 107
Hessian, 122
HEX method (NEMD), 107
Histogram (molecular dynamics), 209

I
Imaginary modes, 133
IMDHO, 174
Independent mode displaced harmonic

oscillator, 174
Initial Hessian, 49
Input file syntax, 9
Input for AMS, 7
Interface to external programs, 191
Internal energy, 151
Intrinsic reaction coordinate, 68
IR frequencies, 131
IRC, 68
Irreducible representation, 287
Isotopes, 33

J
Job name, 16

L
L-BFGS (geometry optimizer), 53
Lattice, 27
Lattice constraints, 46
Lattice deformations, 89
Lattice optimization, 44
Lattice vectors, 28
Lattice vibrations, 155
Lennard-Jones potential, 195
Linear transit, 58
Logfile ams.log, 15

M
MBH, 134
MD, 75
MD trajectory analysis, 206
MEP, 68
Minimum energy profile, 68
MLPotential, 189

Mobile block Hessian, 134
Mode intensity tracking, 146
Mode refinement, 138
Mode scanning, 137
Mode selecting, 149
Mode tracking, 140
Molecular dynamics, 75
Molecular dynamics checkpoint, 87
Molecule detection, 186
Molecule gun (molecular dynamics), 92
Moments of inertia, 155
MOPAC, 189

N
NEB, 62
NEMD, 107
Non-isotropic stress, 199
Normal modes, 131
Nuclear gradients, 121
Nudged elastic band, 62

O
Output files, 15
Output of AMS, 14

P
Partial vibrational density of states,

155
Partial vibrational spectra, 155
PES point characterization, 122
PES point properties, 119
PES scan, 58
Phonons, 155
Phosphorescence, 167
Pipe interface, 21
Pipe protocol, 21
PLAMS, 21
PLUMED library, 98
Point charges, 33
Polarizability, 184
Pressure, 198
Pressure (molecular dynamics), 86
Properties, 8
PVDOS, 155
Python, 21

Q
Quasi-Newton (geometry optimizer), 47

R
Radial distribution function, 207
Raman, 159
Raman-active vibrations, 134
RDF, 207

374 Index



AMS Manual, Amsterdam Modeling Suite 2020

ReaxFF, 189
Regions, 32
Remove molecules (molecular dynamics), 95
Required citations, 291
Resonance Raman, 160
Resonance VROA, 163
Restart (geometry), 35
Restart (molecular dynamics), 81
Restraints, 201
Results directory, 13, 15
Run types, 38
Running AMS, 12

S
Scan coordinate, 59
ScanFreq, 133
Schönflies symbol, 287
SCM_TMPDIR, 14
SCMGO (geometry optimizer), 52
Scratch directory, 14
Scripting, 21
Shear modulus, 125
Single point calculation, 39
Starting directory, 13
Strain constraints, 46
Stress tensor, 125
Structure relaxation, 41
Subspecies, 287
Super cell, 29
Symmetric displacements, 133
Symmetrization, 30
Symmetry, 30, 287
Symmetry label, 287

T
T-NEMD, 107
Task farming, 17
Tasks, 8, 38
Temperature (molecular dynamics), 86
Temporary directory, 14
Thermodynamics, 151
Thermostat, 82
Trajectory sampling, 86
Transition state search, 55
Two-level parallelism, 17

U
UFF, 189
Utilities, 203

V
VCD, 165
VCDtools module, 215
Vertical gradient Franck-Condon, 174

VG-FC, 174
Vibrational circular dichroism, 165
Vibrational Raman optical activity, 163
Vibrational spectroscopy, 129
Vibrationally resolved electronic

spectra, 166
Vibronic-structure excited state, 166
Volume regimes, 89
VROA, 163

X
XYZ file format, 285

Y
Young modulus, 125

Z
Z-matrix, 28

Index 375


	General
	Overview
	What’s new in the AMS driver?
	New in AMS2020.1
	New in AMS2019.3
	New in AMS2019.1

	Motivation and progress
	Input, execution and output

	Input, execution and output
	Input
	Example
	Tasks
	Properties
	General remarks on input structure and parsing
	Keys
	Blocks
	Including an external file
	Units

	Execution
	Shell script
	Running AMS on compute clusters

	Output
	Results directory
	Logfile ams.log
	Binary output files
	Standard output
	AMS environment variables

	Driver level parallelism
	Python interface
	Pipe interface
	AMSPipe protocol specification
	Low-level message encoding
	Return messages and error handling
	Methods

	AMS as a pipe master
	AMS as a pipe worker


	Geometry, System definition
	Geometry, Lattice
	Modifying the geometry

	Symmetry
	Regions
	Charge, atomic masses, input bond orders
	Homogeneous electric field and multipole charges
	Load a System from file
	Atom attributes
	Force field related extensions
	Load charges for a forcefield into regions
	Load forcefield atom types


	Structure and Reactivity, Molecular Dynamics
	Single point calculations
	Bond energy calculations
	Ground state energy
	Formation energy
	Atomization energies
	Chemisorption energies
	Atomic corrections
	Open shell systems
	Impurities

	Geometry optimization
	Constrained optimization
	Restraints

	Optimization under pressure / external stress
	Optimization methods
	Quasi-Newton
	FIRE
	SCMGO
	Limited-memory BFGS
	Conjugate gradients

	Troubleshooting
	Failure to converge
	Restarting a geometry optimization


	Transition state search
	Linear Transit, PES scan
	Troubleshooting

	Nudged Elastic Band (NEB)
	Input
	Frozen atom constraints
	Optimizations and convergence criteria
	Output
	Troubleshooting

	Intrinsic Reaction Coordinate (IRC)
	Method details
	Input
	Output

	Excited state optimizations
	Molecular dynamics
	General
	Constrained molecular dynamics
	(Re-)Starting a simulation
	Thermostats and barostats
	Temperature and pressure regimes

	Trajectory sampling and output
	Lattice deformations (volume regimes)
	Molecule Gun: adding molecules during simulation
	Removing molecules during simulation
	Accelerated dynamics
	The PLUMED library support in AMS
	Metadynamics for Conformer-Rotamer Ensemble Sampling (CREST-MTD)
	Collective Variable-driven HyperDynamics (CVHD)
	Temperature Replica Exchange
	Bond Boost Method

	Non-equilibrium MD (NEMD)
	T-NEMD for thermoconductivity: heat exchange


	Grand Canonical Monte Carlo (GCMC)
	General info
	Method Details
	Input
	Output


	Gradients, Hessian, Stress tensor, Elasticity
	Nuclear gradients
	Hessian
	PES point character
	Thermodynamics, gas phase Gibbs free energy
	Stress tensor
	Elastic tensor
	Numerical differentiation options

	Vibrational Spectroscopy
	General
	Where are the results?

	IR frequencies and normal modes
	All vibrational Modes
	Rescanning Imaginary modes

	Symmetric Displacements
	Mobile Block Hessian (MBH)
	Mode Scanning
	Theory
	Input

	Mode Refinement
	Theory
	Input

	Mode Tracking
	Theory
	Input
	Input: Tracking methods
	Input: Selecting modes
	Input: Convergence

	Selecting modes
	Thermodynamics (ideal gas)
	Gibbs free energy change for a gas phase reaction

	Moments of inertia
	Partial Vibrational Spectra (PVDOS)

	Phonons
	(Resonance) Raman
	Raman
	Resonance Raman: excited-state finite lifetime
	Resonance Raman: VG-FC
	Theory
	Input


	VROA: (Resonance) vibrational Raman optical activity
	Engine ADF

	VCD: Vibrational Circular Dichroism
	Atomic polar tensor (APT) model
	Analytical VCD in ADF


	Vibrationally resolved electronic spectra
	AH-FC: Adiabatic Hessian Franck-Condon
	FCF module: Franck-Condon Factors
	Theory
	Input
	Result: TAPE61

	FCF example absorption and fluorescence
	FCF Example phosphorescence

	VG-FC: Vertical Gradient Franck-Condon
	Theory
	Theory: Vibronic-Structure Tracking
	Theory: Vibronic-Structure Refinement
	Theory: Adiabatic excitation energy

	Input: Vibronic-Structure all modes
	Input: Vibronic-Structure Tracking
	Input: Restarting VST

	Input: Vibronic-Structure Refinement
	Input: Excited State
	Input: Producing the spectrum


	Dipole moment, Polarizability, Bond orders
	Charges, Dipole Moment, Polarizability
	Bond orders & Molecule detection

	Engines
	Available engines
	Summary of engine capabilities
	External programs as engines
	Toy engines
	Engine add-ons
	Dispersion corrections
	Pressure
	Non-isotropic external stress
	Atom energies
	Restraints


	Utilities
	ChemTraYzer
	General information
	Graphical user interface
	Command line execution
	Results

	Trajectory Analysis
	Radial Distribution Function (RDF)
	Description
	Options

	Histogram
	Autocorrelation Functions
	Description
	Options

	Diffusion Coefficient

	VCD Analysis: VCDtools
	General Theory
	General Coupled Oscillator Analysis
	Available options


	Examples
	Geometry optimization
	Example: Simple geometry optimization
	Example: Two-stage geometry optimization with initial Hessian
	Example: Periodic lattice optimization under pressure
	Example: Phase Transition Due To External Nonuniform Stress
	Example: Boron nitride optimization under external stress
	Example: Graphene optimization under external stress
	Example: Constrained optimizations

	Transition state search
	Example: TS search starting from initial Hessian
	Example: PES scan and TS search for H2 on graphene

	Nudged Elastic Band (NEB)
	Nudged Elastic Band (NEB) Examples
	HCN isomerization reaction with NEB
	H2 dissociation on graphene
	Running multiple NEB calculations using PLAMS


	Intrinsic reaction coordinate (IRC)
	Example: IRC for HCN
	Example: TS and IRC for Claisen reaction

	PES scan
	Example: Linear transit
	Example: 2D PES scan

	Molecular dynamics
	Example: Simple MD for H2
	Example: MD for a box of water
	Example: Lattice deformations in MD

	Vibrational analysis
	Example: Mode Refinement
	Example: Mode Tracking
	Example: Vibronic-Structure Tracking

	PES point properties
	Example: Phonons for graphene
	Example: Phonons with isotopes
	Example: User-defined Brillouin zone for phonon dispersion
	Example: Elastic tensor

	Pipe interface
	Example: ASE calculator as a pipe worker
	Example: AMS as a pipe worker


	Appendices
	Extended XYZ file format
	Developer options
	Symmetry
	Schönfliess symbols and symmetry labels
	Molecular orientation requirements


	Required citations
	General references
	Feature references
	Frequencies, IR Intensities, Raman, VCD


	External programs and Libraries
	Keywords
	Links to manual entries
	Summary of all keywords

	Index

