
AMS Manual
Amsterdam Modeling Suite 2019

www.scm.com

Apr 18, 2019

CONTENTS

1 General 1
1.1 Overview . 1
1.2 What’s new in the AMS2019 driver? . 1
1.3 Motivation and progress . 2
1.4 Input, execution and output . 2

2 System definition 5
2.1 System geometry . 5
2.2 Additional system properties . 8
2.3 Restoring a system from disk . 9

3 Exploring the PES: Tasks 11
3.1 Single point calculations . 11
3.2 Geometry optimization . 11

3.2.1 Constrained optimization . 14
3.2.2 Optimization methods . 15

Quasi-Newton . 16
FIRE . 18
SCMGO . 20
Conjugate gradients . 21

3.2.3 Troubleshooting . 22
Failure to converge . 22
Restarting a geometry optimization . 23

3.3 Transition state search . 23
3.4 PES scan . 24

3.4.1 Troubleshooting . 26
3.5 Intrinsic Reaction Coordinate (IRC) Scan . 28

3.5.1 Method details . 29
3.5.2 Input . 29
3.5.3 Output . 33

3.6 Molecular dynamics . 33
3.6.1 General . 37
3.6.2 (Re-)Starting a simulation . 38
3.6.3 Thermostats and barostats . 39

Temperature and pressure regimes . 43
3.6.4 Trajectory sampling and output . 43
3.6.5 Molecule Gun: adding molecules during simulation . 45
3.6.6 Removing molecules during simulation . 48
3.6.7 The PLUMED library support in AMS . 50
3.6.8 Collective Variable-driven HyperDynamics (CVHD) . 51

i

3.6.9 Non-equilibrium MD (NEMD): heat exchange . 53
3.7 Vibrational analysis . 57

3.7.1 Full analysis . 57
3.7.2 Mode selective analysis . 58

Mode Scanning . 58
Mode Refinement . 62
Mode Tracking . 66
Selecting modes . 77

3.8 Grand Canonical Monte Carlo (GCMC) . 79
3.8.1 General info . 79
3.8.2 Method Details . 80
3.8.3 Input . 81
3.8.4 Output . 86

4 PES point properties 89
4.1 Nuclear gradients and stress tensor . 89
4.2 Hessian and normal modes of vibration . 90

4.2.1 Thermodynamics (ideal gas) . 91
4.2.2 Partial Vibrational Spectra (PVDOS) . 93

4.3 Elastic tensor . 93
4.4 Phonons . 95
4.5 Numerical differentiation options . 97

5 Engines 101
5.1 Available engines . 101
5.2 External programs as engines . 102
5.3 Toy engines . 105

6 Technical topics 107
6.1 Input syntax . 107

6.1.1 General remarks on input structure and parsing . 107
6.1.2 Keys . 108
6.1.3 Blocks . 109
6.1.4 Units . 110

6.2 Double parallelism . 110
6.3 Running AMS on compute clusters . 114
6.4 Python interface . 115

7 Examples 117
7.1 Geometry optimization . 117

7.1.1 Example: Simple geometry optimization . 117
7.1.2 Example: Two-stage geometry optimization with initial Hessian 117
7.1.3 Example: Periodic lattice optimization under pressure . 119
7.1.4 Example: Constrained optimizations . 120

7.2 Transition state search . 127
7.2.1 Example: TS search starting from initial Hessian . 127
7.2.2 Example: PES scan and TS search for H2 on graphene . 128

7.3 Intrinsic reaction coordinate (IRC) . 132
7.3.1 Example: IRC for HCN . 132
7.3.2 Example: TS and IRC for Claisen reaction . 133

7.4 PES scan . 136
7.4.1 Example: Linear transit . 136
7.4.2 Example: 2D PES scan . 140

7.5 Molecular dynamics . 143
7.5.1 Example: Simple MD for H2 . 143

ii

7.5.2 Example: MD for a box of water . 144
7.6 Vibrational analysis . 144

7.6.1 Example: Mode Refinement . 144
7.6.2 Example: Mode Tracking . 146

7.7 PES point properties . 150
7.7.1 Example: Phonons for graphene . 150
7.7.2 Example: Phonons with isotopes . 151
7.7.3 Example: Elastic tensor . 153

8 Appendices 157
8.1 Environment variables . 157
8.2 Extended XYZ file format . 157
8.3 Developer options . 158

9 Required citations 161
9.1 General references . 161
9.2 Feature references . 161

9.2.1 Vibrational analysis . 161
Mode tracking . 161
Mode refinement . 162

10 References 163
10.1 External programs and libraries . 164

11 Keywords 165
11.1 Links to manual entries . 165
11.2 Summary of all keywords . 165

Index 215

iii

iv

CHAPTER

ONE

GENERAL

1.1 Overview

AMS is the new driver program introduced in the 2018 release of the Amsterdam Modeling Suite. The job of AMS is
to handle all changes in the simulated system’s geometry, e.g. during a geometry optimization or molecular dynamics
calculation, using the so-called “engines” like BAND or DFTB for the calculation of energies and forces. In summary,
one might say that the AMS driver steers the engines across the potential energy surface.

Prior to the 2018 release of the Amsterdam Modeling Suite, what we now call engines used to be separate programs,
each with their own input and output files and formats. Starting with the 2018 release, the engines are only accessible
through the AMS driver program, that provides a unified interface to all of them.

1.2 What’s new in the AMS2019 driver?

• Intrinsic Reaction Coordinate (IRC) Scan (page 28) in now available in the AMS driver for molecular and
periodic systems.

• Support for the Grand Canonical Monte Carlo (GCMC) (page 79) method has been added in the AMS driver.

• Molecular composition analysis for molecular dynamics simulations (see tutorial)

• Collective Variable-driven Hyperdynamics (CVHD) (page 51)

• Molecule gun (page 45) and molecule sink (page 48) for molecular dynamics

• PLUMED library support (page 50) for MD analysis and a wide variety of free energy methods

• The initial symmetry of a system is enforced during geometry optimizations with the Quasi-Newton optimizer.

• Thermodynamic properties (page 91) (assuming an ideal gas) are automatically computed after normal modes
calculations.

• Partial vibrational density of states (PVDOS) (page 93) for normal modes.

• The system’s symmetry is used to accelerate numerical nuclear derivatives and to provide symmetry labels for
normal modes.

• The AMS driver starts up much faster, significantly speeding up scripting applications that launch AMS many
times.

• New tools for mode selective vibrational analysis (page 57):

1. Mode Scanning (page 58) (aka ADF’s ScanFreq)

2. Mode Refinement (page 62) (aka “Frequency range selection”)

3. Mode Tracking (page 66) (experimental)

1

AMS Manual, Amsterdam Modeling Suite 2019

1.3 Motivation and progress

The Amsterdam Modeling Suite has grown substantially over the last decade, and in the 2017 release included pro-
grams implementing methods all the way from accurate density functional theory, through semi-empirical methods,
to fast reactive force fields. Many of these programs have originally been developed by academic groups and are now
maintained and expanded by SCM in collaboration with the original authors.

This rapid growth of the Amsterdam Modeling Suite had, however, led to a certain degree of unnecessary inhomogenity
within the suite: The input for the same task, e.g. a geometry optimization, differed quite a lot between the different
programs in the suite. While this problem was mostly hidden for users of the graphical interface, it constituted a barrier
for users of the new scripting frameworks such as PLAMS. Furthermore, the different programs produced rather
different output files for the same task, making the automated extraction of results unnecessarily difficult. Finally,
and most importantly, the rapid growth of the AMS suite had also led to a certain level of feature fragmentation,
where some features were available in one program but not the other: ADF, for example, was able to do a linear
transit calculation, while BAND was not. Constrained geometry optimization was supported in DFTB, but not in UFF.
ReaxFF could be used for Grand Canonical Monte Carlo simulations, but DFTB could not.

In order to overcome these issues and make the Amsterdam Modeling Suite more powerful and user friendly, we are
introduced the AMS driver program with the 2018 release of the suite. The idea of this reorganization is to have only
a single program called the AMS driver that under the hood uses the so-called “engines” like BAND or DFTB for the
calculation of energies and gradients, where the engines are technically no longer separate programs but just libraries
used by the AMS driver. In this way much of the input and output of AMS is the same, no matter which particular
engine is used for a calculation. It also avoids the feature fragmentation, since any new feature in the AMS driver can
immediately be used with all engines in the suite. Furthermore, the AMS driver also allows running external programs
as an engine (page 101) providing energies and gradients, allowing end-users to perform all calculations supported by
AMS with virtually any atomistic modeling program they have access to and to visualize the results in the graphical
user interface of the Amsterdam Modeling Suite.

Converting all the programs of the Amsterdam Modeling Suite into engine libraries that are used by the AMS driver
is a big reorganization of the entire suite, which is not complete yet. The long-term goal is to integrate all programs in
the suite fully into the AMS driver, but as of the 2018 release, only BAND, DFTB, MOPAC and UFF have been fully
integrated and removed as separate programs. ReaxFF is fully usable from within AMS, but not all features of the
standalone ReaxFF program (e.g. the bond boost method) have been ported to AMS yet. Therefore, ReaxFF is in the
2018 release both available as an AMS engine and as the familiar standalone program. ADF can be used both through
AMS and as the standalone program known from previous releases. QuantumEspresso has not yet been integrated
into AMS. External programs can be hooked into the AMS driver through a thin scripting layer (page 101). While the
transition to AMS is not complete yet, we believe that AMS in its current state already offers significant benefits over
the 2017 release.

As with any large reorganization, it is unavoidable that some things change. For GUI users this should not create
any issues, but users familiar with the existing command line and scripting interfaces will notice these changes and
their existing workflows might need to be adjusted to the new setup. We know that these kind of changes can be
disrupting for existing users, and where possible we try to keep backwards compatibility with previous versions, but
unfortunately this is not always possible. However, overall AMS provides a much more consistent and convenient
interface to command line and scripting users, and we believe that the new simplicity and expanded feature set of
AMS make transitioning to the new framework well worth the effort.

1.4 Input, execution and output

With the introduction of AMS in the 2018 release of the Amsterdam Modeling Suite, there were some changes in
the input and output files and formats used by our software. Users of the graphical interface should not notice these
changes, but people using the software from the command line or through the scripting frameworks need to be aware
of them.

2 Chapter 1. General

AMS Manual, Amsterdam Modeling Suite 2019

Generally the input for AMS has the block and keyword structure that most programs in the Amsterdam Modeling
Suite have already been using. See the Input syntax (page 107) section for more details. The only new construct in the
AMS input is a special Engine block, that selects which engine is used for the simulation and also contains all the
details of its configuration. This is probably best illustrated by an example. Let us look at the following AMS input,
which optimizes the geometry of the methane molecule and calculates its normal modes of vibration at the optimized
geometry:

$ADFBIN/ams << EOF

Task GeometryOptimization

GeometryOptimization
Convergence

Gradients 1.0e-4
End

End

Properties
NormalModes true

End

System
Atoms

C 0.00000000 0.00000000 0.00000000
H 0.63294000 -0.63294000 -0.63294000
H -0.63294000 0.63294000 -0.63294000
H 0.63294000 0.63294000 0.63294000
H -0.63294000 -0.63294000 0.63294000

End
End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1

EndEngine

EOF

Note how DFTB is selected as the engine in the Engine DFTB line that opens the Engine block. All DFTB specific
configuration is contained within this engine block, which is terminated by EndEngine. The fact that we want to run
a geometry optimization with normal modes for methane and things like convergence criteria for the optimization are
of course completely independent from which engine is actually used to perform this calculation. Therefore they are
all found outside of the Engine block. In this sense, the AMS input is split up into the driver level input (everything
outside of the engine block) and the engine input, which is just a single Engine block. This separation makes it easy
to perform the same calculation at a different level of theory, by simply switching out the Engine block in the input.
We could, for example, repeat the same calculation at the DFT-GGA level using the Band engine:

Engine BAND
XC

GGA PBE
End

EndEngine

Engines like BAND that have many options and can calculate many properties, consequently also have a large number
of possible keywords in their input. In order to have a better structured documentation we have split off the description
of the engine inputs into separate engine specific manuals (page 99), while this AMS manual only documents the
driver level keywords outside of the Engine block. All the engine specific options are found in the respective engine’s

1.4. Input, execution and output 3

AMS Manual, Amsterdam Modeling Suite 2019

manual, which documents the keywords in its Engine block. In general all engines can be used with all tasks in AMS.
There are only a few rather obvious restrictions, for example that only engines which can handle periodic systems can
be used for the calculation of phonons.

The introduction of the Engine block is the only real change AMS brings to the input side of things. On the output
side there are a few more changes.

The first change to the output is that AMS does not put any of its output files into the present working directory,
as virtually all of the standalone programs in the suite did. Instead AMS creates a *.results directory, which
collects all result file associated with a job. Here * is replaced by the jobname, which is set with the AMS_JOBNAME
environment variable:

AMS_JOBNAME=methane $ADFBIN/ams << EOF

... see above ...

EOF

This would put all results related to our geometry optimization of methane into the newly created folder methane.
results. (The default name of the results folder is ams.results if AMS_JOBNAME is not set, see the environment
variables (page 157) section of this manual for documentation of all environment variables used by AMS.) In this way
users can easily run multiple jobs in the same directory without danger of clashing output files, which was a common
problem before the introduction of AMS. This new setup is also more consistent with the graphical user interface,
which already collected all files associated with a specific job into a dedicated results directory. Note that AMS will
by default not overwrite results directories if a job is rerun or another job is run with the same jobname.

Inside of the results directory users will always find the logfile ams.log, which is written during a running calculation
and can be used to monitor its progress. Furthermore the results directory contains binary result files in the KF format,
which can be opened and inspected with the KFBrowser GUI component. Conceptually there are two different kinds
of these binary files in the result folder:

• The main ams.rkf written by the AMS driver. It contains high level information about the trajectory that
the AMS driver took over the potential energy surface. For a geometry optimization it would for example
contains the history of how the systems geometry changed during the optimization as well as the final optimized
geometry. For a molecular dynamics simulation it would contain the full trajectory. The format in which this
information is written is independent from which engine was used for a calculation.

• Additionally there might be a binary output file for every point on the potential energy surface that was visited
during the calculation. They contain all information tied to a specific point on the potential energy surface. We
call these files the engine output files, because they are not written by the AMS driver, but by the specific engine
used for the calculation. As such they contain engine specific information (e.g. orbitals for quantum mechanical
engines), which might be written in an engine specific format. The engine files are basically the same as the
main output file the standalone programs produced for single point calculations prior to the 2018 release of
the suite: The BAND engine writes engine output files that are basically the same as the RUNKF file that the
BAND program wrote. The engine output files of the DFTB engine correspond to the dftb.rkf file that the
DFTB program used to write. The engine output files all have the extension .rkf, but their filename is usually
somehow descriptive of the point on the PES that they correspond to. Note that one does not always get an
engine output file for every PES point that was visited during the calculation. For most applications this would
just be too much data, so by default the engine results are only kept for special points, e.g. the final geometry in
a geometry optimization.

Having multiple different binary output files could be confusing for people that are used to the single result file that
was written by the standalone programs in ADF<=2017. After all, it brings up the question in which file the desired
property is stored. The general rule is: If the property is tied to a particular point on the potential energy surface, it is
stored in the engine output file belonging to that particular point. This includes all properties documented in the PES
point properties section (page 87) of this manual. If the information depends on the entire trajectory over the PES, it
is found in the main ams.rkf written by the AMS driver.

4 Chapter 1. General

CHAPTER

TWO

SYSTEM DEFINITION

The definition of the system to simulate, i.e. the positions and types of the nuclei, the total charge, and potentially
lattice vectors, is enclosed in the System block:

System header
Atoms header # Non-standard block. See details.

...
End
Lattice header # Non-standard block. See details.

...
End
FractionalCoords [True | False]
GeometryFile string
LatticeStrain float_list
SuperCell integer_list
AtomMasses # Non-standard block. See details.

...
End
Charge float
BondOrders # Non-standard block. See details.

...
End

End

2.1 System geometry

The geometry of the system is specified with the Atoms and Lattice blocks.

System

Type Block

Recurring True

Description Specification of the chemical system. For some applications more than one system may
be present in the input. In this case, all systems except one must have a non-empty string ID
specified after the System keyword. The system without an ID is considered the main one.

Atoms

Type Non-standard block

Description The atom types and coordinates. Unit can be specified in the header. Default unit
is Angstrom.

Lattice

5

AMS Manual, Amsterdam Modeling Suite 2019

Type Non-standard block

Description Up to three lattice vectors. Unit can be specified in the header. Default unit is
Angstrom.

FractionalCoords

Type Bool

Default value False

Description Whether the atomic coordinates in the Atoms block are given in fractional coordi-
nates of the lattice vectors. Requires the presence of the Lattice block.

The Atoms block contains one line per atoms, similar to the lines found in an .xyz file: First the name of the element,
then three real numbers representing the coordinates of that atom in Angstrom. The following Atoms block shows
how one would define a water molecule:

System
Atoms

O 0.0 0.0 0.59372
H 0.0 0.76544 -0.00836
H 0.0 -0.76544 -0.00836

End
End

Note that it is possible to specify a different unit of length in the header of the block (that is in the line after the
keyword opening the block) by putting the name of the unit in [and] brackets. So the same water molecule could
also be specified as follows:

System
Atoms [Bohr]

O 0.0 0.0 1.12197
H 0.0 1.44647 -0.01580
H 0.0 -1.44647 -0.01580

End
End

Periodic systems require the specification of 1 (for chains), 2 (for slabs) or 3 (for bulk) lattice vectors in addition to
the nuclear coordinates. Every lattice vector is specified on a separate line of three numbers, representing the vectors
x,y and z-component. Note that for chain systems, the single lattice vector must point along the x-axis, while for slab
systems the two lattice vectors must be in the xy-plane. Consider the following input for graphene:

System
Atoms

C 0.0 0.0 0.0
C 1.23 0.71014 0.0

End
Lattice

2.46 0.0 0.0
1.23 2.13042 0.0

End
End

As with the Atoms block, the length unit in which the lattice vectors are given can be changed by specifying the
desired unit in the header of the block (enclosed in [and]). It is also possible to define a system given the fractional
coordinates of the atoms using the FractionalCoordinates keyword. The numbers in the Atoms block are then
interpreted as fractional coordinates according to the lattice vectors in the Lattice block. Note that for chain and
slab systems, the coordinates perpendicular to the periodic direction (z and y for chains, z for slabs) are of course still

6 Chapter 2. System definition

AMS Manual, Amsterdam Modeling Suite 2019

in Angstrom (or alternatively the unit set in the header of the Atoms block). Using the FractionalCoordinates
keyword we could specify the geometry of table salt (NaCl) as follows:

System
Lattice

0.0 2.75 2.75
2.75 0.0 2.75
2.75 2.75 0.0

End
FractionalCoordinates True
Atoms

Na 0.0 0.0 0.0
Cl 0.5 0.5 0.5

End
End

Instead of specifying the geometry of the system directly in the input file it can also be read from an external file.

System

GeometryFile

Type String

Description Read the geometry from a file (instead of from Atoms and Lattice blocks). Sup-
ported formats: .xyz

Note that the GeometryFile key replaces both the Atoms and the Lattice blocks in the input. So if you specify
the GeometryFile keyword in the input, the Atoms and Lattice blocks must not appear there. At the moment
only the extended XYZ file format (page 157) is supported.

Finally there are a number of keywords that modify the system geometry:

System

LatticeStrain

Type Float List

Description Deform the input system by the specified strain. The strain elements are in Voigt
notation, so one should specify 6 numbers for 3D periodic system (order: xx,yy,zz,yz,xz,xy),
3 numbers for 2D periodic systems (order: xx,yy,xy) or 1 number for 1D periodic systems.

SuperCell

Type Integer List

Description Create a supercell of the input system (only possible for periodic systems). The
integer numbers represent the diagonal elements of the supercell transformation; you should
specify as many numbers as lattice vectors (i.e. 1 number for 1D, 2 numbers for 2D and 3
numbers for 3D periodic systems).

SuperCellTrafo

Type Integer List

Description Create a supercell of the input system (only possible for periodic systems). The
integer numbers represent the supercell transformation; (i.e. 1 number for 1D, 4 numbers for
2D and 9 numbers for 3D periodic systems). The order is as you read the matrix (horizontal
reading), unless you are used to vertical reading.

RandomizeCoordinates

Type Float

2.1. System geometry 7

AMS Manual, Amsterdam Modeling Suite 2019

Default value 0.0

Unit Angstrom

Description Apply a random noise to the atomic coordinates. This can be useful if you want to
deviate from an ideal symmetric geometry.

RandomizeStrain

Type Float

Default value 0.0

Description Apply a random strain to the system. This can be useful if you want to deviate
from an ideal symmetric geometry, for example if you look for a phase change due to high
pressure.

These modifications are applied immediately after the system block is read. To the rest of AMS (and the input) it
looks exactly as if the modified system was specified explicitly in the System block input. That means that the
SuperCell keyword is not easily usable with input options that require the specification of atom indices, e.g. the
constraints (page 14) block. Note that the randomization of the coordinates is applied after a potential supercell
creation.

2.2 Additional system properties

AMS allows to set user-defined masses for particular atoms. This can be used to simulate isotopes of different atoms.
Masses are specified by tagging the specific atoms in the Atoms block and then assigning them a custom mass (in
unified atomic mass units) within the AtomMasses block. The following input shows the system specification for a
heavy water molecule:

System
Atoms

O 0.0 0.0 0.59372
H.d 0.0 0.76544 -0.00836
H.d 0.0 -0.76544 -0.00836

End
AtomMasses

H.d 2.014
End

End

Finally the System block also contains the specification of the system’s total charge as well as optionally defined
bond orders, which might be needed by engines implementing force fields.

System

Charge

Type Float

Default value 0.0

Description The system’s total charge in atomic units (only for non-periodic systems).

BondOrders

Type Non-standard block

Description Defined bond orders. May by used by MM engines.

Note that the specified bond orders are currently only used by the UFF engine.

8 Chapter 2. System definition

AMS Manual, Amsterdam Modeling Suite 2019

2.3 Restoring a system from disk

Instead of specifying the system to simulate in the System block of the input, it is also possible to restore the system
used in a previous calculation from the binary .rkf result files of AMS. This is done with the LoadSystem block
in the input:

LoadSystem header
File string
Section string

End

LoadSystem

Type Block

Recurring True

Description Block that controls reading the chemical system from a KF file instead of the [System]
block.

File

Type String

Description The path of the KF file from which to load the system.

Section

Type String

Default value Molecule

Description The section on the KF file from which to load the system.

Note that the LoadSystem block is mutually exclusive with the System block: The system either needs to be
specified in the input, or loaded from a previous results file.

Any .rkf file written by AMS should be suitable to load a system from. For engine output files (page 4) the loaded
geometry is just the one for which the engine was invoked when it wrote this file. For the main result file (page 4) ams.
rkf written by the AMS driver, which geometry is loaded depends on the task (page 11) that AMS was performing
when this file was written. Generally the ams.rkf file contains two systems:

• The input system corresponding just to the System block that was read in by AMS. This system is written to the
InputMolecule section on the ams.rkf, and can be loaded from there using the LoadSystem%Section
keyword. This can be useful in order to repeat a previous AMS calculation for the same system, but with different
settings, e.g. a different engine.

• The system which was the result of a previous AMS calculation, e.g. a geometry optimization or transition state
search. This system is written to the Molecule section on the ams.rkf. What exactly is considered the
resulting geometry of a calculation depends in the task (page 11) of the previous calculation. (For tasks that do
not change the geometry (like a single point calculation) or where no configuration is particularly special (e.g.
a PES scan), the result system is normally just the same as the input system.)

2.3. Restoring a system from disk 9

AMS Manual, Amsterdam Modeling Suite 2019

10 Chapter 2. System definition

CHAPTER

THREE

EXPLORING THE PES: TASKS

3.1 Single point calculations

A single point calculation is the simplest task available in th AMS driver. It simply runs the engine (page 99) once for
the given geometry. In other words, the AMS driver does not explore the potential energy surface (PES), but simply
samples a “single point” of it.

A single point calculation is performed by selecting it with the Task keyword:

Task SinglePoint

Note that a single point calculation in AMS includes the calculation of PES point properties (page 87). Many of these,
such as the nuclear gradients and the Hessian, are derivatives at this PES point with respect to nuclear displacements.
These derivatives might be done numerically by the AMS driver, in which case it would technically run the engine
multiple times and sample PES points around the initial point. However, in AMS this is still considered a single point
calculation. Take for example the calculation of the normal modes of vibration of a molecule. This used to be a
separate task in the 2017 release of the DFTB program, but in AMS is just a single point calculation with a request for
normal modes:

Task SinglePoint

Properties
NormalModes True

End

See the manual section on PES point properties (page 87) for an overview of which properties can be calculated with
the SinglePoint task in AMS.

3.2 Geometry optimization

A geometry optimization is the process of changing the system’s geometry (the nuclear coordinates and potentially the
lattice vectors) to minimize the total energy of the systems. This is typically a local optimization, i.e. the optimization
converges to the next local minimum on the potential energy surface (PES), given the initial system geometry specified
in the System block. In other words: The geometry optimizer moves “downhill” on the PES into the local minimum.

See also:

Examples (page 117) and diamond lattice optimization and phonons tutorial

Geometry optimizations are performed by selecting them as the Task. The details of the optimization can be config-
ured in the corresponding block:

11

AMS Manual, Amsterdam Modeling Suite 2019

Task GeometryOptimization

GeometryOptimization
Convergence

Energy float
Gradients float
Step float

End
MaxIterations integer
CalcPropertiesOnlyIfConverged [True | False]
OptimizeLattice [True | False]
Pressure float
KeepIntermediateResults [True | False]

End

GeometryOptimization

Type Block

Description Configures details of the geometry optimization and transition state searches.

Convergence

Type Block

Description Convergence is monitored for two items: the energy and the Cartesian gradients.
Convergence criteria can be specified separately for each of these items.

Energy

Type Float

Default value 1e-05

Unit Hartree

Description The criterion for changes in the energy.

Gradients

Type Float

Default value 0.001

Unit Hartree/Angstrom

Description The criterion for changes in the gradients.

Step

Type Float

Default value 0.001

Unit Angstrom

Description The maximum Cartesian step allowed for a converged geometry.

A geometry optimization is considered converged when all the following criteria are met:

1. The difference between the bond energy at the current geometry and at the previous geometry step is smaller
than Convergence%Energy.

2. The maximum Cartesian nuclear gradient is smaller than Convergence%Gradient.

12 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

3. The root mean square (RMS) of the Cartesian nuclear gradients is smaller than 2/3
Convergence%Gradient.

4. The maximum Cartesian step is smaller than Convergence%Step.

5. The root mean square (RMS) of the Cartesian steps is smaller than 2/3 Convergence%Step.

Note: If the maximum and RMS gradients are 10 times smaller than the convergence criterion, then criteria 4 and 5
are ignored.

Some remarks on the choice of the convergence thresholds:

• Molecules may differ very much in the stiffness around the energy minimum. Using the standard convergence
thresholds without second thought is therefore not recommended. Strict criteria may require a large number of
steps, while a loose threshold may yield geometries that are far from the minimum (with respect to atom-atom
distances, bond-angles etc...) even when the total energy of the molecule might be very close to the value at the
minimum. It is good practice to consider first what the objectives of the calculation are. The default settings
in AMS are intended to be reasonable for most applications, but inevitably situations may arise where they are
inadequate.

• The convergence threshold for the coordinates (Convergence%Step) is not a reliable measure for the preci-
sion of the final coordinates. Usually it yields a reasonable estimate (order of magnitude), but to get accurate
results one should tighten the criterion on the gradients, rather than on the steps (coordinates). (The reason for
this is that with the Quasi-Newton based optimizers the estimated uncertainty in the coordinates is related to
the used Hessian, which is updated during the optimization. Quite often it stays rather far from an accurate
representation of the true Hessian. This does usually not prevent the program from converging nicely, but it
does imply a possibly incorrect calculation of the uncertainty in the coordinates.)

• Note that tight convergence criteria for the geometry optimization require accurate and noise-free gradients from
the engine. For some engines this might mean that their numerical accuracy has to be increased for geometry
optimization with tight convergence criteria, see e.g. the NumericalQuality keyword in the BAND manual.

The maximum number of geometry iterations allowed to locate the desired structure is specified with the
MaxIterations keyword:

GeometryOptimization

MaxIterations

Type Integer

Description The maximum number of geometry iterations allowed to converge to the desired
structure.

CalcPropertiesOnlyIfConverged

Type Bool

Default value True

Description Compute the properties requested in the ‘Properties’ block, e.g. Frequencies or
Phonons, only if the optimization (or transition state search) converged. If False, the proper-
ties will be computed even if the optimization did not converge.

If the geometry optimization does not converge within this many steps it is considered failed and the iteration aborted,
i.e. PES point properties (page 87) block will not be calculated at the last geometry. The default maximum number of
steps is chosen automatically based on the used optimizer and the number of degrees of freedom to be optimized. The
default is a fairly large number already, so if the geometry has not converged (at least to a reasonable extent) within
that many iterations you should step back and consider the underlying cause rather than simply increase the allowed
number of iterations and try again.

For periodic systems the lattice degrees of freedom can be optimized in addition to the nuclear positions.

3.2. Geometry optimization 13

AMS Manual, Amsterdam Modeling Suite 2019

GeometryOptimization

OptimizeLattice

Type Bool

Default value False

Description Whether to also optimize the lattice for periodic structures. This is currently only
supported with the Quasi-Newton and SCMGO optimizers.

Pressure

Type Float

Default value 0.0

Description Optimize the structure under pressure (this will only have an effect if you are opti-
mizing the lattice vectors). Currently only working in combination with the Quasi-Newton
optimizer. For phase transitions you may consider disabling or breaking the symmetry.

Finally the GeometryOptimization block also contains some technical options:

GeometryOptimization

KeepIntermediateResults

Type Bool

Default value False

Description Whether the full engine result files of all intermediate steps are stored on disk. By
default only the last step is kept, and only if the geometry optimization converged. This can
easily lead to huge amounts of data being stored on disk, but it can sometimes be conve-
nient to closely monitor a tricky optimization, e.g. excited state optimizations going through
conical intersections, etc. ...

3.2.1 Constrained optimization

The AMS driver also allows to perform constrained optimizations, where a number of specified degrees of freedom
are fixed to particular values.

See also:

Example demonstrating all supported constraints (page 120)

The desired constraints are specified in the Constraints block at the root level of the AMS input file:

Constraints
Atom integer
Coordinate integer [x|y|z] float?
Distance (integer){2} float
Angle (integer){3} float
Dihedral (integer){4} float
BlockAtoms integer_list
Block string

End

Atom atomIdx Fix the atom with index atomIdx at the initial position, as given in the System%Atoms block.

Coordinate atomIdx [x|y|z] coordValue? Constrain the atom with index atomIdx (following the or-
der in the System%Atoms block) to have a cartesian coordinate (x, y or z) of coordValue (given in
Angstrom). If the coordValue is missing, the coordinate will be fixed to its initial value.

14 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Distance atomIdx1 atomIdx2 distValue Constrain the distance between the atoms with index
atomIdx1 and atomIdx2 (following the order in the System%Atoms block) to distValue, given in
Angstrom.

Angle atomIdx1 atomIdx2 atomIdx3 angleValue Constrain the angle (1)–(2)–(3) between the atoms
with indices atomIdx1-3 (as given by their order in the System%Atoms block) to angleValue, given in
degrees.

Dihedral atomIdx1 atomIdx2 atomIdx3 atomIdx4 dihedValue Constrain the dihedral angle (1)–
(2)–(3)–(4) between the atoms with indices atomIdx1-4 (as given by their order in the System%Atoms
block) to dihedValue, given in degrees.

BlockAtoms [atomIdx1 ... atomIdxN] Creates a block constraint (freezes all internal degrees of freedom)
for a set of atoms identified by the list of integers [atomIdx1 ... atomIdxN]. These atom indices refer
to the order of the atoms in the System%Atoms block.

Block blockName Creates a block constraint (freezes all internal degrees of freedom) for a set of atoms identified
by a tagging string blockName in the System%Atoms block. The tag is attached to element symbol and
separated by a dot. Example:

System
Atoms

C.myblock 0.0 0.0 0.0
C.myblock 0.0 0.0 1.0
C 0.0 1.0 0.0

End
End
Constraints

Block myblock
End

Note that the coordinate, distance, angle, and dihedral constraints do not need to be satisfied at the beginning of the
optimization.

Note that in principle an arbitrary number of constraints can be specified and thus combined. However, it is the
user’s responsibility to ensure that the specified constraints are actually compatible with each other, meaning that it is
theoretically possible to satisfy all of them at the same time. The AMS driver does not detect these kinds of problems,
but the optimization will show very unexpected results. Furthermore, for calculations involving block constraints the
following restrictions apply:

• There should be no other constrained coordinates used together with block constraints although this may work
in many situation.

• The user should absolutely avoid specifying other constraints that include atoms of a frozen block.

3.2.2 Optimization methods

The AMS driver implements a few different geometry optimization algorithms. It also allows to choose the coordinate
space in which the optimization is performed:

GeometryOptimization
Method [Auto | Quasi-Newton | SCMGO | FIRE | ConjugateGradients]
CoordinateType [Auto | Delocalized | Cartesian]

End

GeometryOptimization

Method

3.2. Geometry optimization 15

AMS Manual, Amsterdam Modeling Suite 2019

Type Multiple Choice

Default value Auto

Options [Auto, Quasi-Newton, SCMGO, FIRE, ConjugateGradients]

Description Select the optimization algorithm employed for the geometry relaxation. Currently
supported are: the Hessian-based Quasi-Newton-type BFGS algorithm, the experimental
SCMGO optimizer, the fast inertial relaxation method (FIRE), and the conjugate gradients
method. The default is to choose an appropriate method automatically based on the engine’s
speed, the system size and the supported optimization options.

CoordinateType

Type Multiple Choice

Default value Auto

Options [Auto, Delocalized, Cartesian]

Description Select the type of coordinates in which to perform the optimization. If ‘Auto’, delo-
calized coordinates will be used for molecular systems, while Cartesian coordinates will be
used for periodic systems. Optimization in delocalized coordinates [Delocalized] can only
be used for geometry optimizations or transition state searches of molecular systems with the
Quasi-Newton method. The experimental SCMGO optimizer supports [Delocalized] coordi-
nates for both molecular and periodic systems.

We strongly advise leaving both the Method as well as the Coordinate type on the Auto setting. There are many
restrictions as to which optimizer and coordinate type can be used together with which kind of optimization. The
following (roughly) sketches the compatibilty of the different optimizers and options:

Optimizer Constraints Lattice opt. Coordinate types

Quasi-Newton Yes Yes All (molecules)
Cartesian (periodic)

FIRE Fixed atoms and coordinates Yes Cartesian
SCMGO No Yes Delocalized
Conjugate gradients No No Cartesian

Furthermore for optimal performance the optimizer should be chosen with the speed of the engine in mind: Faster
engine should use an optimizer with little overhead (FIRE), while slower engines should use optimizers that strictly
minimize the number of steps (Quasi-Newton, SCMGO). This is all handled automatically by default, and we recom-
mend changing Method and Coordinate only in case there are problems with the automatic choice.

The following subsections list the strengths and weaknesses of the individual optimizers in some more detail, motivat-
ing why which optimizer is chosen automatically under which circumstances.

Quasi-Newton

This optimizer implements a quasi Newton approach [1-3 (page 163)], using the Hessian for computing changes in
the geometry so as to reach a local minimum. The Hessian itself is typically approximated (page 17) in the beginning
and updated in the process of optimization. For molecules it uses delocalized coordinates by default, based mainly on
the work by Marcel Swart [4 (page 163)]. For periodic systems the optimization is performed in cartesian coordinates
instead.

The Quasi-Newton optimizer supports all types of constraints and can be used for both molecular and periodic sys-
tems, including lattice optimizations. For molecular systems, where the optimization can be performed in delocalized
coordinates, the number of steps taken to reach the local minimum is quite small. For large systems (on the order
of hundreds of atoms) and fast compute engines (page 99), the overhead of the Quasi-Newton optimizer is likely
the bottleneck of the calculation, and more light-weight optimizers like FIRE (page 18) will give an overall better
performance. We do not recommend using the Quasi-Newton optimizer for systems >1000 atoms. Because of these

16 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

properties the Quasi-Newton optimizer is the default in AMS for all kinds of optimizations of small and medium sized
systems. It is also used as the optimizer backend for the PES scan task (page 24), the transition state search (page 23)
as well as the calculation of the elastic tensor (page 93).

Details of the Quasi-Newton optimizer are configured in a dedicated block:

GeometryOptimization
Quasi-Newton

MaxGDIISVectors integer
Step

TrustRadius float
End

End
End

GeometryOptimization

Quasi-Newton

Type Block

Description Configures details of the Quasi-Newton geometry optimizer.

MaxGDIISVectors

Type Integer

Default value 0

Description Sets the maximum number of GDIIS vectors. Setting this to a number >0 en-
ables the GDIIS method.

Step

Type Block

Description

TrustRadius

Type Float

Description Initial value of the trust radius.

The Quasi-Newton optimizer uses the Hessian to compute the next step of the geometry optimization. The Hessian
is typically approximated in the beginning and then updated during the optimization. A very good initial Hessian can
therefore increase the performance of the optimizer and lead to faster and more stable convergence. The choice of the
initial Hessian can be configured in a dedicated block:

GeometryOptimization
InitialHessian

File string
Type [Auto | UnitMatrix | Swart | FromFile | Calculate]

End
End

GeometryOptimization

InitialHessian

Type Block

Description Options for initial model Hessian when optimizing systems with either the Quasi-
Newton or the SCMGO method.

3.2. Geometry optimization 17

AMS Manual, Amsterdam Modeling Suite 2019

File

Type String

Description KF file containing the initial Hessian. This can be used to load a Hessian cal-
culated in a previously with the [Properties%Hessian] keyword.

Type

Type Multiple Choice

Default value Auto

Options [Auto, UnitMatrix, Swart, FromFile, Calculate]

Description Select the type of initial Hessian. Auto: let the program pick an initial model
Hessian. UnitMatrix: simplest initial model Hessian, just a unit matrix in the optimization
coordinates. Swart: model Hessian from M. Swart. FromFile: load the Hessian from
the results of a previous calculation (see InitialHessian%File). Calculate: compute the
initial Hessian (this may be computationally expensive and it is mostly recommended for
TransitionStateSearch calculations).

While there are some options for the construction of approximate model Hessians, the best initial Hessians are often
those calculated explicitly at a lower level of theory, e.g. the real DFTB Hessian can be used the initial Hessian for an
optimization with the more accurate BAND engine, see this example (page 117).

FIRE

The Fast Inertial Relaxation Engine [5 (page 163)] based optimizer has basically no overhead per step, so that the
speed of the optimization purely depends on the performance of the used compute engine (page 99). As such it is a
good option for large systems or fast compute engines, where the overhead of the Quasi-Newton optimizer would be
significant. Note that is also supports fixed atom constraints (page 14) and coordinate constraints (page 14) (as long
as the value of the constrained coordinate is already satisfied in the input geometry), as well as lattice optimizations.

FIRE is the default optimizer for systems >1000 atoms. For smaller systems and fast compute engines it is selected if
it is compatible with all other settings of the optimization (i.e. no unsupported constraints or coordinate types).

Note: FIRE is a very robust optimizer. In case of convergence problems with the other methods, it is a good idea to
see if the optimization converges with FIRE. If it does not, it is very likely that the problem is not the optimizer but
the shape of the potential energy surface ...

The details of the FIRE optimizer are configured in a dedicated block. It is quite easy to make the optimization
numerically unstable when tweaking these settings, so we strongly recommend leaving everything at the default values.

GeometryOptimization
FIRE

MapAtomsToUnitCell [True | False]
NMin integer
RejectEnergyIncrease [True | False]
alphaStart float
dtMax float
dtStart float
fAlpha float
fDec float
fInc float
strainMass float

End
End

18 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

GeometryOptimization

FIRE

Type Block

Description This block configures the details of the FIRE optimizer. The keywords name corre-
spond the the symbols used in the article describing the method, see PRL 97, 170201 (2006).

MapAtomsToUnitCell

Type Bool

Default value False

Description Map the atoms to the central cell at each geometry step.

NMin

Type Integer

Default value 5

Description Number of steps after stopping before increasing the time step again.

RejectEnergyIncrease

Type Bool

Default value False

Description Makes the optimizer reject steps that increase the energy. This can speed up
convergence, but often causes the optimizer to get stuck on small discontinuities on the
potential energy surface. It is therefore disabled by default.

alphaStart

Type Float

Default value 0.1

Description Steering coefficient.

dtMax

Type Float

Default value 1.0

Unit Femtoseconds

Description Maximum time step used for the integration.

dtStart

Type Float

Default value 0.25

Unit Femtoseconds

Description Initial time step for the integration.

fAlpha

Type Float

Default value 0.99

Description Reduction factor for the steering coefficient.

3.2. Geometry optimization 19

AMS Manual, Amsterdam Modeling Suite 2019

fDec

Type Float

Default value 0.5

Description Reduction factor for reducing the time step in case of uphill movement.

fInc

Type Float

Default value 1.1

Description Growth factor for the integration time step.

strainMass

Type Float

Default value 0.5

Description Fictitious relative mass of the lattice degrees of freedom. This controls the
stiffness of the lattice degrees of freedom relative to the atomic degrees of freedom, with
smaller values resulting in a more aggressive optimization of the lattice.

Note that neither the energy change per step, nor the step size are reliable convergence criteria for the FIRE optimizer.
Only the gradient convergence criterium (set with the Converge%Gradients key) is used by FIRE to determine
when the optimization has converged.

SCMGO

The SCMGO optimizer is a new implementation of a Quasi-Newton style optimizer working in delocalized coordi-
nates. In the 2019 release of the Amsterdam Modeling Suite it is still considered experimental and therefore never
selected automatically. However, for molecules and fully connected periodic systems it already shows a quite good
performance, and could be a reasonable alternative to the classic Quasi-Newton (page 16) optimizer, which can not
use the more efficient delocalized coordinates for periodic systems.

GeometryOptimization
SCMGO

ContractPrimitives [True | False]
NumericalBMatrix [True | False]
Step

TrustRadius float
VariableTrustRadius [True | False]

End
logSCMGO [True | False]
testSCMGO [True | False]

End
End

GeometryOptimization

SCMGO

Type Block

Description Configures details SCMGO.

ContractPrimitives

Type Bool

20 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Default value True

Description Form non-redundant linear combinations of primitive coordinates sharing the
same central atom

NumericalBMatrix

Type Bool

Default value False

Description Calculation of the B-matrix, i.e. Jacobian of internal coordinates in terms of
numerical differentiations

Step

Type Block

Description

TrustRadius

Type Float

Default value 0.2

Description Initial value of the trust radius.

VariableTrustRadius

Type Bool

Default value True

Description Whether or not the trust radius can be updated during the optimization.

logSCMGO

Type Bool

Default value False

Description Verbose output of SCMGO internal data

testSCMGO

Type Bool

Default value False

Description Run SCMGO in test mode.

Note that SCMGO also supports different initial Hessians, and uses the same options for the initial Hessian as the
Quasi-Newton optimizer, see above (page 17).

Conjugate gradients

AMS also offers a conjugate gradients based geometry optimizer, as it was also implemented in the pre-2018 releases
of the DFTB program. However, it is usually slower than FIRE (page 18), and supports neither lattice nor constrained
optimizations. It is therefore never selected automatically, and we do not recommend using it.

GeometryOptimization
ConjugateGradients

Step
MinRadius float
TrustRadius float

3.2. Geometry optimization 21

AMS Manual, Amsterdam Modeling Suite 2019

End
End

End

GeometryOptimization

ConjugateGradients

Type Block

Description Configures details of the conjugate gradients geometry optimizer.

Step

Type Block

Description

MinRadius

Type Float

Default value 0.0

Description Minimum value for the trust radius.

TrustRadius

Type Float

Default value 0.2

Description Initial value of the trust radius.

3.2.3 Troubleshooting

Failure to converge

First of all one should look how the energy changed during the latest ten or so iterations. If the energy is decreasing
more or less consistently, possibly with occasional jumps, then there is probably nothing wrong with the optimization.
This behavior is typical in the cases when the starting geometry was far away from the minimum and the optimization
has a long way to go. Just increase the allowed number of iterations, restart from the latest geometry and see if the
optimization converges.

If the energy oscillates around some value and the energy gradient hardly changes then you may need to look at the
calculation setup.

The success of geometry optimization depends on the accuracy of the calculated forces. The default accuracy settings
are sufficient in most cases. There are, however, cases when one has to increase the accuracy in order to get geometry
optimization converged. First of all, this may be necessary if you tighten the optimization convergence criteria. In
some cases it may be necessary to increase the accuracy also for the default criteria. Please refer to the engine manuals
(page 99) for instructions on how to increase the accuracy of an engine’s energies and gradients. Often this is done
with the NumericalQuality keyword in the engine input.

A geometry optimization can also fail to converge because the underlying potential energy surface is problematic, e.g.
it might be discontinuous or not have a minimum at which the gradients vanish. This often indicates real problems
in the calculation setup, e.g. an electronic structure that changes fundamentally between subsequent steps in the
optimization. In these cases it is advisable to run a single point calculation at the problematic geometries and carefully
check if the results are physically actually sensible.

22 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Finally it can also be a technical problem with the specific optimization method (page 15) used. In these cases switch-
ing to another method could help with convergence problems. We recommend first trying the FIRE (page 18) opti-
mizer, as it is internally relatively simple and stable.

Restarting a geometry optimization

During a running optimization the system’s geometry is written out to the AMS driver’s output file ams.rkf after
every step (in the Molecule section). This means that crashed or otherwise canceled geometry optimizations can be
restarted by simply loading the last frame from there using the LoadSystem keyword, see its documentation (page 9)
in the system definition section of this manual:

LoadSystem File=my_crashed_GO.results/ams.rkf

This can of course also be used to continue an optimization but e.g. with tighter convergence criteria or a different
optimizer, as it essentially starts a new geometry optimization from the previous geometry, and does not propagate
any information internal to the optimizer (e.g. the approximate Hessian for the Quasi-Newton optimizer or the FIRE
velocities) to the new job. As such it might take a few more steps to convergence than if the original job had continued,
but allows for additional flexibility.

3.3 Transition state search

A transition state (TS) search is very much like a geometry optimization (page 11): the purpose is to find a stationary
point on the potential energy surface, primarily by monitoring the energy gradients, which should vanish. The dif-
ference between a transition state and a minimum is that at the transition state the Hessian has a negative eigenvalue:
We are at a saddle point, not a minimum, with the “negative” mode connecting the two basins on the potential energy
surface.

See also:

Examples (page 117) and the PES scan and transition state search tutorial

A transition state search in AMS is performed by selecting the corresponding task:

Task TransitionStateSearch

Due to the similarities between energy minimization and transition state search, the TransitionStateSearch
task in AMS is actually implemented as a special kind of geometry optimization using the quasi-Newton (page 16)
optimizer. As such all the settings and keywords described on the geometry optimization manual page (page 11) also
apply to transition state searches.

In a geometry optimization with a quasi-Newton based optimizer the Hessian is used to make a reasonably sized step
in the “downhill” direction on the potential energy surface, as the goal is simply to minimize the energy. A transition
state search is a bit different: In the first step a normal mode is picked along which the energy is to be maximized,
while it is minimized along all other directions. Normally the mode with the lowest eigenvalue is picked, since we
know that there should be exactly one negative eigenvalue at the TS geometry. If the initial geometry is sufficiently
close to the transition state, i.e. we are close to the saddle, the lowest mode is normally the correct one to follow in
order to get to the ridge of the saddle. Alternatively a different mode can also be selected manually.

TransitionStateSearch
ModeToFollow integer

End

TransitionStateSearch

Type Block

3.3. Transition state search 23

AMS Manual, Amsterdam Modeling Suite 2019

Description Configures some details of the transition state search.

ModeToFollow

Type Integer

Default value 1

Description In case of Transition State Search, here you can specify the index of the normal
mode to follow (1 is the mode with the lowest frequency).

This selection happens only in the first step. Subsequent steps will attempt to maximize along the mode that resembles
most (by overlap) the previous maximization direction.

Practice shows that transition states are much harder to find than a minimum. For a large part this is due to the much
stronger anharmonicities that usually occur near the TS, which threaten to invalidate the quasi-Newton methods to
find the stationary point. For this reason it is good advice to be more cautious in the optimization strategy when
approaching a transition state:

• We recommend starting the transition state search with an intial geometry that is already close to the transition
state. One can use a potential energy surface scan (page 24) along something resembling the reaction coordinate
to get a rough idea where the transition state is. This geometry can then be used as an initial geometry for the
transitions state search.

• It is strongly recommended to manually supply a good initial Hessian for the transition state search. Otherwise
the first step of the search might not be taken in the correct direction and subsequent steps will attempt to keep
steering in the wrong direction. In AMS this is easily possible by loading a Hessian from a previous calculation,
see the initial Hessian section (page 17) of this manual. A good way to obtain a reasonable Hessian is to
compute it explicitly with one of the fast engines (i.e. at a lower lever of theory) and read that Hessian as the
initial Hessian for the transition state search at a higher level of theory. This approach is demonstrated in the
Examples (page 117) and the PES scan and transition state search tutorial.

3.4 PES scan

The PES scan task in AMS allows users to scan the potential energy surface of a system along one or multiple degrees
of freedom, while relaxing all other degrees of freedom. If only one coordinate is scanned, this kind of calculation is
usually just called a linear transit. However, since AMS allows scanning of multiple coordinates, and linear transit is
just a special case of such a calculation, the task is always called a PES scan in AMS.

See also:

Examples (page 117) and the PES scan and transition state search tutorial

The PES scan task is enabled by selecting it with the Task keyword:

Task PESScan

The PESScan block configures all details of the scan:

PESScan
CalcPropertiesAtPESPoints [True | False]
FillUnconvergedGaps [True | False]
ScanCoordinate

nPoints integer
Coordinate integer [x|y|z] (float){2}
Distance (integer){2} (float){2}
Angle (integer){3} (float){2}
Dihedral (integer){4} (float){2}

24 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

End
End

The PESScan block needs to contain at least one ScanCoordinate block specifying which coordinate to scan,
and how many points (keyword nPoints) to sample along this coordinate. By default, 10 points are sampled along
each scanned coordinate (including the start and end point of the scan). The coordinate descriptors are very similar
to the constraint descriptors (page 14) in the Constraints block used by the geometry optimization task, but are
followed by two values delimiting the start and end of the coordinates, instead of just a single value:

Coordinate atomIdx [x|y|z] startValue endValue Moves the atom with index atomIdx (follow-
ing the order in the System block) along the a cartesian coordinate (x, y or z), starting at startValue and
ending at endValue (given in Angstrom).

Distance atomIdx1 atomIdx2 startDist endDist Scans the distance between the atoms with index
atomIdx1 and atomIdx2, starting from startDist and ending at endDist, both given in Angstrom.

Angle atomIdx1 atomIdx2 atomIdx3 startAngle endAngle Scans the angle (1)–(2)–(3) between
the atoms with indices atomIdx1-3, as given by their order in the System%Atoms block. The scanned
angle starts at startAngle and ends at endAngle, given in degrees.

Dihedral atomIdx1 atomIdx2 atomIdx3 atomIdx4 startAngle endAngle Scans the dihedral
angle (1)–(2)–(3)–(4) between the atoms with indices atomIdx1-4, as given by their order in the
System%Atoms block. The scanned dihedral starts at startAngle and ends at endAngle, given in de-
grees.

Note that multiple of these coordinate descriptors can be combined within a single ScanCoordinate block. This
combines the individual coordinates into one compound coordinate, i.e. all coordinates will transit together through
their respective ranges. In this way the symmetric stretch in water could be scanned by specifying the following single
ScanCoordinate block (assuming that the oxygen atom is the first in the System%Atoms block):

ScanCoordinate
Distance 1 2 0.8 1.1
Distance 1 3 0.8 1.1

End

A multidimensional PES scan can be performed by specifying multiple ScanCoordinate blocks in the input. To
scan the space spanned by the bending and symmetric stretch modes in water, one would use the following scan
coordinates:

ScanCoordinate
Distance 1 2 0.8 1.1
Distance 1 3 0.8 1.1

End
ScanCoordinate

Angle 2 1 3 90 130
End

In principle an arbitrary number of ScanCoordinate blocks can be combined to specify the scanned configuration
space. However, the total number of sample points is the product of the number of points along all coordinates, and
hence grows quickly with the number of dimensions. Furthermore, only 1D (linear transit) and 2D PES scans can
be visualized in the GUI. We therefore suggest sticking with <=2 dimensional PES scans. (Note that it is possible to
constrain additional degrees of freedom through the Constraints block. This could be used to sample a few points
along a third dimension “manually”, while still being able to see the surfaces in the GUI.)

By default the engine result files for the individual PES points are not saved on disk, as this
can easily lead to huge amounts of data to be stored. This behaviour can be changed with the
PESScan%CalcPropertiesAtPESPoints keyword:

3.4. PES scan 25

AMS Manual, Amsterdam Modeling Suite 2019

PESScan

CalcPropertiesAtPESPoints

Type Bool

Default value False

Description Whether to perform an additional calculation with properties on all the sampled
points of the PES. If this option is enabled AMS will produce a separate engine output file
for every sampled PES point.

Note that this performs a full single point calculation on every sampled PES point, including the calculation of any
PES point properties (page 87) selected in Properties block.

3.4.1 Troubleshooting

Technically all PES scan calculations are conducted as a series of geometry optimizations with constraints for the
scanned coordinates, where the value of the constraint varies slowly through the scanned range. In this way every
sampled point on the potential energy surface corresponds to a particular set of constraints. As with any geometry
optimization, it can happen that an optimization towards a particular point on the potential energy surface does not
converge. This is the most common problem encountered during PES scan calculations.

Since PES scans are implemented as a series of geometry optimizations, they are influenced by the settings used for
the geometry optimizer, e.g. its convergence thresholds and the maximum number of steps before an optimization
is considered to have failed. The optimizer is configured in the GeometryOptimization block, see the page on
geometry optimization (page 11) in the AMS manual. Note that PES scans always use the Quasi-Newton (page 16)
optimizer.

While tweaking the geometry optimizer’s settings can sometimes help with convergence problems, these problems can
also be easily caused by errors in the user input.

A very common problem is that the geometry in the input, i.e. the System block, is incompatible with the starting
values of the scanned coordinates. This would for example be the case if one wants to scan a dihedral angle from 0
to 90 degrees, but the actual angle on the input geometry is close to 90 degrees. In this case it would be better to flip
the scanned range from 90 to 0 degrees, so that the input geometry already close to the first sampled point on the PES.
Otherwise the optimization for the first point has to cross a very long distance on the PES, making convergence much
harder. AMS automatically detects this and prints a warning. We generally advise preparing the input geometry for
a PES scan by first running a geometry optimization with constraints set to lower bound of the scanned coordinate
intervals.

For multidimensional PES scans the order in which the PES points are visited depends on the order in which the
scanned coordinates are specified, i.e. the order of the ScanCoordinate blocks in the input. Generally, the order
in which the PES points are visited is such that the coordinate which was specified in the first ScanCoordinate
block varies slowest. This is illustrated in the following figure:

26 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Here the scan starts at point 1(1,1) at the bottom left corner of the PES and first moves along the entire range of the
2nd scan coordinate, before taking a step along the 1st coordinate to point 6(2,1). The same PES points could be
visited in a different order (and under different names) if the order of the two ScanCoordinate blocks is reversed
in the AMS input:

Depending on the shape of the scanned potential energy surface a particular order of visiting the PES points might be
easier or harder for the optimizer, and convergence problems can sometimes be fixed by simply changing the order
of the scanned coordinates. In the example above, it might be that scanning along the “vertical” direction is “harder”
than scanning along the “horizontal” direction. In this case one should use the scan order from the first picture, which
has only three “vertical” steps (whereas the other scan order has 15).

3.4. PES scan 27

AMS Manual, Amsterdam Modeling Suite 2019

Note that AMS has a little safe-guard built in to help with PES scan convergence issues: If the optimization towards
a particular PES point did not succeed in the initial attempt, AMS will later try again, but starting from a different
(converged) point close to unconverged one. This “PES gap filling” happens at the very end of the calculation, af-
ter the initial scan has been completed. This gap filling step is enabled by default, but can be controlled with the
PESScan%FillUnconvergedGaps keyword:

PESScan

FillUnconvergedGaps

Type Bool

Default value True

Description After the initial pass over the PES, restart the unconverged points from converged
neighboring points.

3.5 Intrinsic Reaction Coordinate (IRC) Scan

The path of a chemical reaction can be traced from the transition state (TS) to the products and/or reactants using
the Intrinsic Reaction Coordinate (IRC) method [15 (page 163), 16 (page 164)]. The method assumes that the
starting geometry is a fair approximation of the TS. A minimum energy profile (MEP) is defined as the steepest-
descent path on the potential energy surface from the transition state down towards a local minimum. An IRC path
is defined similarly but in the mass-weighted coordinates [17 (page 164)], which means that instead of the steepest
descent direction it follows that of the maximum instantaneous acceleration. This makes IRC somewhat related to the
Molecular Dynamics method. The energy profile is obtained as well as the length and curvature properties of the path,
providing the basic quantities for an analysis of the reaction path.

See also:

28 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Examples (page 117) and the PES scan, TS and IRC tutorial

3.5.1 Method details

Calculation of an IRC path consists of two nested loops, the so-called outer and inner loops. The outer loop runs over
IRC points and the inner loop is over geometry optimization steps for the given IRC point. The first IRC point starts
from the transition state geometry, which is a saddle point, in one of the two possible downhill directions. Each IRC
point after that starts from the optimized geometry of the previous point. At the start of every step, the pivot point
is determined, which is a point at the Step/2 distance in the direction opposite to the gradient. When working in the
mass-weighted coordinates, this direction corresponds to the acceleration of the corresponding atom. The final point
of the given IRC step corresponds to the energy minimum point at the same distance (Step/2) from the pivot point
further downhill. More precisely, the coordinates of the target point are optimized during the inner loop to minimize
projection of the gradient on the hypersphere of radius Step/2 around the pivot point. The angle between the (pivot-
start) and (pivot-final) vectors determines the curvature of the reaction path. If this angle becomes smaller than 90
degrees then the IRC scan is considered to have reached vicinity of an endpoint and the program switches to energy
minimization (options for this energy minimization can be specified in the Geometry Optimization (page 12) block.).
If the angle is between 90 and 120 degrees then the current IRC step is canceled and a new one is started from the
same starting point with half the initial Step parameter. In all other cases the optimized geometry becomes a starting
point for the next IRC step. By default, when the forward path is completed the backward one is started from the same
TS geometry. When both forward and backward paths are complete, a summary of the whole reaction path is printed
to the output.

3.5.2 Input

The IRC scan in AMS is triggered by setting the Task to IRC:

Task IRC

All IRC-related options are specified in the IRC input block:

IRC
Convergence

Gradients float
Step float

End
CoordinateType [Cartesian | Delocalized]
Direction [Both | Forward | Backward]
InitialHessian

File string
Type [Calculate | FromFile]

End
KeepConvergedResults [True | False]
MaxIRCSteps integer
MaxIterations integer
MaxPoints integer
MinEnergyProfile [True | False]
MinPathLength float
Restart

File string
RedoBackward integer
RedoForward integer

End
Step float

End

3.5. Intrinsic Reaction Coordinate (IRC) Scan 29

AMS Manual, Amsterdam Modeling Suite 2019

All keys of the IRC block have reasonable defaults or are optional. Thus, in principle, the IRC block can be omitted
altogether. These are some of the main options:

IRC

Direction

Type Multiple Choice

Default value Both

Options [Both, Forward, Backward]

Description Select direction of the IRC path. The difference between the Forward and the Back-
ward directions is determined by the sign of the largest component of the vibrational normal
mode corresponding to the reaction coordinate at the transition state geometry. The For-
ward path correspond to the positive sign of the component. If Both is selected then first the
Forward path is computed followed by the Backward one.

Step

Type Float

Default value 0.2

Description IRC step size in mass-weighted coordinates, sqrt(amu)*bohr. One may have to
increase this value when heavy atoms are involved in the reaction, or decrease it if the reactant
or products are very close to the transition state.

InitialHessian

Type Block

Description Options for initial Hessian at the transition state. The first eigenvalue of the initial
Hessian defines direction of the first forward or backward step. This block is ignored when
restarting from a previous IRC calculation because the initial Hessian found in the restart file
is used.

File

Type String

Description If ‘Type’ is set to ‘FromFile’ then in this key you should specifiy the RKF file
containing the initial Hessian. This can be used to load a Hessian calculated previously
with the ‘Properties%Hessian’ keyword. If you want to also use this file for the initial
geometry then also specify it in a ‘LoadSystem’ block.

Type

Type Multiple Choice

Default value Calculate

Options [Calculate, FromFile]

Description Calculate the exact Hessian for the input geometry or load it from the results of
a previous calculation.

The following keys set limits on the number of steps for the inner and outer IRC loops and, related to that, the geometry
optimization criteria. Note that tighter criteria may require a greater MaxIterations limit. Please also note that the outer
loop limits are valid for each half of the path (forward and backward) separately. That is, if all settings are left at their
defaults then up to 200 IRC points may be calculated, each of them may require up to 300 energy evaluations.

IRC

MaxIRCSteps

30 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Type Integer

Description Soft limit on the number of IRC points to compute in each direction. After the
specified number of IRC steps the program will switch to energy minimization and complete
the path. This option should be used when you are interested only in the reaction path area
near the transition state. Note that even if the soft limit has been hit and the calculation has
completed, the IRC can still be restarted with a ‘RedoBackward’ or ‘RedoForward’ option.

MaxPoints

Type Integer

Default value 100

Description Hard limit on the number of IRC points to compute in each direction. After the
specified number of IRC steps the program will stop with the current direction and switch
to the next one. If both ‘MaxPoints’ and ‘MaxIRCSteps’ are set to the same value then
‘MaxPoints’ takes precedence, therefore this option should be used to set a limit on the
number of IRC steps if you intend to use the results later for a restart.

MaxIterations

Type Integer

Default value 300

Description The maximum number of geometry iterations allowed to converge the inner IRC
loop. If optimization does not converge within the specified number of steps, the calculation
is aborted.

Convergence

Type Block

Description Convergence at each given point is monitored for two items: the Cartesian gradient
and the calculated step size. Convergence criteria can be specified separately for each of
these items. The same criteria are used both in the inner IRC loop and when performing
energy minimization at the path ends.

Gradients

Type Float

Default value 0.001

Unit Hartree/Angstrom

Description Convergence criterion for the max component of the residual energy gradient.

Step

Type Float

Default value 0.001

Unit Angstrom

Description Convergence criterion for the max component of the step in the optimization
coordinates.

MinPathLength

Type Float

Default value 0.1

Unit Angstrom

3.5. Intrinsic Reaction Coordinate (IRC) Scan 31

AMS Manual, Amsterdam Modeling Suite 2019

Description Minimum length of the path required before switching to energy minimization. Use
this to overcome a small kink or a shoulder on the path.

The following keys modify other aspects of the IRC scan:

IRC

CoordinateType

Type Multiple Choice

Default value Cartesian

Options [Cartesian, Delocalized]

Description Select the type of coordinates in which to perform the optimization. Note that the
Delocalized option should be considered experimental. Besides, it is not possible to use
delocalized coordinates for periodic systems.

MinEnergyProfile

Type Bool

Default value False

Description Calculate minimum energy profile (i.e. no mass-weighting) instead of the IRC.

KeepConvergedResults

Type Bool

Default value True

Description Keep the binary RKF result file for every converged IRC point. These files may
contain more information than the main ams.rkf result file.

It is possible to restart an IRC calculation that crashed, has been killed or exceeded the MaxPoints limit, or to re-
compute the path starting from a certain point, using the Restart key:

IRC

Restart

Type Block

Description Restart options. Upon restart, the information about the IRC input parameters and
the initial system (atomic coordinates, lattice, charge, etc.) is read from the restart file. The
IRC input parameters can be modified from input. Except for ‘MaxPoints’ and ‘Direction’
all parameters not specified in the input will use their values from the restart file. The ‘Max-
Points’ and ‘Direction’ will be reset to their respective default values if not specified in the
input. By default, the IRC calculation will continue from the point where it left off. However,
the ‘RedoForward’ and/or ‘RedoBackward’ option can be used to enforce recalculation of a
part of the reaction path, for example, using a different ‘Step’ value.

File

Type String

Description Name of an RKF restart file generated by a previous IRC calculation. Do not
use this key to provide an RKF file generated by a TransitionStateSearch or a SinglePoint
calculation, use the ‘LoadSystem’ block instead.

RedoBackward

Type Integer

Default value 0

32 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Description IRC step number to start recalculating the backward path from. By default, if
the backward path has not been completed then start after the last completed step. If the
backward path has been completed and the ‘RedoBackward’ is omitted then no point on
the backward path will be recomputed.

RedoForward

Type Integer

Default value 0

Description IRC step number to start recalculating the forward path from. By default, if the
forward path has not been completed then start after the last completed step. If the forward
path has been completed and the ‘RedoForward’ is omitted then no point on the forward
path will be recomputed.

3.5.3 Output

A summary of reaction path is printed to the output file at the end of the IRC calculation.

The IRC reaction path can be visualized using the ADFMovie GUI module.

Results of an IRC calculation are also stored in the History section of the ‘ams.rkf’ file, just like in a normal geometry
optimization. In addition to the standard KF variables such as “Coords” and “Energy”, the following IRC-specific
variables are also created:

• IRCDirection - IRC direction to which this point belongs: 1 - forward, 2 - backward.

• IRCIteration - the IRC (a.k.a. the outer loop) iteration number.

• OptIteration - the geometry optimization (a.k.a. the inner loop) iteration number (0 means the results correspond
to the converged geometry at this IRC step).

• IRCGradMax - value of the max component of the IRC gradient that determines convergence of the inner loop.

• IRCGradRms - the RMS value of the IRC gradient that determines convergence of the inner loop. Both the
ircGradRms and the ircGradMax are given in the mass-weighted atomic units for IRC steps and in the atomic
units for the final minimization loop.

• ArcLength - length, in Angstrom, of the arc that connects the initial and the final point of this IRC step. The
corresponding pivot point is located near the the middle point of the arc.

• Angle - value of the angle (in degrees) between lines connecting the pivot point with the initial and final points.
A value of 180 degrees means the path is passing straight through the pivot point, while a smaller value means
the path makes a bend at this point.

• PathLength - sum of the ArcLength values from the transition state up to this point, in Angstrom.

• Converged - a Fortrtan logical value containing the convergence status of the given geometry.

The IRC section of the RKF file contains all the data needed for a successful restart procedure.

3.6 Molecular dynamics

Molecular dynamics (MD) can be used to simulate the evolution of a system in time.

See also:

Examples (page 117)

To perform a MD simulation, first select the corresponding Task:

3.6. Molecular dynamics 33

AMS Manual, Amsterdam Modeling Suite 2019

Task MolecularDynamics

All aspects of the simulation can then be configured using the MolecularDynamics block.

MolecularDynamics
AddMolecules

AtomTemperature float
Coords float_list
CoordsBox float_list
CoordsSigma float_list
Energy float
EnergySigma float
FractionalCoords float_list
FractionalCoordsBox float_list
FractionalCoordsSigma float_list
Frequency integer
MinDistance float
NumAttempts integer
Rotate [True | False]
StartStep integer
StopStep integer
System string
Temperature float
TemperatureSigma float
Velocity float
VelocityDirection float_list
VelocitySigma float

End
Barostat

BulkModulus float
ConstantVolume [True | False]
Duration integer_list
Equal [None | XYZ | XY | YZ | XZ]
Pressure float_list
Scale [XYZ | Shape | X | Y | Z | XY | YZ | XZ]
Tau float
Type [None | Berendsen | MTK]

End
BondOrderCutoff float
CVHD

Bias
DampingTemp float
Delta float
Height float

End
ColVarBB

at1 string
at2 string
cutoff float
p integer
rmax float
rmin float

End
Frequency integer
StartStep integer
StopStep integer
WaitSteps integer

End

34 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

CalcPressure [True | False]
Checkpoint

Frequency integer
End
HeatExchange

HeatingRate float
Method [Simple | HEX | eHEX]
Sink

Box
Amax float
Amin float
Bmax float
Bmin float
Cmax float
Cmin float

End
FirstAtom integer
LastAtom integer

End
Source

Box
Amax float
Amin float
Bmax float
Bmin float
Cmax float
Cmin float

End
FirstAtom integer
LastAtom integer

End
StartStep integer
StopStep integer

End
InitialVelocities

File string
Temperature float
Type [Zero | Random | FromFile | Input]
Values # Non-standard block. See details.

...
End

End
NSteps integer
PRD

BondChange
ChangeThreshold float
DissociationThreshold float
FormationThreshold float

End
CorrelatedSteps integer
DephasingSteps integer
MolCount
nReplicas integer

End
Plumed

Input # Non-standard block. See details.
...

End

3.6. Molecular dynamics 35

AMS Manual, Amsterdam Modeling Suite 2019

End
Preserve

AngularMomentum [True | False]
CenterOfMass [True | False]
Momentum [True | False]

End
Print

System [True | False]
Velocities [True | False]

End
RemoveMolecules

Formula string
Frequency integer
SafeBox

Amax float
Amin float
Bmax float
Bmin float
Cmax float
Cmin float

End
SinkBox

Amax float
Amin float
Bmax float
Bmin float
Cmax float
Cmin float

End
StartStep integer
StopStep integer

End
ReplicaExchange

SwapFrequency integer
TemperatureFactor float_list
nReplicas integer

End
Restart string
Thermostat

BerendsenApply [Local | Global]
ChainLength integer
Duration integer_list
FirstAtom integer
LastAtom integer
Tau float
Temperature float_list
Type [None | Berendsen | NHC]

End
TimeStep float
Trajectory

SamplingFreq integer
TProfileGridPoints integer

End
End

36 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

3.6.1 General

The time evolution of the system is simulated by numerically integrating the equations of motion. A velocity Verlet
integrator is used with a time step set by the TimeStep key. The MD driver will perform NSteps timesteps in total.

Because the overall computational cost depends on NSteps but not on TimeStep, it is desirable to set the timestep
as large as possible to maximize the sampled timescale with a given computational budget. However, numerical
integration errors grow rapidly as the timestep increases. These errors will cause a loss of energy conservation,
crashes, and other artifacts. It is thus important to set the TimeStep value carefully, as its optimal value strongly
depends on the studied system and simulated conditions.

As a rule of thumb, reasonable timesteps for systems not undergoing chemical reactions are 10-20 times lower than
the period of the fastest vibration mode. Systems containing hydrogen atoms at room temperature can thus be ac-
curately simulated using a 1 fs timestep. Longer timesteps can be safely used for systems containing only heavy
atoms (vibration periods scale with the square root of the atomic mass). Conversely, the timestep needs to be made
shorter for high-temperature simulations. The same also applies to simulations of chemical reactions, which are usu-
ally accompanied by significant transient local heating. The default timestep of 0.25 fs should work for most of these
cases.

MolecularDynamics

NSteps

Type Integer

Default value 1000

Description The number of steps to be taken in the MD simulation.

TimeStep

Type Float

Default value 0.25

Unit Femtoseconds

Description The time difference per step.

During a long simulation, numerical integration errors will cause some system-wide quantities to drift from their exact
values. For example, the system may develop a nonzero net linear velocity, causing an overall translation or flow. Non-
periodic (molecular) systems may also develop nonzero angular momentum (overall rotation) and a Brownian motion
of their center of mass through space. These problems are corrected by periodically removing any accumulated drift.
This feature can be controlled using the Preserve key.

MolecularDynamics

Preserve

Type Block

Description Periodically remove numerical drift accumulated during the simulation to preserve
different whole-system parameters.

AngularMomentum

Type Bool

Default value True

Description Remove overall angular momentum of the system. This option is ignored for
3D-periodic systems.

CenterOfMass

3.6. Molecular dynamics 37

AMS Manual, Amsterdam Modeling Suite 2019

Type Bool

Default value False

Description Translate the system to keep its center of mass at the coordinate origin. This
option is not very useful for 3D-periodic systems.

Momentum

Type Bool

Default value True

Description Remove overall (linear) momentum of the system.

3.6.2 (Re-)Starting a simulation

The state of a system at the beginning of a simulation is defined by the positions and momenta of all atoms. The
positions can be set in the input or loaded from a file as described under System definition (page 5). Initial velocities
are then supplied using the InitialVelocities block.

Probably the most common way to start up a simulation is to draw the initial velocities from a Maxwell-Boltzmann dis-
tribution by setting Type=Random and Temperature to a suitable value. Alternatively, velocities can be loaded
from an ams.rkf file produced by an earlier simulation using Type=FromFile and File. This is the recom-
mended way to start a production simulation from the results of a short preparation/equilibration run.

Velocities of all atoms in units of Å/fs can also be explicitly defined in the Values block after setting Type=Input.
This is mainly useful to repeat or extend simulations done by other programs. For example, velocities can be extracted
from the vels or moldyn.vel files used by the standalone ReaxFF program. A simple AWK script is supplied in
scripting/standalone/reaxff-ams/vels2ams.awk to help with the conversion.

MolecularDynamics

InitialVelocities

Type Block

Description Sets the frequency for printing to stdout and storing the molecular configuration on
the .rkf file.

File

Type String

Description AMS RKF file containing the initial velocities.

Temperature

Type Float

Unit Kelvin

Description Sets the temperature for the Maxwell-Boltzmann distribution when the type
of the initial velocities is set to random, in which case specifying this key is mandatory.
ADFinput will use the thermostat temperature as default.

Type

Type Multiple Choice

Default value Random

Options [Zero, Random, FromFile, Input]

38 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Description Specifies the initial velocities to assign to the atoms. Three methods to assign
velocities are available. Zero: All atom are at rest at the beginning of the calculation. Ran-
dom: Initial atom velocities follow a Maxwell-Boltzmann distribution for the temperature
given by the [MolecularDynamics%InitialVelocities%Temperature] keyword. FromFile:
Load the velocities from a previous ams result file. Input: Atom’s velocities are set to the
values specified in the [MolecularDynamics%InitialVelocities%Values] block, which can
be accessed via the Expert AMS panel in ADFinput.

Values

Type Non-standard block

Description This block specifies the velocity of each atom, in Angstrom/fs, when [Molecu-
larDynamics%InitialVelocities%Type] is set to Input. Each row must contain three floating
point values (corresponding to the x,y,z component of the velocity vector) and a number
of rows equal to the number of atoms must be present, given in the same order as the
[System%Atoms] block.

The MD module also supports exact restarts of interrupted simulations by pointing the Restart key to an ams.rkf
file. This will restore the entire state of the MD module from the last available checkpoint (if the previous simulation
was interrupted) or from the final state (if the previous simulation ended after NSteps). An earlier trajectory can thus
be seamlessly extended by increasing NSteps and using Restart.

Note: Restart should be combined with LoadSystem from the same ams.rkf to restore the atomic positions.

Warning: The Restart feature is only intended for exact restarts, so the rest of the MolecularDynamics
settings should be the same as in the original run. Only NSteps and engine settings (contents of the Engine
block) can always be changed safely across restarts.

Although some MD settings (such as the trajectory sampling options) can in practice be changed without problems,
changing others (such as thermostat or barostat settings) will cause the restart to fail or produce physically incorrect
results. It is thus strongly recommended to only use Restart for exact continuation and InitialVelocities
Type=FromFile together with LoadSystem otherwise.

MolecularDynamics

Restart

Type String

Description The path to the ams.rkf file from which to restart the simulation.

3.6.3 Thermostats and barostats

By default, the MD simulation samples the microcanonical (NVE) ensemble. Although this is useful to check energy
conservation and other basic physical properties, it does not directly map to common experimental conditions. The
canonical (NVT) ensemble can be sampled instead by applying a Thermostat, which serves as a simulated heat
bath around the system, keeping its average temperature at a set value.

AMS offers two thermostats with drastically different properties, mode of operation, and applicability, selected using
the Type key:

Berendsen The Berendsen friction thermostat drives the system to a particular target temperature by rescaling the
velocities of all atoms in each step. This ensures rapid (exponential) convergence of the temperature with a time
constant Tau. However, this thermostat produces an incorrect velocity distribution and should thus be avoided

3.6. Molecular dynamics 39

AMS Manual, Amsterdam Modeling Suite 2019

in all situations where correct energy fluctuations are important. Additionally, using a too short time constant
Tau tends to cause incorrect equipartition of energy between different degrees of freedom in the system, leading
to the “flying ice cube” phenomenon. The time constant Tau should thus be set as large as possible to limit
these artifacts while still providing sufficient temperature control. Common values of Tau for condensed-
phase systems lie between 100 fs (strong damping, rapid convergence) and 10 ps (weak coupling with minimal
artifacts).

This thermostat is mainly useful for systems far from equilibrium, for example during the initial preparation and
equilibration phase of a simulation. The NHC thermostat should be preferred where possible.

NHC This enables a chain of coupled Nosé-Hoover thermostats. This method introduces artificial degrees of freedom
representing the heat bath and ensures correct sampling of the canonical ensemble. The combined total energy
of the system and the heat bath is conserved and shown in the GUI as Conserved Energy. Checking this
quantity for drift and artifacts thus offers a valuable test of the correctness of the simulation. This thermostat
exhibits oscillatory relaxation with a period of Tau. It is thus not well suited for systems starting far from equi-
librium, because the oscillations may take long to settle. The time constant Tau should be at least comparable
to the period of some natural oscillation of the system to ensure efficient energy transfer. It is commonly on the
order of hundreds of femtoseconds, although higher values may be used if weak coupling is desired.

Multiple independent thermostats can be used to separately control different regions of the system at the same time.
This is done by specifying the Thermostat block multiple times and setting the FirstAtom and/or LastAtom
keys to the desired range of atoms. Care needs to be taken to avoid defining thermostats with overlapping atom ranges.

MolecularDynamics

Thermostat

Type Block

Recurring True

Description This block allows to specify the use of a thermostat during the simulation. Depend-
ing on the selected thermostat type, different additional options may be needed to character-
ize the specific thermostat’ behavior.

BerendsenApply

Type Multiple Choice

Default value Global

Options [Local, Global]

Description Select how to apply the scaling correction for the Berendsen thermostat: - per-
atom-velocity (Local) - on the molecular system as a whole (Global).

ChainLength

Type Integer

Default value 10

Description Number of individual thermostats forming the NHC thermostat

Duration

Type Integer List

Description Specifies how many steps should a transition from a particular temperature to
the next one in sequence take.

FirstAtom

Type Integer

40 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Default value 1

Description Index of the first atom to be thermostatted

LastAtom

Type Integer

Default value 0

Description Index of the last atom to be thermostatted. A value of zero means the last atom
in the system.

Tau

Type Float

Unit Femtoseconds

Description The time constant of the thermostat.

Temperature

Type Float List

Unit Kelvin

Description The target temperature of the thermostat.

Type

Type Multiple Choice

Default value None

Options [None, Berendsen, NHC]

Description Selects the type of the thermostat.

Just like using a Thermostat to control the temperature of the system, a Barostat can be applied to keep the pres-
sure constant by adjusting the volume. This enables sampling the isenthalpic-isobaric (NpH) ensemble by using only
a barostat or the isothermal-isobaric (NpT) ensemble by combining a barostat and a thermostat. Unlike thermostats, a
barostat always applies to the entire system and there can thus be at most one barostat defined.

AMS offers two barostats with similar properties to the related thermostats:

Berendsen The Berendsen friction-like isobaric ensemble method rescales the system in each step to drive the pres-
sure towards a target value. Similarly to the Berendsen thermostat, the relaxation is exponential with a time
constant Tau. Similar considerations for the choice of Tau apply as in the case of the thermostat, but the
value of Tau for the barostat is usually at least several times higher than the corresponding Tau used for the
thermostat. This barostat does not have any conserved quantity.

MTK This enables the Martyna-Tobias-Klein extended Lagrangian barostat, which generates a true isobaric ensemble
by integrating the cell parameters as additional degrees of freedom. This barostat is derived from the Andersen-
Hoover isotropic barostat and the Parrinello-Rahman-Hoover anisotropic barostat. Like the NHC thermostat,
it exhibits oscillatory relaxation unsuitable for systems far from equilibrium. This barostat must always be
combined with a NHC thermostat. One instance of such thermostat coupled to the atoms as usual, while a
second instance is created internally and coupled to the cell degrees of freedom.

MolecularDynamics

Barostat

Type Block

Description This block allows to specify the use of a barostat during the simulation.

3.6. Molecular dynamics 41

AMS Manual, Amsterdam Modeling Suite 2019

BulkModulus

Type Float

Default value 2200000000.0

Unit Pascal

Description An estimate of the bulk modulus (inverse compressibility) of the system for
the Berendsen barostat. This is only used to make Tau correspond to the true observed
relaxation time constant. Values are commonly on the order of 10-100 GPa (1e10 to 1e11)
for solids and 1 GPa (1e9) for liquids (2.2e9 for water). Use 1e9 to match the behavior of
standalone ReaxFF.

ConstantVolume

Type Bool

Default value False

Description Keep the volume constant while allowing the box shape to change. This is
currently supported only by the MTK barostat.

Duration

Type Integer List

Description Specifies how many steps should a transition from a particular pressure to the
next one in sequence take.

Equal

Type Multiple Choice

Default value None

Options [None, XYZ, XY, YZ, XZ]

Description Enforce equal scaling of the selected set of dimensions. They will be barostatted
as one dimension according to the average pressure over the components.

Pressure

Type Float List

Unit Pascal

Description Specifies the target pressure.

Scale

Type Multiple Choice

Default value XYZ

Options [XYZ, Shape, X, Y, Z, XY, YZ, XZ]

Description Dimensions that should be scaled by the barostat to maintain pressure. Selecting
Shape means that all three dimensions and also all the cell angles are allowed to change.

Tau

Type Float

Unit Femtoseconds

Description Specifies the time constant of the barostat.

Type

42 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Type Multiple Choice

Default value None

Options [None, Berendsen, MTK]

Description Selects the type of the barostat.

Temperature and pressure regimes

Arbitrary temperature and pressure regimes can be generated by setting Temperature or Pressure to a list of
values, corresponding to the successive set points. This needs to be accompanied by a Duration key specifying the
length of each regime segment in steps:

Thermostat
Temperature 0 300 300 500 500 300
Duration 100 200 100 200 100

End

Note that there is always N-1 Duration values for N Temperature values. The target temperature of the thermo-
stat in this example will evolve as follows:

1. Increase linearly from 0 to 300 K over 100 steps.

2. Stay constant at 300 K for 200 steps.

3. Increase linearly from 300 to 500 K over 100 steps.

4. Stay constant at 500 K for 200 steps.

5. Decrease linearly from 500 to 300 K over 100 steps.

6. Stay constant at 300 K for the rest of the simulation.

3.6.4 Trajectory sampling and output

A basic principle of the numerical integration of motion in MD is that the changes in the state of the system between
successive time steps are small. This means that storing the results of every step is not useful, because all the data is
strongly correlated. Instead, a snapshot of the system is taken every N steps, where N is set low enough to still capture
the fastest motion of interest but high enough to avoid wasting space due to correlations. The resulting sequence of
snapshots is then commonly called the trajectory.

AMS writes the trajectory to the History and MDHistory sections of ams.rkf, according to the settings in the
Trajectory block. A snapshot of the system and various MD variables is stored every SamplingFreq timesteps.

The trajectory itself contains only the data needed for subsequent analysis of the dynamics of the system. However,
much more data is usually generated on every integration step. This includes, for example, the internal data used by
an engine when evaluating the energies and forces. This information is normally discarded after each step, because it
is often very large. However, a Checkpoint containing the complete internal state of the MD driver together with a
result file generated by the engine is stored every Frequency steps. An interrupted simulation can then be restarted
from this checkpoint using the Restart keyword. Additionally, the engine result files called MDStep*.rkf can
also be used to extract various engine-specific details about the system, such as the orbitals for QM engines.

MolecularDynamics

Trajectory

Type Block

3.6. Molecular dynamics 43

AMS Manual, Amsterdam Modeling Suite 2019

Description Sets the frequency for printing to stdout and storing the molecular configuration on
the .rkf file.

SamplingFreq

Type Integer

Default value 100

Description Write the the molecular geometry (and possibly other properties) to the .rkf file
once every N steps.

TProfileGridPoints

Type Integer

Default value 0

Description Number of points in the temperature profile. If TProfileGridPoints is greater
than 0 then a temperature profile will be generates along each of the three unit cell axes.
By default, no profile is generated.

Checkpoint

Type Block

Description Sets the frequency for storing the entire MD state necessary for restarting the cal-
culation.

Frequency

Type Integer

Default value 1000

Description Write the MD state and engine-specific data to the respective .rkf files once
every N steps.

CalcPressure

Type Bool

Default value False

Description Calculate the pressure in periodic systems. This may be computationally expensive
for some engines that require numerical differentiation. Some other engines can calculate the
pressure for negligible additional cost and will always do so, even if this option is disabled.

Print

Type Block

Description This block controls the printing of additional information to stdout.

System

Type Bool

Default value False

Description Print the chemical system before and after the simulation.

Velocities

Type Bool

Default value False

Description Print the atomic velocities before and after the simulation.

44 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

3.6.5 Molecule Gun: adding molecules during simulation

The molecule gun allows you to “shoot” (add with velocity) a molecule into the simulation box. Molecules can be
continuously added to the simulation or only once. The initial position can be pre-set or be random within the simu-
lation box or a part thereof. It can be defined either in the Cartesian or fractional coordinates. The initial velocity can
be specified either directly (in Angstrom per femtosecond) or as translational temperature or kinetic energy. Possible
applications of the molecule gun include e.g. the simulation of enforced collisions or deposition processes on surfaces.

MolecularDynamics

AddMolecules

Type Block

Recurring True

Description This block controls adding molecules to the system (a.k.a. the Molecule Gun).
Multiple occurrences of this block are possible. By default, molecules are added at random
positions in the simulation box with velocity matching the current system temperature. The
initial position can be modified using one of the following keywords: Coords, CoordsBox,
FractionalCoords, FractionalCoordsBox. The Coords and FractionalCoords keys can option-
ally be accompanied by CoordsSigma or FractionalCoordsSigma, respectively.

AtomTemperature

Type Float

Default value 0.0

Unit Kelvin

Description Add random velocity corresponding to the specified temperature to individual
atoms of the molecule. The total momentum of the added molecule is not conserved.

Coords

Type Float List

Unit Angstrom

Description Place molecules at or around the specified Cartesian coordinates. This setting
takes precedence over other ways to specify initial coordinates of the molecule: [Coords-
Box], [FractionalCoords], and [FractionalCoordsBox].

CoordsBox

Type Float List

Unit Angstrom

Description Place molecules at random locations inside the specified box in Cartesian co-
ordinates. Coordinates of the box corners are specified as: Xmin, Xmax, Ymin, Ymax,
Zmin, Zmax. This setting is ignored if Coords is used. In ADFinput, if this field is not
empty it will be used instead of the default Coords.

CoordsSigma

Type Float List

Unit Angstrom

Description Sigma values (one per Cartesian axis) for a Gauss distribution of the initial
coordinates. Can only be used together with Coords.

Energy

3.6. Molecular dynamics 45

AMS Manual, Amsterdam Modeling Suite 2019

Type Float

Unit Hartree

Description Initial kinetic energy of the molecule in the shooting direction.

EnergySigma

Type Float

Default value 0.0

Unit Hartree

Description Sigma value for the Gauss distribution of the initial kinetic energy around the
specified value. Should only be used together with Energy.

FractionalCoords

Type Float List

Description Place molecules at or around the specified fractional coordinates in the main
system’s lattice. For non-periodic dimensions a Cartesian value in Angstrom is expected.
This setting is ignored if [Coords] or [CoordsBox] is used.

FractionalCoordsBox

Type Float List

Description Place molecules at random locations inside the box specified as fractional coor-
dinates in the main system’s lattice. Coordinates of the box corners are specified as: Xmin,
Xmax, Ymin, Ymax, Zmin, Zmax. For non-periodic dimensions the Cartesian value in
Angstrom is expected. This setting is ignored if [Coords], [CoordsBox], or [FractionalCo-
ords] is used.

FractionalCoordsSigma

Type Float List

Description Sigma values (one per axis) for a Gauss distribution of the initial coordinates.
For non-periodic dimensions the Cartesian value in Angstrom is expected. Can only be
used together with FractionalCoords.

Frequency

Type Integer

Default value 0

Description A molecule is added every [Frequency] steps after the StartStep. There is never
a molecule added at step 0.

MinDistance

Type Float

Default value 0.0

Unit Angstrom

Description Keep the minimal distance to other atoms of the system when adding the
molecule.

NumAttempts

Type Integer

Default value 10

46 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Description Try adding the molecule up to the specified number of times or until the
MinDistance constraint is satisfied. If all attempts fail a message will be printed and the
simulation will continue normally.

Rotate

Type Bool

Default value False

Description Rotate the molecule randomly before adding it to the system.

StartStep

Type Integer

Default value 0

Description Step number when the first molecule should be added. After that, molecules
are added every Frequency steps. For example, ff StartStep=99 and Frequency=100 then a
molecule will be added at steps 99, 199, 299, etc... No molecule will be added at step 0, so
if StartStep=0 the first molecule is added at the step number equal to [Frequency].

StopStep

Type Integer

Description Do not add this molecule after the specified step.

System

Type String

Description String ID of the [System] that will be added with this ‘gun’. The lattice spec-
ified with this System is ignored and the main system’s lattice is used instead. ADFinput
adds the system at the coordinates of the System (thus setting Coords to the center of the
System).

Temperature

Type Float

Unit Kelvin

Description Initial energy of the molecule in the shooting direction will correspond to the
given temperature.

TemperatureSigma

Type Float

Default value 0.0

Unit Kelvin

Description Sigma value for the Gauss distribution of the initial temperature the specified
value. Should only be used together with TemperatureSigma.

Velocity

Type Float

Unit Angstrom/fs

Description Initial velocity of the molecule in the shooting direction.

VelocityDirection

3.6. Molecular dynamics 47

AMS Manual, Amsterdam Modeling Suite 2019

Type Float List

Description Velocity direction vector for aimed shooting. It will be random if not specified.
In ADFinput add one or two atoms (which may be dummies). One atom: use vector from
center of the system to add to that atom. Two atoms: use vector from the first to the second
atom.

VelocitySigma

Type Float

Default value 0.0

Unit Angstrom/fs

Description Sigma value for the Gauss distribution of the initial velocity around the specified
value. Should only be used together with Velocity.

3.6.6 Removing molecules during simulation

This feature can be used, for example, to remove reaction products from the system.

MolecularDynamics

RemoveMolecules

Type Block

Recurring True

Description This block controls removal of molecules from the system. Multiple occurrences
of this block are possible.

Formula

Type String

Description Molecular formula of the molecules that should be removed from the system.
The order of elements in the formula is very important and the correct order is: C, H, all
other elements in the strictly alphabetic order. Element names are case-sensitive, spaces in
the formula are not allowed. Digit ‘1’ must be omitted. Valid formula examples: C2H6O,
H2O, O2S. Invalid formula examples: C2H5OH, H2O1, OH, SO2. Invalid formulas are
silently ignored.

Frequency

Type Integer

Default value 0

Description The specified molecules are removed every so many steps after the StartStep.
There is never a molecule removed at step 0.

SafeBox

Type Block

Description Part of the simulation box where molecules may not be removed. Only one of
the SinkBox or SafeBox blocks may be present. If this block is present a molecule will
not be removed if any of its atoms is within the box. For a periodic dimension it is given
as a fraction of the simulation box (the full 0 to 1 range by default). For a non-periodic
dimension it represents absolute Cartesian coordinates in atomic units.

Amax

48 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Type Float

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Description Coordinate of the lower bound along the third axis.

SinkBox

Type Block

Description Part of the simulation box where molecules will be removed. By default,
molecules matching the formula will be removed regardless of their location. If this block
is present a molecule will be removed if any of its atoms is within the box. For a periodic
dimension it is given as a fraction of the simulation box (the full 0 to 1 range by default).
For a non-periodic dimension it represents absolute Cartesian coordinates in atomic units.

Amax

Type Float

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Description Coordinate of the lower bound along the second axis.

Cmax

3.6. Molecular dynamics 49

AMS Manual, Amsterdam Modeling Suite 2019

Type Float

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Description Coordinate of the lower bound along the third axis.

StartStep

Type Integer

Default value 0

Description Step number when molecules are removed for the first time. After that,
molecules are removed every [Frequency] steps. For example, if StartStep=99 and Fre-
quency=100 then molecules will be removed at steps 99, 199, 299, etc... No molecule will
be removed at step 0, so if StartStep=0 the first molecules are removed at the step number
equal to [Frequency].

StopStep

Type Integer

Description Do not remove the specified molecules after this step.

BondOrderCutoff

Type Float

Default value 0.5

Description Bond order cutoff for analysis of the molecular composition. Bonds with bond
order smaller than this value are neglected when determining the molecular composition.

3.6.7 The PLUMED library support in AMS

PLUMED (http://www.plumed.org/) is a plugin that works with various MD programs and is also available in AMS.
It can be used for on-the-fly analysis of the dynamics, or to perform a wide variety of free energy methods. The
interface with the plugin is really simple: you just need to specify the PLUMED input in the MolecularDynam-
ics%Plumed%Input block and it will be passed to the library “as is”. At each MD step, the current state of the system
will be passed to the plugin to be updated according to the PLUMED input.

MolecularDynamics

Plumed

Type Block

Description Input for PLUMED.

Input

Type Non-standard block

Description Input for PLUMED. Contents of this block is passed to PLUMED as is.

50 Chapter 3. Exploring the PES: Tasks

http://www.plumed.org/

AMS Manual, Amsterdam Modeling Suite 2019

3.6.8 Collective Variable-driven HyperDynamics (CVHD)

The Collective Variable-driven HyperDynamics is a molecular dynamics acceleration method that allows observation
of rare events by filling energy minima with a bias potential. In this sense it is similar to metadynamics. The difference
of the hyperdynamics is that it ensures that the bias disappears in the transition state region. This difference allows
hyperdynamics to calculate the rate of slow processes, for example the ignition phase of combustion.

The CVHD implementation in AMS follows the algorithm described in K.M. Bal, E.C. Neyts, JCTC, 11 (2015)
(https://doi.org/10.1021/acs.jctc.5b00597)

The StartStep, Frequency, StopStep, and WaitSteps keys define when and how often the bias potential is added, and
when it is removed. The Bias block defines parameters of the bias potential peaks and the ColVarBB block describes
parameters of the bond-breaking collective variable.

MolecularDynamics

CVHD

Type Block

Recurring True

Description Input for the Collective Variable-driven HyperDynamics (CVHD).

Bias

Type Block

Description The bias is built from a series of Gaussian peaks deposited on the collective
variable axis every [Frequency] steps during MD. Each peak is characterized by its (possi-
bly damped) height and the RMS width (standard deviation).

DampingTemp

Type Float

Default value 0.0

Unit Kelvin

Description During well-tempered hyperdynamics the height of the added bias is scaled
down with an exp(-E/kT) factor [PhysRevLett 100, 020603 (2008)], where E is the current
value of the bias at the given CV value and T is the damping temperature DampingTemp.
If DampingTemp is zero then no damping is applied.

Delta

Type Float

Description Standard deviation parameter of the Gaussian bias peak.

Height

Type Float

Unit Hartree

Description Height of the Gaussian bias peak.

ColVarBB

Type Block

Recurring True

Description Description of a bond-breaking collective variable (CV) as described in [Bal &
Neyts, JCTC, 11 (2015)]. A collective variable may consist of multiple ColVar blocks.

3.6. Molecular dynamics 51

https://doi.org/10.1021/acs.jctc.5b00597

AMS Manual, Amsterdam Modeling Suite 2019

at1

Type String

Description Atom type name of the first atom of the bond. The name must be as it appears
in the System block. That is, if the atom name contains an extension (e.g C.1) then the
full name including the extension must be used here.

at2

Type String

Description Atom type name of the second atom of the bond. The value is allowed to be
the same as [at1], in which case bonds between atoms of the same type will be included.

cutoff

Type Float

Default value 0.3

Description Bond order cutoff. Bonds with BO below this value are ignored when creating
the initial bond list for the CV. The bond list does not change during lifetime of the variable
even if some bond orders drop below the cutoff.

p

Type Integer

Default value 6

Description Exponent value p used to calculate the p-norm for this CV.

rmax

Type Float

Unit Angstrom

Description Max bond distance parameter Rmax used for calculating the CV. It should be
close to the transition-state distance for the corresponding bond.

rmin

Type Float

Unit Angstrom

Description Min bond distance parameter Rmin used for calculating the CV. It should be
close to equilibrium distance for the corresponding bond.

Frequency

Type Integer

Description Frequency of adding a new bias peak, in steps. New bias is deposited every
[Frequency] steps after [StartStep] if the following conditions are satisfied: the current CV
value is less than 0.9 (to avoid creating barriers at the transition state), the step number is
greater than or equal to [StartStep], and the step number is less than or equal to [StopStep].

StartStep

Type Integer

Description If this key is specified, the first bias will be deposited at this step. Otherwise,
the first bias peak is added at the step number equal to the Frequency parameter. The bias
is never deposited at step 0.

52 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

StopStep

Type Integer

Description No bias will be deposited after the specified step. The already deposited bias
will continue to be applied until the reaction event occurs. After that no new CVHD will
be started. By default, the CVHD runs for the whole duration of the MD calculation.

WaitSteps

Type Integer

Description If the CV value becomes equal to 1 and remains at this value for this many steps
then the reaction event is considered having taken place. After this, the collective variable
will be reset and the bias will be removed.

During a CVHD calculation, the following variables are saved to the MDHistory section of the RKF file, in addition
to other MD properties:

• BiasEnergy - value the bias energy at the current MD step, in Hartree.

• MaxBiasEnergy - max BiasEnergy since the last sampling step.

• BoostFactor - the boost factor at the given MD step. The boost factor is calculated at each MD step as 𝑏𝑜𝑜𝑠𝑡 =
𝑒𝐸𝑏𝑖𝑎𝑠/𝑘𝑇 , where T is the MD ensemble temperature.

• MaxBoostFactor - max BoostFactor value since the last sampling step.

• HyperTime - boosted MD time, in femtoseconds, which is a sum of the hyper-time steps calculated from the
current boost factor and the MD time step as ∆𝑡𝑏𝑜𝑜𝑠𝑡 = 𝑏𝑜𝑜𝑠𝑡 * ∆𝑡. In hyperdynamics, the hyper-time value is
directly related to the rate of the process boosted by the corresponding collective variable.

3.6.9 Non-equilibrium MD (NEMD): heat exchange

There are different methods to study thermal conductivity using non-equilibrium molecular dynamics (NEMD). A
common feature of these methods is that they require the system to be divided into three or more zones, each with its
own thermostat and other properties. One method maintains the temperature of the heat source and the heat sink zones
at the given temperature using two different thermostats and measures the amount of heat transferred. These method
does not require any special features besides a standard thermostat and a possibility to calculate the amount of heat
accumulated by the thermostat per unit of time. The accumulated thermostat energies are available in the MDHistory
section of ams.rkf file, in variables called ‘XXXXstat#Energy’, where XXXX is a 4-letter abbreviation of the thermo-
/barostat (‘BerT’ for a Berendset thermostat, ‘NHCT’ for an NHC thermostat, ‘NHTB’ for an MTK barostat, etc.) and
‘#’ is a 1-digit index of the thermo-/barostat.

In the other method, the heat flow is constant and the induced temperature gradient is measured. This method is
implemented in AMS in three variants: a simple heat exchange, HEX [18 (page 164)] and eHEX [19 (page 164)]. In
the simple heat exchange method the atom velocities are scaled up (or down) by a factor corresponding to the amount
of heat deposited to the heat source (or withdrawn from the heat sink) without paying attention to the conservation of
the total momentum of the heat source (or sink). In the HEX method the velocities are scaled in such a way that the
total momentum is conserved. This, however, introduces a small but measurable drift in the total energy. The eHEX
algorithm improves upon the HEX by adding a third-order time-integration correction to remove the drift.

This method is controlled by the HeatExchange sub-block of the MolecularDynamics block:

MolecularDynamics

HeatExchange

Type Block

Recurring True

3.6. Molecular dynamics 53

AMS Manual, Amsterdam Modeling Suite 2019

Description Input for the heat-exchange non-equilibrium MD (T-NEMD).

HeatingRate

Type Float

Unit Hartree/fs

Description Rate at which the energy is added to the Source and removed from the Sink. A
heating rate of 1 Hartree/fs equals to about 0.00436 Watt of power being transfered through
the system.

Method

Type Multiple Choice

Default value Simple

Options [Simple, HEX, eHEX]

Description Heat exchange method used. Simple: kinetic energy of the atoms of the source
and sink regions is modified irrespective of that of the center of mass (CoM) of the region
(recommended for solids). HEX: kinetic energy of the atoms of these regions is modified
keeping that of the corresponding CoM constant. eHEX: an enhanced version of HEX that
conserves the total energy better (recommended for gases and liquids).

Sink

Type Block

Description Defines the heat sink region (where the heat will be removed).

Box

Type Block

Description Part of the simulation box (in fractional cell coordinates) defining the heat sink.
If this block is specified, then by default, the whole box in each of the three dimensions is
used, which usually does not make much sense. Normally, you will want to set the bounds
along one of the axes. This block is mutually exclusive with the FirstAtom/LastAtom
setting.

Amax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the second axis.

Bmin

54 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Type Float

Default value 0.0

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the third axis.

FirstAtom

Type Integer

Description Index of the first atom of the region. This key is ignored if the [Box] block is
present.

LastAtom

Type Integer

Description Index of the last atom of the region. This key is ignored if the [Box] block is
present.

Source

Type Block

Description Defines the heat source region (where the heat will be added).

Box

Type Block

Description Part of the simulation box (in fractional cell coordinates) defining the heat
source. If this block is specified, then by default, the whole box in each of the three di-
mensions is used, which usually does not make much sense. Normally, you will want
to set the bounds along one of the axes. This block is mutually exclusive with the
FirstAtom/LastAtom setting.

Amax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the first axis.

Bmax

3.6. Molecular dynamics 55

AMS Manual, Amsterdam Modeling Suite 2019

Type Float

Default value 1.0

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the third axis.

FirstAtom

Type Integer

Description Index of the first atom of the region. This key is ignored if the [Box] block is
present.

LastAtom

Type Integer

Description Index of the last atom of the region. This key is ignored if the [Box] block is
present.

StartStep

Type Integer

Default value 0

Description Index of the MD step at which the heat exchange will start.

StopStep

Type Integer

Description Index of the MD step at which the heat exchange will stop.

One should be careful when choosing a value for the HeatingRate because a too large value may lead to pyrolysis
of the heat source or to an abnormal termination when all the kinetic energy of the heat sink has been drained. The
optimal value depends on the size of the system, its heat conductivity and the desired temperature gradient value. The
thermal conductivity k can be calculated by dividing the heat flow rate W by the temperature gradient grad(T) and by
the flow cross-section area S: 𝑘 = 𝑊/(𝑆 · 𝑔𝑟𝑎𝑑(𝑇)). See the trajectory sampling (page 43) section above on how to
obtain the temperature profile from which the grad(T) can be computed.

56 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

3.7 Vibrational analysis

This section documents AMS tasks focused on generating (approximations of) vibrational normal modes, or the calcu-
lation of properties of these vibrational modes. We discuss both conventional vibrational analysis and more selective
methods, as implemented in AMS.

3.7.1 Full analysis

With vibrational analysis, we focus on the calculation of molecular vibrational modes and their associated properties.
These molecular normal modes are typically calculated within the harmonic oscillation model.

If the molecule is in its equilibrium conformation, it sits in the lowest point (at least locally) on the PES. The cross-
section of the PES profile close to this point can then be assumed to be approximately parabolic, such that the second
derivative of the energy w.r.t a nuclear coordinate can be interpreted as a force constant for the harmonic oscillation
of an atom along this coordinate. Since molecular vibrations in polyatomics involve the simultaneous displacement of
multiple atoms, this harmonic oscillator model can be generalised to multiple nuclear coordinates. The normal modes
and their frequencies then become eigenvectors and eigenvalues of a force constant matrix, the Hessian:

𝐻𝑖𝑗 =
𝜕2𝐸

𝜕𝑅𝑖𝜕𝑅𝑗

This Hessian can be requested as a PES property (page 87) in AMS.

Properties
Hessian [True | False]

End

Properties

Hessian

Type Bool

Default value False

Description Whether or not to calculate the Hessian.

The (non-mass-weighted) Hessian is saved in the engine result file as variable AMSResults%Hessian. It is not
printed to the text output. The column/row indices are ordered as: x-component of atom 1, y-component of atom 1,
z-component of atom 1, x-component of atom 2, etc.

Most engines (page 99) cannot calculate the Hessian analytically. The Hessian is then constructed column-wise
through numerical differentiation of the energy gradients w.r.t. each nuclear coordinate. AMS will set up 2 single-point
calculations (1 for the positive displacement, 1 for the negative displacement), and the requested engine will return the
energy gradients at these displacements. These gradients are calculated analytically for most engines.

Note: Numerical calculation of the Hessian requires 6N single points calculation, which can take a considerable
amount of time for large systems.

You can also request AMS to calculate the normal modes (and their properties). AMS will obtain the normal modes
as the eigenvectors of the mass-weighted Hessian.

Properties
NormalModes [True | False]

End

3.7. Vibrational analysis 57

AMS Manual, Amsterdam Modeling Suite 2019

Properties

NormalModes

Type Bool

Default value False

Description Whether or not to calculate the normal modes of vibration (and of molecules the
corresponding Ir intensities.)

The frequencies of the normal modes are then obtained from the Hessian eigenvalues, which are the effective force
constants of the vibrational modes:

𝜈 =
1

2𝜋𝑐

√︃
𝜆

𝜇𝑟

Here 𝜈 is the vibrational frequency in 𝑐𝑚−1, 𝜆 is the Hessian eigenvalue and 𝜇𝑟 is the reduced mass associated with
the vibrational mode.

Note that the normal modes also include 3 translational and 3 rotational modes (2 for linear molecules). Together,
these are referred to as “rigid modes”. While they are not presented as part of the vibrational spectra, they are still
stored in the engine result file (page 4) in the Vibrations section.

When requesting the normal modes calculation, integrated IR intensities are simultaneously calculated during the finite
differentiation steps when constructing the Hessian (as long as dipole moments are supported by the engine). These
IR intensities are calculated from the numerical dipole gradients:

𝐼𝐼𝑅 =
𝑁𝜋

3𝑐2

∑︁
𝛼

(︁∑︁
𝑗

𝜕𝜇𝛼

𝜕𝑅𝑚
𝑗

𝑄𝑚
𝑗

)︁2

Where 𝛼 denotes the x-,y- and z-components of the dipole moment 𝜇, and 𝑄𝑚 is the mass-weighted vibrational normal
mode.

Note: To obtain accurate results using this method, the harmonic approximation must hold. Your calculations should
thus be done at the system’s equilibrium geometry. Since different engines, functionals, parameter sets etc. all yield
slightly different PESs, it is recommended to always precede the calculation of the normal modes and/or Hessian with
a geometry optimisation at the desired engine settings. One can either run this optimisation first and then get the
Hessian/modes from a PES point (page 11) calculation, or combine both steps into one job by using the geometry
optimization task (page 11) together with the Properties%NormalModes keyword.

3.7.2 Mode selective analysis

The vibrational analysis tools in AMS also provide three additional methods: Mode Scanning (page 58), Mode Re-
finement (page 58) and Mode Tracking (page 66). The latter two methods can be used for the calculation of select
modes or select regions of the vibrational spectrum, whereas Mode Scanning can be used to obtain more accurate
approximations of the vibrational mode properties. These methods are discussed in more detail on their respective
pages:

Mode Scanning

Mode Scanning can be used to obtain more accurate approximations for the properties of the vibrational normal modes.
Mode Scanning is an extension of the frequency scanning options (ScanFreq) that were part of ADF and BAND in
earlier versions of the Amsterdam Modeling Suite.

58 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Theory

Vibrational normal modes are usually obtained as eigenvectors of the Hessian matrix. A common problem with this
scheme however, is that due to numerical errors in constructing this Hessian, low-frequency vibrations may be reported
to have imaginary frequencies instead. The Mode Scanning task allows for re-calculation of the frequency of these
modes. This allows you to confirm whether reported imaginary frequencies are attributed to transition states or whether
they are simply due to numerical errors.

Given a user-supplied mode 𝑄, the frequency is calculated from the force constant:

𝑘 =
𝜕2𝐸

𝜕2𝑄

𝜈 =
1

2𝜋𝑐

√︃
𝑘

𝜇𝑟

This is again done by numerical differentiation of the energy gradients, requiring AMS to set up 2 single point calcu-
lations per selected normal mode. Integrated IR intensities are also calculated simultaneously (if dipole moments are
supported by the engine (page 99)):

𝐼𝐼𝑅 =
𝑁𝜋

3𝑐2

∑︁
𝛼

(︁ 𝜕𝜇𝛼

𝜕𝑄𝑚

)︁2

Where the derivative is with respect to the mass-weighted normal mode.

It is also possible to use this method to selectively re-calculate the normal mode properties for different engine settings.
This has two distinct uses:

• If the modes were originally generated using a finite difference method, a different stepsize can be used. For
strong vibrations (high frequencies), large stepsizes may cause inaccuracies due to increasing anharmonic con-
tributions. For weak vibrations (low frequencies) on the other hand, stepsizes can often be too small. The dis-
placements associated with these vibrations are small, which can give incorrect sampling of the PES profile. This
should be compensated for by choosing a larger stepsize. The stepsize can be set using the Displacement
key.

• Users can also recalculate modes using higher levels of theory. Modes generated from a full frequency analysis
using e.g. DFTB can be recalculated using e.g. LDA DFT to obtain more realistic integrated IR intensities. The
method used for the single point calculations can be set in the Engine block (page 99).

Calculation setup

A numerical frequency calculation is performed by requesting the ModeScanning task:

Task ModeScanning

ModeScanning

ModePath adf.rkf

select all modes with imaginary frequencies
ModeSelect

ImFreq true
End

Displacement 0.001

End

3.7. Vibrational analysis 59

AMS Manual, Amsterdam Modeling Suite 2019

The details of the calculation are specified in the ModeScanning block. Here, ModePath specifies the AMS output
file containing the normal modes for which you want to calculate the frequencies. The ModeSelect block is used to
specify which of the modes in this file should be recalculated, since we are often only interested in a select few of them.
A more detailed overview of this block is given in the section Selecting Modes on the main page (page 77). Finally,
Displacement can be used to specify the stepsize (in Bohr) for the finite differences. The stepsize is provided for
displacements along the Cartesian normal modes.

The Mode Scanning module is the main driving force for the Mode Tracking (page 66) and Vibrational Mode Refine-
ment (page 62) tasks, which provide more advanced options for refining not only the properties of the modes, but also
the modes themselves. Consult the relevant pages for more information.

Overview of input options

Below is the overview for all the keys in the ModeScanning block:

ModeScanning
Displacement float
ModePath string
ModeSelect

FreqAndIRRange float_list
FreqRange float_list
Full [True | False]
HighFreq integer
HighIR integer
IRRange float_list
ImFreq [True | False]
LowFreq integer
LowFreqNoIm integer
LowIR integer
ModeNumber integer_list

End
End

ModeScanning

Type Block

Description Input data for the ModeScanning task.

Displacement

Type Float

Default value 0.001

Description Step size for finite difference calculation of frequencies and IR intensities.

ModePath

Type String

Description Path to a .rkf file containing the modes which are to be scanned. Which modes will
be scanned is selected using the criteria from the [ModeSelect] block.)

ModeSelect

Type Block

Description Pick which modes to scan from those read from file.

FreqAndIRRange

60 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Type Float List

Unit cm-1 and km/mol

Recurring True

Description Specifies a combined frequency and IR intensity range within which all modes
will be scanned. (First 2 numbers are the frequency range, last 2 numbers are the IR
intensity range.)

FreqRange

Type Float List

Unit cm-1

Recurring True

Description Specifies a frequency range within which all modes will be scanned. (2 num-
bers: a upper and a lower bound.)

Full

Type Bool

Default value False

Description Scan all modes.

HighFreq

Type Integer

Description Scan the N modes with the highest frequencies.

HighIR

Type Integer

Description Scan the N modes with the largest IR intensities.

IRRange

Type Float List

Unit km/mol

Recurring True

Description Specifies an IR intensity range within which all modes will be scanned. (2
numbers: a upper and a lower bound.)

ImFreq

Type Bool

Default value False

Description Scan all modes with imaginary frequencies.

LowFreq

Type Integer

Description Scan the N modes with the lowest frequencies. (Includes imaginary modes
which are recorded with negative frequencies.)

LowFreqNoIm

Type Integer

3.7. Vibrational analysis 61

AMS Manual, Amsterdam Modeling Suite 2019

Description Scan the N modes with the lowest non-negative frequencies. (Imaginary modes
have negative frequencies and are thus omitted here.)

LowIR

Type Integer

Description Scan the N modes with the smallest IR intensities.

ModeNumber

Type Integer List

Description Indices of the modes to scan.

Mode Refinement

The vibrational Mode Refinement method not only refines frequencies, but also tries to correct the vibrational modes
themselves. If we start from e.g. a semi-empirical method such as in MOPAC, we can get approximations for the
vibrational modes. Mode Refinement then re-calculates part of the Hessian for a subset of these modes using a more
accurate method such as GGA DFT, and updates the normal modes themselves to fit this more accurate method. It is
intended to circumvent the expensive calculation of the Hessian if you are only interested in a (small) part of the full
spectrum. This is based on the method in [12 (page 163)].

See also:

The GUI tutorial on Mode Refinement.

Theory

We are going to start from a set of normal modes 𝑏, obtained from e.g. a semi-empirical or force-field method. First,
this task runs the numerical frequency (page 58) calculation for all selected normal modes, but this time using an ab
initio method such as DFT. During the finite difference steps, we also calculate the projection of the Hessian onto the
normal modes:

𝜎𝑖 = 𝐻𝑚 · 𝑏𝑚𝑖 =
𝜕2𝐸

𝜕𝑅𝑚
𝑖 𝜕𝑏𝑚

This term is calculated through finite differences on the analytical gradients of the electronic energy along the mass-
weighted normal modes 𝑏𝑚. The index 𝑖 denotes the 3𝑁 nuclear coordinates. These projections are then used to
construct a Rayleigh matrix:

�̃�𝑚 = 𝐵𝑚𝑇 ·𝐻𝑚 ·𝐵𝑚 = 𝐵𝑚𝑇 · Σ

Here, 𝐵𝑚 and Σ are matrices containing the 𝑏𝑚 and 𝜎 vectors. The eigenvectors of �̃�𝑚 give us the coefficient series
for linear combinations of the normal modes 𝑏𝑚 such that we obtain a new set of modes 𝑞:

𝑞𝑚 =
∑︁
𝑘

𝑐𝑘 · 𝑏𝑚𝑘

These modes 𝑞 are the closest approximation to the DFT-modes that we could obtain from a linear combination of the
approximate modes 𝑏. In other words: the approximate modes 𝑏 are used as a basis for finding the modes from a more
sophisticated theory.

62 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Calculation setup

This method inherently features a trade-off:

• The computational benefit comes from only performing the finite difference calculations for the selected modes.
By only selecting a small set of modes that we are interested in, we minimise computational expense.

• The more modes we select, the larger the basis for constructing the refined modes. Running for a larger number
of modes yields better results. (In the extreme case, running for all 3N modes equates to constructing the full
Hessian.)

In practice, Mode Refinement requires you to select a reasonable portion of the spectrum to get accurate results.
Specifically, you should select all modes in a region of the spectrum which look similar. Ring structures for instance
often feature broad frequency regions with many ring distortions. Even if you are only interested in a couple of
these, you should still select all modes in this region, to assure sufficient basis size. Vibrational modes involving ring
substituents can however be omitted, which is where we save computation time.

If you are interested only in IR-active vibrations, you could further minimise the basis by only selecting the ap-
proximate modes which are IR-active (since adding the non-active modes to the linear expansion does not affect the
IR-intensity of the refined modes). Do note that if the semi-empirical method used for calculating the approximate
modes yields poor approximations for the dipole gradients, it may be safer to include also modes with very low IR
intensity. This is because their low IR-activity may have only been due to the low accuracy of the approximate method.

See also:

A tutorial showing this basis representability.

A Mode Refinement calculation is set up by requesting the ModeRefinement task:

Task ModeRefinement

ModeRefinement

ModePath adf.rkf

ModeSelect
...

End

Displacement 0.001

ScanModes true

End

The details of the calculation are specified in the ModeRefinement block. Here, ModePath specifies the AMS
output file containing the normal modes for which you want to calculate the frequencies. The ModeSelect block is
used to specify which of the modes in this file will be selected for refinement. A more detailed overview of this block
is given in the section Selecting modes on the main page (page 77). Finally, Displacement can be used to specify
the stepsize (in Bohr) for the finite differences. The stepsize is provided for displacements along the Cartesian normal
modes.

The ScanModes key in the ModeRefinement block can be used to automatically run a numerical frequencies
(page 58) calculation on the new modes 𝑞. Mode Refinement uses a linear combination of modes and properties,
all obtained through finite differences. These results may still contain some minor errors due to the accumulation
of numerical errors from the linear expansion, or stepsize issues in the numerical frequency calculations. While
commonly not necessary, it is possible to run an additional numerical refinement calculation on the new modes to
minimise these errors. Only in exceptional cases will these errors be significant. Running this additional refinement
step is therefore only necessary if you need complete certainty that the results are accurate.

3.7. Vibrational analysis 63

AMS Manual, Amsterdam Modeling Suite 2019

Overview of input options

Below is the overview for all the keys in the ModeRefinement block:

ModeRefinement
Displacement float
ModePath string
ModeSelect

FreqAndIRRange float_list
FreqRange float_list
Full [True | False]
HighFreq integer
HighIR integer
IRRange float_list
ImFreq [True | False]
LowFreq integer
LowFreqNoIm integer
LowIR integer
ModeNumber integer_list

End
ScanModes [True | False]

End

ModeRefinement

Type Block

Description Input data for ModeRefinement tasks.

Displacement

Type Float

Default value 0.001

Description Step size for finite difference calculation of frequencies and IR intensities.

ModePath

Type String

Description Path to a .rkf file containing the modes which are to be scanned. Which modes will
be refined is selected using the criteria from the [ModeSelect] block.)

ModeSelect

Type Block

Description Pick which modes to refine from those read from file.

FreqAndIRRange

Type Float List

Unit cm-1 and km/mol

Recurring True

Description Specifies a combined frequency and IR intensity range within which all modes
will be refined. (First 2 numbers are the frequency range, last 2 numbers are the IR intensity
range.)

FreqRange

Type Float List

64 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Unit cm-1

Recurring True

Description Specifies a frequency range within which all modes will be refined. (2 numbers:
a upper and a lower bound.)

Full

Type Bool

Default value False

Description Refine all modes.

HighFreq

Type Integer

Description Refine the N modes with the highest frequencies.

HighIR

Type Integer

Description Refine the N modes with the largest IR intensities.

IRRange

Type Float List

Unit km/mol

Recurring True

Description Specifies an IR intensity range within which all modes will be refined. (2 num-
bers: a upper and a lower bound.)

ImFreq

Type Bool

Default value False

Description Refine all modes with imaginary frequencies.

LowFreq

Type Integer

Description Refine the N modes with the lowest frequencies. (Includes imaginary modes
which are recorded with negative frequencies.)

LowFreqNoIm

Type Integer

Description Refine the N modes with the lowest non-negative frequencies. (Imaginary
modes have negative frequencies and are thus omitted here.)

LowIR

Type Integer

Description Refine the N modes with the smallest IR intensities.

ModeNumber

Type Integer List

3.7. Vibrational analysis 65

AMS Manual, Amsterdam Modeling Suite 2019

Description Indices of the modes to refine.

ScanModes

Type Bool

Default value False

Description If enabled an additional displacement will be performed along the new modes at the
end of the calculation to obtain refined frequencies and IR intensities. Equivalent to running
the output file of the mode tracking calculation through the AMS ModeScanning task.

Mode Tracking

The Mode Tracking task is an interface for mode- and intensity-tracking methods, adapted from the MoViPac suite [6
(page 163)- 10 (page 163)]. These methods can be used to obtain select normal modes, without having to calculate the
entire vibrational spectrum. It does this through an iterative procedure.

Warning: The Mode Tracking implementation in AMS is new and still rather experimental. One should be
extra careful when running Mode Tracking calculation, and initially validate the results against the full vibrational
analysis.

Mode Tracking starts with a numerical frequency (page 58) calculation, which refines the initial guess 𝑏𝑚 for the
selected mode. The error of this mode with respect to the true Hessian eigenvector is calculated. This error is used
in a (Jacobi-)Davidson algorithm to generate an additional mode. In subsequent iterations, we use these modes as
approximations to the true normal modes. In this way, the error of the mode is minimised iteratively, yielding a closer
approximation to true normal modes. This is how Mode Tracking differs from the Mode Refinement methods, in that
it guarantees that the obtained modes are correct (assuming the procedure has converged).

See also:

The GUI tutorial on Mode Tracking.

Theory

During the numerical frequency calculation, we obtain also the projection of the Hessian onto this mode:

𝜎𝑖 = 𝐻𝑚 · 𝑏𝑚𝑖 =
𝜕2𝐸

𝜕𝑅𝑚
𝑖 𝜕𝑏𝑚

This term is calculated through finite differences on the analytical gradients of the electronic energy along the mass-
weighted normal modes 𝑞𝑚. The index 𝑖 denotes the 3𝑁 nuclear coordinates. From this projection a Rayleigh matrix
is generated:

�̃�𝑚 = 𝐵𝑚𝑇 · Σ

Here, 𝐵𝑚 and Σ are matrices containing the 𝑏𝑚 and 𝜎 vectors for all foregoing iterations. During each iteration 𝑘, if
we have not converged, we generate an updated guess vector 𝑏𝑚𝑘 , and so the number of vectors in the matrices above
is equal to the number of iterations 𝑘. The eigenvectors of �̃�𝑚 give us the coefficient series for linear combinations
of the guess modes 𝑏𝑚 such that we obtain approximations for the true normal modes:

𝑄𝑚 =
∑︁
𝑘

𝑐𝑘 · 𝑏𝑚𝑘

66 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Each iteration, we expand the vector basis 𝐵𝑚, which allows this series expansion to come closer to the true normal
modes each time. We can also calculate the error of this mode with respect to how close it is to being an eigenvalue of
the real Hessian:

𝑟 =
∑︁
𝑘

𝑐𝑘 ·
[︁
𝜎𝑘 − 𝜆 · 𝑏𝑘

]︁
Here, 𝜆 is the corresponding eigenvalue of �̃�𝑚. 𝑟 is the residual vector, giving the error for each vector element. It
should be zero if the mode is an exact eigenvector of the true Hessian.

Since �̃�𝑚 may give multiple eigenvectors, several approximate modes will be generated during those iterations. Out
of these, 1 mode is identified as the mode of interest according to the specified tracking method (page 69). If the
residual of this mode has been minimised sufficiently, the procedure has converged. If not, we generate a new guess
vector 𝑏𝑚𝑘 . There are 2 algorithms for generating this new guess, set by UpdateMethod:

Davidson method:

The Davidson method uses a pre-conditioner 𝐷 to generate a new guess mode from the residual vector of the mode
selected by the tracking method:

𝑏𝑚𝑘 = 𝐷−1 · 𝑟

This preconditioner is constructed from an approximation of the Hessian:

𝐷 = 𝐻𝐴 − 𝜆 · 𝐼

The Davidson method works reasonably well, but can have trouble converging if the approximate modes or the Hessian
are too accurate. This results as the new vectors that are generated do not necessarily extend the span of the basis. [11
(page 163)]

vdVorst-Sleijpen-Jacobi-Davidson:

This variant of the Jacobi-Davidson scheme from Sleijpen & vdVorst [11 (page 163)] automatically makes the new
guess vector orthogonal to the normal mode selected by the tracking method:

𝑏𝑚𝑘 =
(︁ 𝑄𝑚𝐷−1𝑟

𝑄𝑚𝐷−1𝑄𝑚

)︁
𝐷−1𝑄𝑚 −𝐷−1𝑟

The new vector is therefore guaranteed to extend the span of the basis as much as possible, and thus also eliminates the
aforementioned issue with the Davidson method. In general, it is therefore recommended to use this Jacobi-Davidson
method since it is found to converge faster, and be more reliable, as a result of yielding better guess modes.

There are 4 methods to obtain the approximate Hessian 𝐻𝐴, used by both update methods. They are set by
HessianGuess:

• UFF is the default, which generates the approximate Hessian using UFF. While this Hessian may not yield the
correct modes by itself, it produces good results as a preconditioner since it correctly represents the molecular
structure.

• File will read the Hessian from an AMS output file, which can be specified in HessianPath. Using a
Hessian from a more advanced method will generally yield better results for the Jacobi-Davidson method. The
Davidson method will however experience difficulties with convergence as the Hessian becomes too accurate.
[11 (page 163)]

• Inline will read a Hessian specified in the input file, in the HessianInline block. This allows you to use
Hessians generated in external programs:

3.7. Vibrational analysis 67

AMS Manual, Amsterdam Modeling Suite 2019

ModeTracking

HessianGuess Inline

Approximate Hessian for H2O: 3 x nAtoms = 9 so 9x9 Hessian

HessianInline
0.62088786 0.00000000 0.00000000 -0.31044393 0.00000000 -0.

→˓21902068 -0.31044393 0.00000000 0.21902068
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.

→˓00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.32143213 -0.15284008 0.00000000 -0.

→˓16071607 0.15284008 0.00000000 -0.16071607
-0.31044393 0.00000000 -0.15284008 0.33598889 0.00000000 0.

→˓18593038 -0.02554496 0.00000000 -0.03309030
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.

→˓00000000 0.00000000 0.00000000 0.00000000
-0.21902068 0.00000000 -0.16071607 0.18593038 0.00000000 0.

→˓15761846 0.03309030 0.00000000 0.00309761
-0.31044393 0.00000000 0.15284008 -0.02554496 0.00000000 0.

→˓03309030 0.33598889 0.00000000 -0.18593038
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.

→˓00000000 0.00000000 0.00000000 0.00000000
0.21902068 0.00000000 -0.16071607 -0.03309030 0.00000000 0.

→˓00309761 -0.18593038 0.00000000 0.15761846
End

End

• Unit uses the unit matrix. This is evidently not a good approximation for the Hessian, and is not intended to be
used for proper Mode Tracking runs. However: using a poor approximation for the Hessian can result in basis
vectors being generated that we would not obtain otherwise. Running Mode Tracking with this option can allow
you to “probe” the vector space to obtain guesses for normal modes, which can be used as starting points for
proper Mode Tracking calculations. It is however generally recommended to instead do e.g. a DFTB or UFF
run if your goal is to obtain guess modes.

In later iterations, the basis 𝐵𝑚 will become larger. In order to improve the guess modes even further, an iterative
Gram-Schmidt procedure is used to orthogonalise the new guess mode to the existing basis. An iterative procedure is
necessary to account for numerical noise.

• GramSchmidt sets whether to perform this Gram-Schmidt orthogonalisation step. It is on by default.

• GramSchmidtTolerance is the absolute tolerance for orthogonality of the basis. It is evaluated with respect
to the norm of the overlap vector between the new guess mode and the basis of the previous iteration ||𝑏𝑚𝑘

𝑇𝐵𝑚||.

• GramSchmidtIterations is the maximum number of allowed iterations during the Gram-Schmidt proce-
dure.

The default settings for the Gram-Schmidt procedure should work for almost all systems.

Additional input parameters:

• Displacement is the displacement stepsize (in Bohr) that is used for calculating frequencies, IR intensities
and the Hessian projections through finite differences. The stepsize is provided for displacements along the
Cartesian normal modes.

• MaxIterations is the maximum allowed number of iterations that the Mode Tracking calculation may go
through. If this number is reached, the calculation will stop even if convergence was not achieved. If no value

68 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

is supplied, a default of 3𝑁/2 will be used. This is approximately the maximum number of iterations where the
procedure remains computationally competitive with the construction of the full Hessian.

• The ModeScanning key can be used to automatically run a numerical frequencies (page 58) calculation on
the new modes 𝑄 after the Mode Tracking calculation has finished. Ritz vectors are obtained here as linear com-
binations of the guess modes, which in turn follow from finite difference calculations. This makes it possible for
numerical errors to accumulate in the normal modes. Only in exceptional cases will these errors be significant,
and running this additional refinement step is therefore only necessary if you need complete certainty that the
results are accurate.

Tracking methods

The TrackingMethod parameter allows you to select what property of the normal modes you want to track. At the
end of each iteration, we obtain a set of approximate normal modes. The tracking method identifies which of these
modes fits best for some criterium, and either returns this mode as the calculation result, or, if convergence was not
achieved, uses it to generating a new basis mode for the next iteration. In general these methods are distinguished in 2
categories:

Mode Tracking:

The original tracking methods focus on obtaining as accurate as possible a normal mode for the system. This class of
tracking methods focusses either on accuracy of the mode, or obtaining modes with particular vibrational character:

• OverlapInitial is the default tracking method. Here, we choose the mode which resembles most closely
the guess mode that was initially supplied 𝑏𝑚1 . This is done by choosing the mode which has the greatest overlap
with the initial guess vector. This method allows us to direct the optimisation towards modes that e.g. involve
particular atoms or include particular bending/stretching vibrations.

• OverlapPrevious instead chooses the mode which resembles closest the approximate mode of the previous
iteration 𝑄𝑚

𝑘 . This procedure allows a bit more flexibility in the optimisation. Since we essentially “forget”
about earlier iterations, this procedure allows the optimisation to correct errors in the initial guess. (It is pos-
sible for instance that the initial guess included 2 different bond stretches which do not mutually occur in the
true modes. This method will then converge quicker to a mode involving only 1 of these stretches, whereas
OverlapInitial will take a much larger number of iterations to achieve this, if it does so at all.) Do note
that this means that the final mode that you obtain does not necessarily represent the mode you initially supplied.

• DifferenceInitial works the same as OverlapInitial, except that it chooses the mode which has
the smallest norm for the difference vector between the initial mode and the approximate normal modes of
this iteration. The use of the difference vector prioritises deviations in the dominant parts of the vibrational
character. E.g. if a mode consists primarily of a CO stretch, plus some minor vibrations in a carbon backbone,
it may be desired to prioritise getting the correct force constant for the dominant CO stretch. This is achieved
using these difference vector methods. In general, overlap methods still work well in these situations, and the
use of difference methods should only be necessary in extreme cases.

• DifferencePrevious is also the same as DifferenceInitial except for the use of the difference
vector norm as the selection criterium.

• FreqInitial chooses the mode with the frequency closest to that of the initial guess. This allows us to direct
the tracking towards modes in a particular frequency region of the spectrum. Note that convergence for these
frequency-based methods is slightly slower since the character of the mode itself is not included in the selection
criteria, allowing for larger differences in the modes between iterations.

• FreqPrevious is similar to FreqInitial except that we choose the mode with the frequency closest to
that of the previous iteration. This allows the optimisation more freedom to move away from the frequency
region of the initial guess, and thus allows to correct somewhat for poor initial guesses.

3.7. Vibrational analysis 69

AMS Manual, Amsterdam Modeling Suite 2019

• HighestFreq chooses the mode with the highest frequency. This method can be used if it is desired to track
particular characteristic high-frequency vibrations.

• LowestResidual chooses the mode which has the smallest norm for the residual vector (see the ‘Conver-
gence’ section below.) This method only focusses on obtain the most accurate mode, regardless of vibrational
character or where it lies in the spectrum. This method should generally only be used as a pre-conditioner if you
have very little information on what the normal modes should look like. (Since it is basically a non-directed op-
timisation.) This method will then try and find the normal mode closest to your guess. The approximate normal
mode obtained this way will most likely not have converged yet, but should give you an indication of what the
normal modes may look like. You can use these modes to refine your initial guess, and then do a new Mode
Tracking run using any of the other tracking parameters to obtain the desired mode. Although this strategy is
possible, it is generally recommended to use an approximate method to get an initial guess for the normal modes
instead (as shown in the examples (page 117)).

Intensity Tracking:

This class of methods focusses on tracking modes based on their intensity in e.g. the infrared spectrum, rather than
focussing on getting a mode with a particular type of vibration.

• IRInitial chooses the mode with the IR intensity closest to that of the initial guess. This constrains the op-
timisation to modes which are IR active, a property that may be lost when using mode tracking update methods.

• IRPrevious similarly chooses the mode with the IR intensity closest to that of the previous iteration. This
allows the method some more flexibility in varying the intensity of the vibration, and thus works better if the
initial guess is not that good.

• HighestIR chooses the mode with the highest IR intensity. This option can be used to find the modes associ-
ated with sharp peaks in the IR spectrum.

With Intensity Tracking, we essentially add an additional requirement to the modes: they must have a particular IR
intensity. This constrained search has different convergence characteristics than conventional mode tracking, which
you should take into account when setting up the mode tracking calculations.

• The majority of modes will have near-zero IR intensity. If we use a near-zero IR intensity mode as our initial
guess, and request IRIntitial or IRPrevious, then we could be tracking any of one of these. Conversely,
convergence behaviour will be poor since the generated basis modes are essentially random. If you are trying to
obtain a high IR-intensity mode, use an IR-susceptible mode.

Note: In our conventional work-flow, we recommend starting mode tracking or refinement calculations from a set of
approximate normal modes obtained from a semi-empirical or force-field method. Note however, that these method
often do not produce accurate IR intensities. When selecting the initial guess mode, do not use the IRRange or
related options in the ModeSelect block. This will cause you to miss vibrations which were incorrectly labelled
with low IR intensity, or vice versa. Instead, rely on chemical intuition to identify the modes which contain commonly
IR active vibrational components (such as C-O or N-H stretches). You can use ADFSpectra in the GUI to visualise the
vibrational modes, to help you in this process.

• To allow the intensity tracking procedure to converge faster, it is recommended to use the IRPrevious tag
instead of the IRInitial tag. As discussed earlier, the former allows more flexibility in the optimisation
procedure, which counters the rigidity imposed by the intensity constraint. Intensity tracking methods often
need this additional flexibility in generating guess modes to converge to the desired modes.

• Poor Initial Guesses: During each iteration, we still use the mode tracking methods to generate new basis
modes. These basis modes try to expand the span of the basis with respect to the vibrational character of the
modes. Note that this expansion does not guarantee that we will expand the basis specifically in the sub-span of
IR-susceptible vibrations. If the initial guess for intensity tracking is correct, we already start our search in the

70 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

sub-span vicinity of the normal modes. Basis expansion is then more efficient and there is a high chance that
new guess modes sample the IR characteristic vibrations. For intensity tracking it is therefore discouraged to
use poor initial guess modes.

• HighestIR is considered a “pure” intensity tracking method, in that it is used specifically to target character-
istics of the IR spectrum irrespective of the underlying vibrational character. Consequently, the normal mode
character can vary a lot between iterations. In order to assure that the procedure converges to the desired modes,
it is recommended to use sufficiently strict tolerances (see the Convergence section). If the tolerances are too
lax, the program may consider the modes to be “good enough” based on residual minimisation, even though
there may be another mode with a higher IR intensity. For this reason it is generally recommended to use
ToleranceForNorm values 1 order of magnitude lower than the default, or around 0.00005.

Selecting modes

It is possible to track multiple modes in a single Mode Tracking calculation. The Mode Tracking task will then run
the Mode Tracking algorithm for each mode in order.

The initial guess for the mode which will be tracked can be supplied in several ways. This is governed by
TrackedMode:

• Inline will make the module read the mode from the input file. If this option is selected, you can supply the
mode in the ModeInline block. It is possible to supply multiple modes by adding additional ModeInline
blocks. The modes are given with one line for the x,y,z-displacement per atom, and in the same order, as the
Atoms block in System:

ModeTracking

TrackedMode Inline

ModeInline
0.00000000 0.00000000 -0.03815965
-0.18888544 0.00000000 0.30281066
0.18888544 0.00000000 0.30281066

End

ModeInline
0.00000000 0.00000000 -0.02243153
0.32132452 0.00000000 0.17800237
-0.32132452 0.00000000 0.17800237

End

...

End

• File will make the module read modes from an AMS or engine output file, specified by ModePath. Modes
generated using DFTB can be read from the dftb.rkf file and optimised using Mode Tracking for example.
When this option is selected, all the vibrational modes present in the file are read first. The ModeSelect block
then specifies for which of these modes you want to perform the Mode Tracking calculation.

• Hessian will generate modes as the eigenvectors of the approximate Hessian selected for the preconditioner
in HessianGuess. This also allows modes to be generated for Hessians obtained from external programs.
ModeSelect specifies which of the generated vibrational modes are selected for Mode Tracking.

• Settings for the ModeSelect block are discussed on the main page (page 77).

• MassWeighInlineMode decides whether the initial guess modes need to be mass-weighed. As discussed
above, Mode Tracking uses mass-weighted normal modes. In most cases, the normal modes are given in reg-

3.7. Vibrational analysis 71

AMS Manual, Amsterdam Modeling Suite 2019

ular Cartesian coordinates however. By setting MassWeighInlineMode true, these Cartesian modes
are converted into mass-weighted modes by the program. If you supply a mass-weighted mode through the
ModeInline block however, you do not need the program to do the mass-weighing, and you should set
MassWeighInlineMode false.

Convergence

In order to guide the Mode Tracking procedure, several convergence criteria are used:

• ToleranceForNorm is the absolute tolerance for convergence of the norm of the residual vector. The residual
vector is a vector containing the error for each element of the normal mode, and we use the norm as a measure
for the total error. If the total error is smaller than this threshold, we consider the mode to be a true normal
mode and we stop iterating. Since the value of this norm depends on the length of the residual vector hence the
number of atoms in the system, this tolerance is scaled internally to the number of atoms. 0.0005 is used as a
default value for which most systems will converge to reasonably accurate modes in not too many iterations. If
you want a more accurate approximation, you can decrease this value by e.g. 1 order of magnitude. (Consider
running using the default settings, and reading the norm at convergence from the logfile. The new norm can be
chosen to be lower than this value to ‘force’ the method into another iteration.)

• ToleranceForResidual is the absolute tolerance for the maximum component of the residual vector.
Particularly in larger systems, where the vibration may be dominated by a small number of atoms, the error
associated with the vibration of the majority of atoms may be small (the scaled residual norm will be small).
The error for the atoms involved in the vibration may be comparatively large then, which is why we also check
convergence for the maximum component of the error. Note that both the norm and this max. error are checked
simultaneously. By varying strictness of the criteria for the norm and the max. error separately, you can prioritise
either the total vibration or more localised character.

• ToleranceForBasis checks that the basis mode generated in the previous iteration, through the (Jacobi-
)Davidson method, contributes to the approximate normal mode. Since the approximate mode is taken as a
linear combination of the basis modes, its linear expansion coefficient must be larger than this tolerance.

Note that the iterative procedure is stopped as soon as any one of these convergence criteria is satisfied. The default
values for these parameters should be applicable for most cases, but can be adjusted if needed. If stricter criteria are
required, it is recommended to adjust both ToleranceForNorm and ToleranceForResidual.

Overview of input options

Below is the overview for all the keys in the ModeTracking block:

ModeTracking
Displacement float
HessianGuess [Unit | File | UFF | Inline]
HessianInline # Non-standard block. See details.

...
End
HessianPath string
MassWeighInlineMode [True | False]
MaxIterations integer
ModeInline # Non-standard block. See details.

...
End
ModePath string
ModeSelect

FreqAndIRRange float_list
FreqRange float_list

72 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Full [True | False]
HighFreq integer
HighIR integer
IRRange float_list
ImFreq [True | False]
LowFreq integer
LowFreqNoIm integer
LowIR integer
ModeNumber integer_list

End
ScanModes [True | False]
ToleranceForBasis float
ToleranceForNorm float
ToleranceForResidual float
TrackedMode [Inline | File | Hessian]
TrackingMethod [...]
UpdateMethod [JD | D]

End

ModeTracking

Type Block

Description Input data for ModeTracking task.

Displacement

Type Float

Default value 0.01

Description Step size (in Bohr) for finite difference calculation of frequencies and IR intensities
during mode tracking iterations.

HessianGuess

Type Multiple Choice

Default value UFF

Options [Unit, File, UFF, Inline]

Description Sets how to obtain the guess for the Hessian used in the preconditioner.

HessianInline

Type Non-standard block

Description Initial guess for the (non-mass-weighted) Hessian in a 3N x 3N block, used when
[HessianGuess] = [Inline].

HessianPath

Type String

Description Path to a .rkf file containing the initial guess for the Hessian, used when [Hes-
sianGuess] = [File].

MassWeighInlineMode

Type Bool

Default value True

3.7. Vibrational analysis 73

AMS Manual, Amsterdam Modeling Suite 2019

Description The supplied modes must be mass-weighed. This tells the program to mass-weigh
the supplied modes in case this has not yet been done. (True means the supplied modes will
be mass-weighed by the program, e.g. the supplied modes are non-mass-weighed.)

MaxIterations

Type Integer

Description Maximum number of allowed iterations.

ModeInline

Type Non-standard block

Recurring True

Description Coordinates of the mode which will be tracked in a N x 3 block (same as for atoms),
used when [TrackedMode] = [Inline]. Rows must be ordered in the same way as in the
[System%Atoms] block.

ModePath

Type String

Description Path to a .rkf file containing the modes which are to be tracked. Which modes will
be refined is selected using the criteria from the [ModeSelect] block.)

ModeSelect

Type Block

Description Pick which modes to track from modes generated from Hessian or read from file.

FreqAndIRRange

Type Float List

Unit cm-1 and km/mol

Recurring True

Description Specifies a combined frequency and IR intensity range within which all modes
will be tracked. (First 2 numbers are the frequency range, last 2 numbers are the IR inten-
sity range.)

FreqRange

Type Float List

Unit cm-1

Recurring True

Description Specifies a frequency range within which all modes will be tracked. (2 numbers:
a upper and a lower bound.)

Full

Type Bool

Default value False

Description Track all modes.

HighFreq

Type Integer

Description Track the N modes with the highest frequencies.

74 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

HighIR

Type Integer

Description Track the N modes with the largest IR intensities.

IRRange

Type Float List

Unit km/mol

Recurring True

Description Specifies an IR intensity range within which all modes will be tracked. (2 num-
bers: a upper and a lower bound.)

ImFreq

Type Bool

Default value False

Description Track all modes with imaginary frequencies.

LowFreq

Type Integer

Description Track the N modes with the lowest frequencies. (Includes imaginary modes
which are recorded with negative frequencies.)

LowFreqNoIm

Type Integer

Description Track the N modes with the lowest non-negative frequencies. (Imaginary modes
have negative frequencies and are thus omitted here.)

LowIR

Type Integer

Description Track the N modes with the smallest IR intensities.

ModeNumber

Type Integer List

Description Indices of the modes to track.

ScanModes

Type Bool

Default value False

Description If enabled an additional displacement will be performed along the new modes at the
end of the calculation to obtain refined frequencies and IR intensities. Equivalent to running
the output file of the mode tracking calculation through the AMS ModeScanning task.

ToleranceForBasis

Type Float

Default value 0.0001

Description Convergence tolerance for the contribution of the newest basis vector to the tracked
mode.

3.7. Vibrational analysis 75

AMS Manual, Amsterdam Modeling Suite 2019

ToleranceForNorm

Type Float

Default value 0.0005

Description Convergence tolerance for residual RMS value.

ToleranceForResidual

Type Float

Default value 0.0005

Description Convergence tolerance for the maximum component of the residual vector.

TrackedMode

Type Multiple Choice

Default value File

Options [Inline, File, Hessian]

Description Set how the initial guesses for the modes are supplied.

TrackingMethod

Type Multiple Choice

Default value OverlapInitial

Options [OverlapInitial, DifferenceInitial, FreqInitial, IRInitial, OverlapPrevious, Differen-
cePrevious, FreqPrevious, IRPrevious, HighestFreq, HighestIR, LowestFreq, LowestResid-
ual]

Description Set the tracking method that will be used.

UpdateMethod

Type Multiple Choice

Default value JD

Options [JD, D]

Description Chooses the method for expanding the Krylov subspace: (D) Davidson or (JD)
vdVorst-Sleijpen variant of Jacobi-Davidson.

Mode Scanning (page 58) is an extension of the frequency scanning options that were part of ADF and BAND in
earlier versions of the Amsterdam Modeling Suite. It is primarily used to identify spurious imaginary modes obtained
from the normal modes calculation discussed earlier. Alternatively, you can use it to improve the numerical accuracy
of the normal mode properties or to obtain approximations for these properties at higher levels of theory.

Both Mode Tracking (page 66) and Mode Refinement (page 62) can be used to obtain select vibrational modes without
construction of the (full) Hessian. In the work-flow for both of these methods, we start with e.g. a semi-empirical
method such as MOPAC to get an initial approximation of the normal modes, which are used to obtain accurate
approximations of the normal modes on e.g. DFT-level. While the methods appear similar, it is important to stress
their differences. Here, we give our recommendations on which methods you should use. (You can read up on the
details of these methods on the respective pages.)

Mode Tracking:

• Calculations are conducted for each mode separately. Converges fastest for characteristic (non-highly
degenerate) modes.

76 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

• Iterative approximation to the true modes. Guaranteed to give the correct normal modes if the procedure
converges.

• Will not necessarily reproduce the entire spectrum as multiple guess modes can converge to the same
normal mode.

Mode Refinement:

• Refinement of entire spectral regions, but requires a sufficient number of modes in the basis for sufficient
accuracy.

• 1-step refinement. No iterative improvement possible. (Unless followed by a separate Mode Tracking
calculation.)

• Quality of the results depends on accuracy of the selected guess modes.

Because the Mode Refinement method uses linear combinations of the guess modes, its accuracy depends on the set
of modes that is supplied.

• If we want to e.g. obtain a mode which includes a C=O stretch, then the initial set must contain a mode which
has this C=O stretch, otherwise this cannot be included in the refined modes.

• If we are refining a region containing many similar modes, e.g. vibrations of aromatic ring backbones, and we
only use part of this spectral region for the initial set, the set of refined modes will “drift” towards the centre of
the spectral region as a results of mode-mixing. This is again an artefact of missing character in the modes.

• This mode-mixing may result in reduced accuracy for some of the modes, as this procedure minimises the total
error for all of the modes. Instead of having a couple of modes with large errors, mode-mixing tends to spread
out the error across multiple normal modes. Adding 1 “bad” mode to the basis can then negatively affect your
results.

Mode Tracking on the other hand uses information about the known parts of the Hessian to expand its basis iteratively:

• Missing C-O stretch character can thus be recovered in this procedure, and there is no basis dependency.

• For large regions with similar modes however, it is possible that multiple guess modes converge to the same
normal mode. Running mode tracking for all modes in this region might not reproduce all unique normal
modes.

Which method to use thus primarily depends on the type and number of modes you are refining:

• The advantage of Mode Refinement is the ability to refine entire spectral regions at once. If we have a good
basis, Mode Refinement can be less computationally expensive than Mode Tracking. If you want to refine larger
sections of the spectrum, Mode Refinement is therefore recommended. If you only want to calculate a select
few modes, use Mode Tracking to avoid basis dependence and to assure accuracy of the obtained modes.

• For characteristic peaks, Mode Tracking shows very good convergence, and will thus be cheaper to use than
Mode Refinement. For (semi-)degenerate modes however, Mode Refinement works better due to the poor
tracking performance for these modes.

Selecting modes

Mode Scanning, Mode Refinement and Mode Tracking all require you to supply a set of modes as input. For Mode
Scanning these are the modes that you want to calculate the properties of, for Mode Refinement these modes form the
basis modes, and for Mode Tracking these are the initial guess modes.

These methods provide options to load a large set of modes, after which the program will filter out the modes of
interest. This is done according to the keys set in the ModeSelect block.

3.7. Vibrational analysis 77

AMS Manual, Amsterdam Modeling Suite 2019

Note: The ModeSelect block is part of the configuration blocks for each task. You can read how to set up these
task-specific blocks for each method on their individual pages. Note that the methods for obtaining the set of modes
that we will filter can differ per method. Particularly Mode Tracking features a lot of additional options.

Below is an overview of all the available options for the ModeSelect block. The options are not mutually exclusive,
e.g.:

ModeTracking

ModeSelect
HighFreq 1
HighIR 1

End

... other Mode Tracking options ...

End

This will select 2 modes: the one with the highest frequency and the one with the highest IR intensity. If these modes
happen to be the same one however (the mode with the highest frequency also has the highest IR intensity), only 1
mode is selected.

ModeSelect

• HighFreq followed by an integer N will select the N modes with the highest frequencies.

• LowFreq followed by an integer N will select the N modes with the lowest frequencies. Imaginary modes are
given with negative frequencies in AMS, and are included in this selection.

• LowFreqNoIm is the same as LowFreq except imaginary modes are omitted.

• ImFreq will select all imaginary modes.

• ModeNumber allows you to supply a list of integers. Each integer is the index of the mode in the order that
they appear in the file. E.g. benzene has 30 vibrational modes, which are numbered 1-30.

• FreqRange selects all modes whose frequency falls in a specific range. 2 values must be supplied to mark this
frequency range. Calculating all modes with e.g. frequencies higher than 3000cm-1 can be achieved by making
the upper bound very large: FreqRange 3000 1000000

• IRRange selects all modes whose IR intensity falls in a specific range. 2 values must be supplied to mark this
IR intensity range, the same way as for FreqRange.

• FreqAndIRRange combines FreqRange and IRRange. It selects modes in a frequency range whose IR
intensity falls into a specified range as well. 4 values must be supplied: the first 2 specify the frequency range,
the final 2 specify the IR intensity range.

• HighIR followed by an integer N will select the N modes with the highest IR intensities.

• LowIR followed by an integer N will select the N modes with the lowest IR intensities.

• Full requests a full frequency calculation. This will select all modes. This only make sense for Mode Scanning
calculations, as tracking or refining all modes is just an overcomplicated way of doing the full vibrational
analysis (page 57).

[ModeScanning | ModeRefinement | ModeTracking]

ModeSelect
select the 2 modes with the highest frequency
HighFreq 2

78 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

select the 2 modes with the lowest frequency (including imaginary modes)
LowFreq 2
select the 3 modes with the lowest energy
LowFreqNoIm 3
Select modes #1 #7 & #19
ModeNumber 1 7 19
Select modes with frequencies between 3000 - 3200 cm-1
FreqRange 3000 3200
Select modes with IR intensities between 5 - 10 km/mol
IRRange 5 10
Select modes with frequencies between 1000 - 1500 cm-1 that have
IR intensities between 10 - 30 km/mol
FreqAndIRRange 1000 15000 10 30
Select the mode with the highest IR intensity
HighIR 1
Select the 3 modes with the lowest IR intensities
LowIR 3
Request all modes
Full true

End

End

3.8 Grand Canonical Monte Carlo (GCMC)

Tip: Take a look at the GCMC tutorial and learn how to setup a GCMC calculation.

3.8.1 General info

About Monte Carlo / the Grand Canonical Ensemble

It is best to read a bit about Monte Carlo and ensembles before working with the GCMC code. Almost every book or
review text on molecular simulations will do, for example: Frenkel D, Smit B. Understanding molecular simulation:
from algorithms to applications. Academic Press; 2002. 672 p.

Wikipedia also has some pages of interest:

• http://en.wikipedia.org/wiki/Monte_Carlo_method

• http://en.wikipedia.org/wiki/Grand_canonical_ensemble

It is important to note that this method heavily relies on random numbers, and simulations are thus non-repeatable in
detail, but should converge to the same answer.

About the AMS GCMC code

The GCMC code was originally developed for standalone Reaxff by Thomas Senftle, working as a Graduate Student at
Penn State University under the supervision of Dr. Adri van Duin [13 (page 163), 14 (page 163)]. The original version
was a wrapper code that called an external executable to perform the reaxff minimization step and energy calculation,
and relied on file modification and parsing to steer the reaxff code and get the results back.

The code was later rewritten by Hans van Schoot (SCM), in close collaboration with Thomas Senftle, to integrate it
directly into the ADF-ReaxFF code. The current version is an AMS re-implementation so the method can be used

3.8. Grand Canonical Monte Carlo (GCMC) 79

http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Grand_canonical_ensemble

AMS Manual, Amsterdam Modeling Suite 2019

with almost any engine supported by AMS (support for 3D periodic boundary conditions by the engine is currently a
requirement).

3.8.2 Method Details

Overview

The GCMC method will perform a number of Grand Canonical Monte Carlo trial moves (set by the Iterations
option of the GCMC input block), and accept or reject them based on the energy produced by the geometry optimization
of the trial geometry for the given engine. The Monte Carlo algorithm will always accept a step if it results in a decrease
of the energy, and accept steps that go up in energy with a probability. This section will give some details about how
the method works.

MC Moves (Insert/Delete/Displace/ChangeVolume)

The GCMC method currently supports 4 types of MC Moves: Insert, Delete, Displace (sometimes also called Move),
and ChangeVolume. The first three MC moves are always available and the ChangeVolume becomes available only
ChangeVolume option is set to True. The first three move types change coordinates of atoms in the system, while
the ChangeVolume move changes the lattice only.

On every MC iteration, the method first selects one of the molecules defined by the Molecule input blocks at random
and then selects an applicable MC move type. If there are no molecules of this type in the system then no Delete or
Displace is attempted. If the selected molecule has the NoAddRemove option set then the Insert and Delete moves
will not be attempted. If no MC move is possible with the selected molecule type then another one is selected or
a VolumeChange is attempted, if allowed. If no moves with any of the provided molecules is possible (i.e. if all
molecules have NoAddRemove set to True, there is nothing to displace and the volume is fixed) then the program
will stop.

The Insert and Displace MC move will rotate the molecule randomly and put it at a random position, and then check
if the minimum interatomic distance between the molecule and the rest of the system is within the MinDistance
and MaxDistance boundaries. If the condition is not satisfied, a new set of coordinates is generated and the check
is performed again. This is repeated up to NumAttempts times before stopping with an error.

The volume change is controlled by the VolumeChangeMax keyword. This sets the volume change limit, and
it should be a value between between 0 and 1. The new volume will be calculated as: Vnew = exp(random(-
1:1)*VolumeChangeMax)*Vold.

Calculating the chemical potential

The chemical potential of the molecule (or atom) reservoir is used when calculating the Boltzmann accept/reject
criteria after a MC move is executed. This value can be derived from first principles using statistical mechanics, or
equivalently, it can be determined from thermochemical tables available in literature sources.

For example, the proper chemical potential for a GCMC simulation in which single oxygen atoms are exchanged with
a reservoir of O2 gas, should be equal to 1/2 the chemical potential of O2 at the temperature and pressure of the
reservoir [13 (page 163)]:

𝜇𝑀𝐶
𝑂 (𝑇, 𝑃) = 1

2𝜇
𝑀𝐶
𝑂2 (𝑇, 𝑃) = 1

2

[︁
𝜇𝑟𝑒𝑓
𝑂2 (𝑇, 𝑃𝑟𝑒𝑓) + 𝑘𝑇 𝑙𝑛

(︁
𝑃

𝑃𝑟𝑒𝑓

)︁
− 𝐸𝑑𝑖𝑠𝑠

𝑂2

]︁
where the reference chemical potential 𝜇𝑟𝑒𝑓

𝑂2 (𝑇, 𝑃𝑟𝑒𝑓) is the experimentally determined chemical potential of O2 at

T and Pref, 𝑘𝑇 𝑙𝑛
(︁

𝑃
𝑃𝑟𝑒𝑓

)︁
is the pressure correction to the free energy, and 𝐸𝑑𝑖𝑠𝑠

𝑂2 is the dissociation energy of the O2

molecule.

Calculating energies

Because the GCMC simulation adds and deletes atoms or molecules during the runtime, it cannot directly compare the
AMS energies for the MC acceptance criteria: inserting a molecule will usually lower the total energy of the system,
causing the MC to always accept it, and always reject a deletion. To compensate this, the GCMC method calculates

80 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

a “corrected” MC energy to compare the trial energy with, consisting of the previously accepted AMS energy and a
correction depending on the move:

𝐸𝑀𝐶
𝑜𝑙𝑑 = 𝐸𝐴𝑀𝑆

𝑜𝑙𝑑 + 𝜇𝑀𝐶 for an Insert move;

𝐸𝑀𝐶
𝑜𝑙𝑑 = 𝐸𝐴𝑀𝑆

𝑜𝑙𝑑 − 𝜇𝑀𝐶 for a Delete move;

𝐸𝑀𝐶
𝑜𝑙𝑑 = 𝐸𝐴𝑀𝑆

𝑜𝑙𝑑 for a Displace move;

𝐸𝑀𝐶
𝑜𝑙𝑑 = 𝐸𝐴𝑀𝑆

𝑜𝑙𝑑 − 𝑃 (𝑉𝑛𝑒𝑤 − 𝑉𝑜𝑙𝑑) + 𝑁𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑𝑙𝑛
(︁

𝑉 𝑎𝑣𝑎𝑖𝑙
𝑛𝑒𝑤

𝑉 𝑎𝑣𝑎𝑖𝑙
𝑜𝑙𝑑

)︁
𝑘𝑇 for a ChangeVolume move.

Here, 𝜇𝑀𝐶 is the chemical potential of the inserted/deleted molecule, P is the pressure, V is the volume, and Ninserted
is the total number of MC molecules. The “new” and “old” subscripts refer to the current and the last accepted values.
The Vavail values are calculated from the MC-available volume as described below.

Calculating volumes

The available volume can be calculated in a few different ways, depending on the VolumeOption setting:

• Free: volume = total volume - occupied volume - specified vacuum volume (NonAccessibleVolume)

• Total: volume = total cell volume

• Accessible: volume = specified accessible volume (AccessibleVolume)

• FreeAccessible: volume = specified accessible volume (AccessibleVolume) - occupied volume

Here, the occupied volume is calculated as a sum of volumes of atoms that do not belong to the MC part of the system
(i.e. that were not inserted during calculation and are not Removables). The volume of an atom is calculated using
the average of the covalent and the Van der Waals radii of the atom defined in the atominfo module used throughout
AMS.

The AccessibleVolume and NonAccessibleVolume keywords can be used to get a more accurate available
volume.

Acceptance criteria

An MC move is always accepted if the AMS energy is lower than the corrected MC energy of the last accepted MC
move, or if the energy increase is small enough. If the new energy is higher, the code generates a random number
between 0 and 1, and accepts the move if the random number is greater than:

prob = preFactor * exp(-Beta*deltaE)

The prefactor is calculated (for insert and delete moves) using the deBroglie wavelength of the inserted molecules, the
number of inserted molecules and the available MC volume of the system.

3.8.3 Input

The GCMC functionality in AMS is triggered using the following Task key:

Task GCMC

GCMC
AccessibleVolume float
Ensemble [Mu-VT | Mu-PT]
Iterations integer
MapAtomsToOriginalCell [True | False]
MaxDistance float
MinDistance float
Molecule

ChemicalPotential float

3.8. Grand Canonical Monte Carlo (GCMC) 81

AMS Manual, Amsterdam Modeling Suite 2019

NoAddRemove [True | False]
SystemName string

End
NonAccessibleVolume float
NumAttempts integer
Pressure float
Removables # Non-standard block. See details.

...
End
Restart string
Temperature float
UseGCPreFactor [True | False]
VolumeChangeMax float
VolumeOption [Free | Total | Accessible | FreeAccessible]

End

The following keys are common for all GCMC calculations and should always be specified. The ChemicalPotential
value should correspond to the 𝜇𝑀𝐶 expression above, and not to the experimental chemical potential 𝜇𝑟𝑒𝑓 , which
means it should include the (engine-dependent) free molecule’s energy.

GCMC

Molecule

Type Block

Recurring True

Description This block defines the molecule (or atom) that can be inserted/moved/deleted with
the MC method. The coordinates should form a reasonable structure. The MC code uses
these coordinates during the insertion step by giving them a random rotation, followed by a
random translation to generate a random position of the molecule inside the box. Currently,
there is no check to make sure all atoms of the molecule stay inside the simulation box. The
program does check that the MaxDistance/MinDistance conditions are satisfied.

ChemicalPotential

Type Float

Unit Hartree

Description Chemical potential of the molecule (or atom) reservoir. It and is used when
calculating the Boltzmann accept/reject criteria after a MC move is executed. This value
can be derived from first principles using statistical mechanics, or equivalently, it can be
determined from thermochemical tables available in literature sources. For example, the
proper chemical potential for a GCMC simulation in which single oxygen atoms are ex-
changed with a reservoir of O2 gas, should equal 1/2 the chemical potential of O2 at the
temperature and pressure of the reservoir: cmpot = Mu_O(T,P) = 1/2*Mu_O2(T,P) = 1/2
* [Mu_ref(T,P_ref) + kT*Log(P/Pref) - E_diss] where the reference chemical potential
[Mu_ref(T,P_ref)] is the experimentally determined chemical potential of O2 at T and Pref;
kT*Log(P/Pref) is the pressure correction to the free energy, and E_diss is the dissociation
energy of the O2 molecule.

NoAddRemove

Type Bool

Default value False

Description Set to True to tell the GCMC code to keep the number of molecules/atoms of
this type fixed. It will thus disable Insert/Delete moves on this type, meaning it can only

82 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

do a displacement move, or volume change move (for an NPT ensemble).

SystemName

Type String

Description String ID of a named [System] to be inserted. The lattice specified with this
System, if any, is ignored and the main system’s lattice is used instead.

Iterations

Type Integer

Description Number of GCMC moves.

Temperature

Type Float

Default value 300.0

Unit Kelvin

Description Temperature of the simulation. Increase the temperature to improve the chance of
accepting steps that result in a higher energy.

The following keys are related to Insert and Displace moves.

GCMC

NumAttempts

Type Integer

Default value 1000

Description Try inserting/moving the selected molecule up to the specified number of times
or until all constraints are satisfied. If all attempts fail a message will be printed and the
simulation will stop. If the MaxDistance-MinDistance interval is small this number may
have to be large.

MinDistance

Type Float

Default value 0.3

Unit Angstrom

Description Keep the minimal distance to other atoms of the system when adding the molecule.

MaxDistance

Type Float

Default value 3.0

Unit Angstrom

Description The max distance to other atoms of the system when adding the molecule.

The following keys influence computation of the acceptance probability and of the MC energy correction.

GCMC

UseGCPreFactor

Type Bool

Default value True

3.8. Grand Canonical Monte Carlo (GCMC) 83

AMS Manual, Amsterdam Modeling Suite 2019

Description Use the GC pre-exponential factor for probability.

VolumeOption

Type Multiple Choice

Default value Free

Options [Free, Total, Accessible, FreeAccessible]

Description Specifies the method to calculate the volume used to calculate the GC pre-
exponential factor and the energy correction in the Mu-PT ensemble: Free: V = totalVol-
ume - occupiedVolume - NonAccessibleVolume; Total: V = totalVolume; Accessible: V =
AccessibleVolume; FreeAccessible: V = AccessibleVolume - occupiedVolume. The Acces-
sibleVolume and NonAccessibleVolume are specified in the input, the occupiedVolume is
calculated as a sum of atomic volumes.

AccessibleVolume

Type Float

Default value 0.0

Description Volume available to GCMC, in cubic Angstroms. AccessibleVolume should be
specified for “Accessible” and “FreeAccessible” [VolumeOption].

NonAccessibleVolume

Type Float

Default value 0.0

Description Volume not available to GCMC, in cubic Angstroms. NonAccessibleVolume may
be specified for the “Free” [VolumeOption] to reduce the accessible volume.

The following keys apply to the ensemble choice and options for the Mu-PT ensemble.

GCMC

Ensemble

Type Multiple Choice

Default value Mu-VT

Options [Mu-VT, Mu-PT]

Description Select the MC ensemble: Mu-VT for fixed volume or Mu-PT for variable volume.
When the Mu-PT ensemble is selected the [Pressure] and [VolumeChangeMax] should also
be specified.

VolumeChangeMax

Type Float

Default value 0.05

Description Fractional value by which logarithm of the volume is allowed to change at each step.
The new volume is then calculated as Vnew = exp(random(-1:1)*VolumeChangeMax)*Vold

Pressure

Type Float

Default value 0.0

Unit Pascal

84 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

Description Pressure used to calculate the energy correction in the Mu-PT ensemble. Set it to
zero for incompressible solid systems unless at very high pressures.

The GCMC code can insert multiple atom/molecule types in a single simulation, so it needs to keep track of what
atom belongs to which insert. This information is automatically stored and updated when insertion/deletion/moving
of atoms or molecules during the simulation, but is by default unknown for the atoms of the starting geometry. The
GCMC code will therefore by default not modify the atoms in the original input in the MC trial moves. The Restart
key and the Removables block are two ways to provide information about Deletable/Movable atoms/molecules in
the input structure. If the Restart key is present the Removables block will be ignored.

GCMC

Restart

Type String

Description Name of an RKF restart file. Upon restart, the information about the GCMC in-
put parameters, the initial system (atomic coordinates, lattice, charge, etc.) and the MC
molecules (both already inserted and to be inserted) are read from the restart file. The global
GCMC input parameters and the MC Molecules can be modified from input. Any parameter
not specified in the input will use its value from the restart file (i.e. not the default value).
Molecules found in the restart file do not have to be present as named Systems in the input,
however if there is a System present that matches the name of a molecule from restart then
the System’s geometry will replace that found in the restart file. It is also possible to spec-
ify new Molecules in the input, which will be added to the pool of the MC molecules from
restart.

Removables

Type Non-standard block

Description The Removables can be used to specify a list of molecules that can be removed or
moved during this GCMC calculation. Molecules are specified one per line in the format
following format: MoleculeName atom1 atom2 ... The MoleculeName must match a name
specified in one of the [Molecule] blocks. The atom indices refer to the whole input System
and the number of atoms must match that in the specified Molecule. A suitable Removables
block is written to the standard output after each accepted MC move. If you do so then you
should also replace the initial atomic coordinates with the ones found in the same file. If a
[Restart] key is present then the Removables block is ignored.

An example of the Removables block:

Removables
Oatom 41
O2 44 45
Oatom 42
Oatom 43

End

This example specifies that 5 atoms belong to 4 different GCMC molecules of two different types, Oatom and O2.
Thus in addition to the main input System there should be at least two additional Systems defined, one called “Oatom”
(containing one atom) and the other “O2” (containing two atoms). The first one was inserted three times (atoms 41,
42, and 43) and the second one was inserted once.

Finally there are more technical keywords:

GCMC

MapAtomsToOriginalCell

Type Bool

3.8. Grand Canonical Monte Carlo (GCMC) 85

AMS Manual, Amsterdam Modeling Suite 2019

Default value True

Description Keeps the atom (mostly) in the original cell by mapping them back before the ge-
ometry optimizations.

Note that the GeometryOptimization block is also read by the GCMC task, and the settings used for the indi-
vidual optimizations. The documentation for these keywords can be found in the Geometry Optimization (page 11)
section of this manual.

3.8.4 Output

In addition to the standard KF variables in the “History” section on ams.rkf such as “Coords” and “Energy”, the
following GCMC-specific variables are also created for each MC step:

• MCMove - integer index of the MC move.

• MCMoveType - string containing the type of the MC move.

• MCMolecule - string containing the name of the inserted/displaced/removed molecule.

• Accepted - a Fortran logical value containing the acceptance status of the MC move.

• Converged - a Fortran logical value containing the convergence status of the given geometry.

Results of a GCMC calculation are stored in the GCMC section of the RKF file, in a number of variables. The
following variables contain a summary of the MC statistics up to and including the latest step:

• NIterMCtried - the latest iteration number.

• NIterMCaccept - the number of accepted MC moves.

• NIterMCreject - the number of rejected MC moves.

• NMCacceptAdd - the number of accepted MC molecule insertions.

• NMCacceptRemove - the number of accepted MC molecule removals.

• NMCacceptMove - the number of accepted MC molecule moves.

• NMCacceptVolume - the number of accepted volume changes.

• NMCrejectAdd - the number of rejected MC molecule insertions.

• NMCrejectRemove - the number of rejected MC molecule removals.

• NMCrejectMove - the number of rejected MC molecule moves.

• NMCrejectVolume - the number of rejected volume changes.

The following variables (actually arrays of the size Iterations) in the GCMC section contain the detailed infor-
mation about all MC moves in the current simulation. Only the first NIterMCtried elements of each array contain valid
data.

• HistoryAccepted - MC move status value (1 - accepted, 0 - rejected, -1 - not done yet).

• HistoryAMSEnergy - the AMS energy (the 𝐸𝐴𝑀𝑆 above).

• HistoryMCEnergy - the corrected MC energy (𝐸𝑀𝐶 = 𝐸𝐴𝑀𝑆 − Σ𝜇𝑀𝐶
𝑖 , where Σ𝜇𝑀𝐶

𝑖 is the total chemical
potential of all inserted molecules).

• HistoryVolume - the simulation box volume.

• HistoryMoveType - the MC move type index (0 - insert, 1 - delete, 2 - displace, 3 - change volume). The name
of the move type with index i can be found in the MoveType(i) variable.

86 Chapter 3. Exploring the PES: Tasks

AMS Manual, Amsterdam Modeling Suite 2019

• HistoryMoleculeType - the inserted/deleted/displaced molecule type index. The name of the molecule type with
index i can be found in the MoleculeName(i) variable.

• HistoryMoleculeIndex - the inserted/deleted/displaced molecule index within its type.

3.8. Grand Canonical Monte Carlo (GCMC) 87

AMS Manual, Amsterdam Modeling Suite 2019

88 Chapter 3. Exploring the PES: Tasks

CHAPTER

FOUR

PES POINT PROPERTIES

No matter what application the AMS driver is used for, in one way or another it always explores the potential energy
surface (PES) of the system. One can furthermore ask AMS to calculate additional properties of the PES in the points
that are visited. These are mostly derivatives of the energy, e.g. we can ask AMS to calculate the gradients or the
Hessian in the visited points. In general all these PES point properties are requested through the Properties block
in the AMS input:

Properties
Gradients [True | False]
StressTensor [True | False]
Hessian [True | False]
SelectedAtomsForHessian integer_list
NormalModes [True | False]
ElasticTensor [True | False]
Phonons [True | False]

End

This page in the AMS manual describes all the supported properties.

Note that because these properties are tied to a particular point on the potential energy surface, they are found on the
engine output files (page 4). Note also that the properties are not always calculated in every PES point that the AMS
driver visits during a calculation. By default they are only calculated in special PES points, where the definition of
special depends on the task (page 11) AMS is performing: For a geometry optimization (page 11) properties would
for example only be calculated at the final, converged geometry. This behaviour can often be modified by keywords
special to the particular running task.

4.1 Nuclear gradients and stress tensor

The first derivative with respect to the nuclear coordinates can be requested as follows:

Properties
Gradients [True | False]

End

Properties

Gradients

Type Bool

Default value False

Description Whether or not to calculate the gradients.

89

AMS Manual, Amsterdam Modeling Suite 2019

Note that these are gradients, not forces, the difference being the sign. The gradients are printed in the output and writ-
ten to the engine result file (page 4) belonging to the particular point on the PES in the AMSResults%Gradients
variable as a 3 × 𝑛atoms array in atomic units (Hartree/Bohr). For periodic systems (chains, slabs, bulk) one can also
request the clamped-ion stress tensor (note: the clamped-ion stress is only part of the true stress tensor):

Properties
StressTensor [True | False]

End

Properties

StressTensor

Type Bool

Default value False

Description Whether or not to calculate the stress tensor.

The clamped-ion stress tensor 𝜎𝛼 (Voigt notation) is computed via numerical differentiation of the energy 𝐸 WRT a
strain deformations 𝜖𝛼 keeping the atomic fractional coordinates constant:

𝜎𝛼 =
1

𝑉0

𝜕𝐸

𝜕𝜖𝛼

⃒⃒⃒⃒
constant atomic fractional coordinates

where 𝑉0 is the volume of the unit cell (for 2D periodic system 𝑉0 is the area of the unit cell, and for 1D periodic
system 𝑉0 is the lenght of the unit cell).

The clamped-ion stress tensor (in Cartesian notation) is written to the engine result file in
AMSResults%StressTensor.

4.2 Hessian and normal modes of vibration

The calculation of the second derivative of the total energy with respect to the nuclear coordinates is enabled by:

Properties
Hessian [True | False]

End

Properties

Hessian

Type Bool

Default value False

Description Whether or not to calculate the Hessian.

The Hessian is not printed to the text output, but is saved in the engine result file as variable AMSResults%Hessian.
Note that this ist just the plain second derivative (no mass-weighting) of the total energy and that for the order of its
3 × 𝑛atoms columns/rows, the component index increases the quickest: The first column refers to changes in the 𝑥-
component of atom 1, the second to the 𝑦-component, the fourth to the 𝑥-component of the second atoms, and so
on.

It is also possible to request the calculation of the normal modes of vibration:

Properties
NormalModes [True | False]

End

90 Chapter 4. PES point properties

AMS Manual, Amsterdam Modeling Suite 2019

Properties

NormalModes

Type Bool

Default value False

Description Whether or not to calculate the normal modes of vibration (and of molecules the
corresponding Ir intensities.)

Note: For more information and advanced methods of calculating and analyzing molecular vibrations, see the manual
chapter on the vibrational analysis (page 57) (mode scanning, refinement and tracking).

This implies the calculation of the Hessian, which is required for calculating normal modes. For engines that are
capable of calculating dipole moments, this also enables the calculation of the infrared intensities, so that the IR
spectrum can be visualized by opening the engine result file with ADFSpectra. The normal modes of vibration and the
IR intensities are saved to the engine result file (page 4) in the Vibrations section.

Note: The calculation of the normal modes of vibration needs to be done the system’s equilibrium geometry. So one
should either run the normal modes calculation using an already optimized geometry, or combine both steps into one
job by using the geometry optimization task (page 11) together with the Properties%NormalModes keyword.

Symmetry labels of the normal modes of molecules may be calculated if AMS uses symmetry in the calculation of
normal modes (key NormalModes%UseSymmetry). If symmetry is used the nomal modes are projected against
symmtric displacements for each irrep. If that is not successful the symmetric label is ‘MIX’. Symmetry is only
recognized if the starting geometry has symmetry. Symmetry is only used for molecules if the molecule has a specific
orientation in space, like that the z-axis is the main rotation axis. If the GUI is used one can click the Symmetrize
button (the star), such that the GUI will (try to) symmetrize and reorient the molecule. There are some cases that even
after such symmetrization, the orientation of the molecule is not what is needed for the symmetry to be used. If that
is the case or if key NormalModes%UseSymmetry is set to ‘False’ or if there is no symmetry, then no symmetry
labels will be calculated.

NormalModes
UseSymmetry [True | False]

End

NormalModes

Type Block

Description Configures details of a normal modes calculation.

UseSymmetry

Type Bool

Default value True

Description Whether or not to exploit the symmetry of the system in the normal modes calcula-
tion.

4.2.1 Thermodynamics (ideal gas)

Thermodynamic properties are always calculated whenever normal modes are computed. These properties are: En-
tropy, Internal Energy, Constant Volume Heat Capacity, Enthalpy and Gibbs free energy. The thermodynamic proper-
ties are computed assuming an ideal gas, and electronic contributions are ignored. The latter is a serious omission if

4.2. Hessian and normal modes of vibration 91

AMS Manual, Amsterdam Modeling Suite 2019

the electronic configuration is (almost) degenerate, but the effect is small whenever the energy difference with the next
state is large compared to the vibrational frequencies. The thermal analysis is based on the temperature dependent
partition function. The energy of a (non-linear) molecule is (if the energy is measured from the zero-point energy)

𝐸

𝑁𝑘𝑇
=

3

2
+

3

2
+

3𝑁−6∑︁
𝑗

(︂
ℎ𝜈𝑗
2𝑘𝑇

+
ℎ𝜈𝑗

𝑘𝑇 (𝑒ℎ𝜈𝑗/(𝑘𝑇) − 1)

)︂
− 𝐷

𝑘𝑇

The summation is over all harmonic 𝜈𝑗 , ℎ is Planck’s constant and 𝐷 is the dissociation energy

𝐷 = 𝐷0 +
∑︁
𝑗

ℎ𝜈𝑗
2

Contributions from low (less than 20 1/cm) frequencies to entropy, heat capacity and internal energy are excluded from
the total values, but they are listed separately (so the user can add them if they wish).

Thermo
Pressure float
TMax float
TMin float
nSteps integer

End

Thermo

Type Block

Description Options for thermodynamic properties (assuming an ideal gas). The properties are
computed for ‘nSteps’ temperatures in the range [TMin,TMax].

Pressure

Type Float

Default value 1.0

Unit atm

Description The pressure at which the thermodynamic properties are computed.

TMax

Type Float

Default value 298.15

Unit Kelvin

Description Maximum value for the temperature range.

TMin

Type Float

Default value 298.15

Unit Kelvin

Description Minimum value for the temperature range.

nSteps

Type Integer

Default value 1

Description The number of temperatures in the range [TMin,TMax].

92 Chapter 4. PES point properties

AMS Manual, Amsterdam Modeling Suite 2019

4.2.2 Partial Vibrational Spectra (PVDOS)

The Partial Vibrational Spectra (also known as PVDOS) is computed by default whenever normal modes are requested.
The PVDOS 𝑃𝐼,𝑛 for atom 𝐼 and normal mode 𝑛 is defined as:

𝑃𝐼,𝑛 =
𝑚𝐼 |�⃗�𝐼,𝑛|2∑︀
𝑝 𝑚𝐼 |�⃗�𝐼,𝑝|2

where 𝑚𝐼 is the nuclear weight of atom 𝐼 , and �⃗�𝐼,𝑛 is the diplacement vector for atom 𝐼 in normal normal mode 𝑛.

Tip: The Partial Vibrational Spectra (PVDOS) can be visualized using the ADFSpectra GUI module (Vibrations
→ Partial Vibrational Spectra (PVDOS)). When plotting a partial vibrational spectrum, the IR intensity of normal
modes is scaled by the corresponding PVDOS of the selected atoms.

Fig. 4.1: Example of partial vibrational spectrum (PVDOS). The dotted line is the full IR spectrum of 1-propanol. The
solid line is the PVDOS-scaled IR spectrum of the OH group (IR spectrum computed using GFN1-xTB).

The PVDOS matrix is not printed to the text output, but only saved to the engine binary output (.rkf) in the variable
Vibrations%PVDOS.

4.3 Elastic tensor

The elastic tensor 𝑐𝛼,𝛽 (Voigt notation) is computed via second order numerical differentiation of the energy 𝐸 WRT
strain deformations 𝜖𝛼 and 𝜖𝛽 :

𝑐𝛼,𝛽 =
1

𝑉0

𝜕2𝐸

𝜕𝜖𝛼𝜕𝜖𝛽

where 𝑉0 is the volume of the unit cell (for 2D periodic system 𝑉0 is the area of the unit cell, and for 1D periodic
system 𝑉0 is the lenght of the unit cell).

For each strain deformation 𝜖𝛼𝜖𝛽 , the atomic positions will be optimized. The elastic tensor can be computed for any
periodicity, i.e. 1D, 2D and 3D.

4.3. Elastic tensor 93

AMS Manual, Amsterdam Modeling Suite 2019

See also:

Example: Elastic tensor (page 153)

To compute the elastic tensor, request it in the Properties input block of AMS:

Properties
ElasticTensor [True | False]

End

Note: The elastic tensor should be computed at the fully optimized geometry. One should therefore perform a
geometry optimization of all degrees of freedom, including the lattice vectors. It is recommended to use a tight
gradient convergence threshold for the geometry optimization (e.g. 1.0E-4). Note that all this can be done in one job
by combining the geometry optimization task (page 11) with the elastic tensor calculation.

The elastic tensor (in Voigt notation) is printed to the output file and stored in the engine result file (page 4) in the
AMSResults section (for 3D system, the elastic tensor in Voigt notation is a 6x6 matrix; for 2D systems is a 3x3
matrix; for 1D systems is just one number).

Options for the numerical differentiation procedure can be specified in the ElasticTensor input block:

ElasticTensor
MaxGradientForGeoOpt float
Parallel

nCoresPerGroup integer
nGroups integer
nNodesPerGroup integer

End
StrainStepSize float

End

ElasticTensor

Type Block

Description Options for numerical evaluation of the elastic tensor.

MaxGradientForGeoOpt

Type Float

Default value 0.0001

Unit Hartree/Angstrom

Description Maximum nuclear gradient for the relaxation of the internal degrees of freedom of
strained systems.

Parallel

Type Block

Description The evaluation of the elastic tensor via numerical differentiation is an embarrass-
ingly parallel problem. Double parallelization allows to split the available processor cores
into groups working through all the available tasks in parallel, resulting in a better parallel
performance. The keys in this block determine how to split the available processor cores into
groups working in parallel.

nCoresPerGroup

Type Integer

94 Chapter 4. PES point properties

AMS Manual, Amsterdam Modeling Suite 2019

Description Number of cores in each working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

StrainStepSize

Type Float

Default value 0.001

Description Step size (relative) of strain deformations used for computing the elastic tensor
numerically.

4.4 Phonons

Collective oscillations of atoms around theirs equilibrium positions, giving rise to lattice vibrations, are called phonons.
AMS can calculate phonon dispersion curves within standard harmonic theory, implemented with a finite difference
method. Within the harmonic approximation we can calculate the partition function and therefore thermodynamic
properties, such as the specific heat and the free energy.

See also:

Example: Phonons for graphene (page 150), Example: Phonons with isotopes (page 151) and diamond lattice opti-
mization and phonons tutorial

The calculation of phonons is enabled in the Properties block.

Properties
Phonons [True | False]

End

Note: Phonon calculations should be performed on optimized geometries, including the lattice vectors. This can be
done by either reading an already optimized system as input, or combining the phonon calculation with the geometry
optimization task (page 11).

The details of the phonon calculations are configured in the NumericalPhonons block:

NumericalPhonons
SuperCell # Non-standard block. See details.

...
End
StepSize float
DoubleSided [True | False]
UseSymmetry [True | False]
Interpolation integer

4.4. Phonons 95

AMS Manual, Amsterdam Modeling Suite 2019

NDosEnergies integer
Parallel

nCoresPerGroup integer
nGroups integer
nNodesPerGroup integer

End
End

NumericalPhonons

SuperCell

Type Non-standard block

Description Used for the phonon run. The super lattice is expressed in the lattice vectors. Most
people will find a diagonal matrix easiest to understand.

The most important setting here is the super cell transformation. In principle this should be as large as possible, as the
phonon bandstructure converges with the size of the super cell. In practice one may want to start with a 2x2x2 cell and
increase the size of the super cell until the phonon band structure converges:

NumericalPhonons
SuperCell

2 0 0
0 2 0
0 0 2

End
End

Other keywords in the NumericalPhonons block modify the details of the numerical differentiation procedure and
the accuracy of the results:

NumericalPhonons

StepSize

Type Float

Default value 0.04

Unit Angstrom

Description Step size to be taken to obtain the force constants (second derivative) from the
analytical gradients numerically.

DoubleSided

Type Bool

Default value True

Description By default a two-sided (or quadratic) numerical differentiation of the nuclear gra-
dients is used. Using a single-sided (or linear) numerical differentiation is computationally
faster but much less accurate. Note: In older versions of the program only the single-sided
option was available.

UseSymmetry

Type Bool

Default value True

Description Whether or not to exploit the symmetry of the system in the phonon calculation.

96 Chapter 4. PES point properties

AMS Manual, Amsterdam Modeling Suite 2019

Interpolation

Type Integer

Default value 100

Description Use interpolation to generate smooth phonon plots.

NDosEnergies

Type Integer

Default value 1000

Description Nr. of energies used to calculate the phonon DOS used to integrate thermodynamic
properties. For fast compute engines this may become time limiting and smaller values can
be tried.

Note that the numerical phonon calculation supports AMS’ double parallelism (page 110), which can perform the
calculations for the individual displacements in parallel. This is disabled by default but can be enabled using the keys
in the NumericalPhonons%Parallel block:

NumericalPhonons

Parallel

Type Block

Description Computing the phonons via numerical differentiation is an embarrassingly paral-
lel problem. Double parallelization allows to split the available processor cores into groups
working through all the available tasks in parallel, resulting in a better parallel performance.
The keys in this block determine how to split the available processor cores into groups work-
ing in parallel. Keep in mind that the displacements for a phonon calculation are done on a
super-cell system, so that every task requires more memory than the central point calculated
using the primitive cell.

nCoresPerGroup

Type Integer

Description Number of cores in each working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

4.5 Numerical differentiation options

The following options apply whenever AMS computes gradients, hessians or stress tensors via numerical differentia-
tion.

4.5. Numerical differentiation options 97

AMS Manual, Amsterdam Modeling Suite 2019

NumericalDifferentiation
NuclearStepSize float
Parallel

nCoresPerGroup integer
nGroups integer
nNodesPerGroup integer

End
StrainStepSize float
UseSymmetry [True | False]

End

NumericalDifferentiation

Type Block

Description Define options for numerical differentiations, that is the numerical calculation of gra-
dients, Hessian and the stress tensor for periodic systems.

NuclearStepSize

Type Float

Default value 0.005

Unit Bohr

Description Step size for numerical nuclear gradient calculation.

Parallel

Type Block

Description Numerical differentiation is an embarrassingly parallel problem. Double paral-
lelization allows to split the available processor cores into groups working through all the
available tasks in parallel, resulting in a better parallel performance. The keys in this block
determine how to split the available processor cores into groups working in parallel.

nCoresPerGroup

Type Integer

Description Number of cores in each working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

StrainStepSize

Type Float

Default value 0.001

Description Step size (relative) for numerical stress tensor calculation.

98 Chapter 4. PES point properties

AMS Manual, Amsterdam Modeling Suite 2019

UseSymmetry

Type Bool

Default value True

Description Whether or not to exploit the symmetry of the system for numerical differentiations.

Note that the numerical differentiation calculation supports AMS’ double parallelism (page 110), which can perform
the calculations for the individual displacements in parallel. This is disabled by default but can be enabled using the
keys in the NumericalDifferentiation%Parallel block.

AMS may use symmetry (key NumericalDifferentiation%UseSymmetry) in case of numerical differenti-
ation calculations. If symmetry is used only symmetry unique atoms are displaced. Symmetry is only recognized if
the starting geometry has symmetry. Symmetry is only used for molecules if the molecule has a specific orientation
in space, like that the z-axis is the main rotation axis. If the GUI is used one can click the Symmetrize button (the
star), such that the GUI will (try to) symmetrize and reorient the molecule. There are some cases that even after such
symmetrization, the orientation of the molecule is not what is needed for the symmetry to be used in case of numerical
differentiation calculations. If that is the case or if key NumericalDifferentiation%UseSymmetry is set to
‘False’, then no symmetry will be used.

4.5. Numerical differentiation options 99

AMS Manual, Amsterdam Modeling Suite 2019

100 Chapter 4. PES point properties

CHAPTER

FIVE

ENGINES

The engines are core of the Amsterdam Modeling Suite: While the AMS driver steers the calculation over the potential
energy surface in e.g. a geometry optimization (page 11) or molecular dynamics (page 33) calculation, the engines
calculate energies and gradients and in this way define the PES on which the driver works.

The engine used for an AMS calculation is selected and configured with the special Engine block in the AMS input:

Engine DFTB
... input for the DFTB engine ...

EndEngine

Here the type of engine, e.g. DFTB as in the example above, is specified on the line that opens the block. Note that the
Engine block ends with EndEngine, and is in this way different from all the other blocks in the AMS input, which
close just with End. The content of the engine block is what we call the “engine input”. Generally the engine input
consists of a series of blocks and keywords, and looks just like the AMS driver input. However, many engines have
a lot of options and keywords, which are documented in a separate engine manual. In other words: This AMS driver
manual documents all the keywords outside of the Engine block, while the individual engine manuals document the
contents of the engine block.

5.1 Available engines

The following engines are available in the 2019 release of the Amsterdam Modeling Suite:

• BAND An atomic-orbital based DFT engine aimed at periodic systems (crystals, slabs, chains) but supporting
also molecular systems.

• DFTB An engine implementing Density Functional based Tight-Binding, a fast approximation to DFT.

• ReaxFF An engine for modeling chemical reactions with atomistic potentials based on the reactive force field
approach.

• UFF An implementation of the Universal Force Field, a simple non-reactive force field covering the entire
periodic table.

• MOPAC An engine wrapping the MOPAC code, a general-purpose semiempirical molecular orbital package
for the study of solid state and molecular structures and reactions.

• ADF A wrapper around the standalone ADF program, allowing it to be used as an engine from within the AMS
driver.

• External (page 101) A flexible scripting interface that allows advanced users to use external atomistic modeling
programs as engines in AMS.

• LennardJones (page 105) A simple toy engine implementing a Lennard-Jones potential.

101

AMS Manual, Amsterdam Modeling Suite 2019

5.2 External programs as engines

The AMS driver allows running external programs as an engine. In this way users can combine the functionality in
the AMS driver (tasks and PES point properties) with the energies and gradients of any molecular modeling program
they have access to. Furthermore the graphical interface of the Amsterdam Modeling Suite can be used to analyze the
results of these calculations. The interfacing between the AMS driver and the external program has to be done by the
user in form of a small script, which allows users to hook up any external program without access to the source code
of AMS.

The Engine block for the external engine has just one important keyword, which is the command that is run to
execute the external program:

Engine External
Execute /path/to/my_interface_script.sh

EndEngine

The command can in principle be anything, as it will just be executed as is by the system shell. However, it should not
use relative paths (e.g. to files in the directory where the input file is). We recommend writing the interfacing script in
Python and using the Python interpreter that ships with AMS:

Engine External
Execute $ADFBIN/startpython /path/to/my_python_interface_script.py

EndEngine

AMS then starts running and for every geometry prepares a folder in which the external engine is supposed to run.
This is the folder in which the interface script specified with the Execute key is executed (so any relative paths are
relative to that folder). AMS puts two files into this folder:

system.xyz
request.json

The system.xyz just contains the geometry AMS wants the external engine to calculate. It is an extended format
XYZ file (page 157) with the VEC1, VEC2, VEC3 extension at the end for periodic systems, e.g. diamond would look
like this:

2

C -0.51292147 -0.51292147 -0.51292147
C 0.51292147 0.51292147 0.51292147
VEC1 0.00000000 2.05168587 2.05168587
VEC2 2.05168587 -0.00000000 2.05168587
VEC3 2.05168587 2.05168587 0.00000000

The request.json file is just a small JSON file that specifies what exactly AMS wants the external engine to
calculate:

{
"title": "GOStep28",
"quiet": false,
"gradients": true,
"stressTensor": false,
"hessian": true,
"dipoleMoment": false,
"properties": true,
"prevResults": "GOStep27"

}

102 Chapter 5. Engines

AMS Manual, Amsterdam Modeling Suite 2019

The job of the interfacing script is now to read these files, run the external program and convert its output into a format
understood by AMS. Generally these are simple text files with the name of the property and the extension .txt. The
bare minimum the interfacing script needs to produce is the file energy.txt containing a single number, i.e. the total
energy in atomic units (Hartree). Other properties are optional, and it is easiest to go through the request.json
entries one by one to see what AMS might request and what the interfacing script could produce in response.

title Just a title for this particular engine run. It can be passed on to the external program if desired, or can just be
ignored.

quiet Whether AMS wants the external engine to write to standard output. This can be ignored in principle, but
that might lead to really incomprehensible text output files of AMS if the external engine has to be called many
times, e.g. for numerical derivatives.

gradients Whether or not to calculate nuclear gradients. The interface script should put the gradients in a file
called gradients.txt with nAtoms lines of 3 real numbers each, in atomic units, i.e. Hartree/Bohr. Note
that AMS wants the gradients, not forces (beware the - sign!).

stressTensor Whether to calculate the stressTensor for periodic systems. Should be written to
stresstensor.txt in atomic units.

hessian Whether to calculate the Hessian, that is just the second derivative of the energy with respect to the nuclear
coordinates, without applying any mass weighing to it. If the Hessian has been calculated, it should be put in
hessian.txt as a 3 nAtoms x 3 nAtoms matrix in atomic units.

dipoleMoment If true, calculate the dipole moment and put it in dipolemoment.txt in atomic units, in one
line with three numbers.

properties This is set to true if AMS considers this “geometry” important and wants the engine to calculate
further properties that the user might be interested in. In practice this is set to “true” for e.g. the final converged
step in a geometry optimization, so that the user can then let the engine calculate e.g. the band structure, which
one would not want to do at all the steps during the optimization. AMS can’t do anything with the properties
that the engine might calculate, but the files will remain on disk for people to inspect them.

prevResults This is the title of a previous similar calculation that the engine has already performed. These results
can be accessed in ../$prevResults/, so for the example above GOStep28 can access the results from
the previous step in the geometry optimization in ../GOStep27/. This is just the directory in which the
interfacing script was run when the title field was set to GOStep27, so files that were written back then are
still accessible. They can in principle be used to restart for example the SCF of the engine from step to step. Of
course all of that has to be done by the interfacing script. The AMS driver does not know anything about how
to restart the external program and can only point the interfacing script to the right location.

That is really all there is to the external engine: AMS prepares a folder with system.xyz and request.json and
runs the user’s interfacing script in there, which has to take care of preparing the input for the external engine, running
it, and putting the results in the text files that AMS expects, e.g. gradients.txt.

Note for properties that are in one way or another derivatives of the energy, it is generally ok if the external engine does
not calculate what was requested by the AMS driver in request.json. If AMS requests, for example, the gradients
from the external engine, but then does not find the gradients.txt in the directory after the interfacing script has
run, it will just assume that the engine was not capable of calculating the gradient analytically. AMS will then just
do the gradient numerically by rerunning the external engine for displaced geometries, reading only the energy from
energy.txt. In this sense it is only absolutely required for the external engine to produce the energy, the rest can
be done numerically by AMS if required. It is of course best to let the engine do as much as possible, especially if
it implements analytical derivatives. Note that currently AMS can not calculate the Hessian numerically for engines
that do not provide gradients. This is just a technical limitation, as it is of course possible to do a second derivative
numerically, but it is just not implemented in AMS yet. (And it would also be a very slow way to calculate a Hessian.)

In addition to the Execute keyword that specifies the interfacing script, the Engine External block also needs
to contain some information about the capabilities of the external engines:

5.2. External programs as engines 103

AMS Manual, Amsterdam Modeling Suite 2019

Engine External
Execute {...}
Supports

DipoleMoment {true|false}
PeriodicityNone {true|false}
PeriodicityChain {true|false}
PeriodicitySlab {true|false}
PeriodicityBulk {true|false}

End
EndEngine

The normal engines that come with AMS (e.g. DFTB and BAND) produce the engine output files with extension
.rkf in the results directory, see here (page 4). These files are also produced when an external engine is used and
the information on them (anything related to the shape of the PES at that point, e.g. normal modes, phonons, ...) can
be visualized normally with the graphical interface. In addition to each engine output .rkf file, external engines will
also produce a correspondingly named folder per engine file, which is just the working directory of the interfacing
script for that particular invocation of the external program. These folders just contain the full output of the external
program and anything that the interfacing script might have produced. In this way users still have access to all results
from the external program, even if these results were not communicated back to the AMS driver.

This last point is probably best illustrated with a simple example. Consider the following job that uses an external
engine to do a linear transit calculation of ethane, going from the staggered to the eclipsed configuration, calculating
normal modes at all converged points along the path:

AMS_JOBNAME=ethane_torsion $ADFBIN/ams << EOF

Task PESScan

System
Atoms

C 0.00000000 0.00000000 0.76576000
C 0.00000000 0.00000000 -0.76576000
H -0.88668938 0.51193036 1.16677000
H 0.88668938 0.51193036 1.16677000
H 0.00000000 -1.02386071 1.16677000
H 0.00000000 1.02386071 -1.16677000
H -0.88668938 -0.51193036 -1.16677000
H 0.88668938 -0.51193036 -1.16677000

End
End

PESScan
CalcPropertiesAtPESPoints True
ScanCoordinate

nPoints 5
Dihedral 3 1 2 6 60.0 0.0

End
End

Properties
NormalModes True

End

Engine External
...

EndEngine

104 Chapter 5. Engines

AMS Manual, Amsterdam Modeling Suite 2019

EOF

If we run this job and look into the results folder, we will find the standard ams.log and ams.rkf as well as the
usual engine result files PESPoint(1).rkf to PESPoint(5).rkf. Just as if we had used one of the native AMS
engines, like DFTB. Each of these files can be opened in ADFSpectra to visualize the normal modes for this particular
point. For an external engine we additionally have one folder per engine file, so for this example we would have
PESPoint(1)/ to PESPoint(5)/. These are the folders in which the interfacing script ran for these particular
points, so they contain all the native output files of the external program.

5.3 Toy engines

The AMS driver comes with a simple built-in toy engine that implements a Lennard-Jones potential. This can some-
times be useful for testing, as many properties of the Lennard-Jones gas/liquid/solid can be calculated analytically and
compared to the results from AMS. Note that the potential is exactly the same for all elements, i.e. the N-N bond has
exactly the same strength as the He-He bond.

The Lennard-Jones engine only has three keywords, which define the shape of the potential:

Engine LennardJones
RMin float
Eps float
Cutoff float

EndEngine

Cutoff

Type Float

Default value 15.0

Unit Angstrom

Description The distance at which the interaction is truncated.

Eps

Type Float

Default value 1.0

Unit Hartree

Description The depth of the potential well.

RMin

Type Float

Default value 1.0

Unit Angstrom

Description The distance of the potential minimum.

5.3. Toy engines 105

AMS Manual, Amsterdam Modeling Suite 2019

106 Chapter 5. Engines

CHAPTER

SIX

TECHNICAL TOPICS

6.1 Input syntax

The AMS driver reads its input from standard input, i.e. what is called STDIN on Unix-like systems. Technically it is
possible to run AMS and type the input file in interactively. This is however highly impractical and most people run
AMS from a small shell script that contains the AMS text input and sends it directly to the AMS executable:

#!/bin/sh

$ADFBIN/ams << EOF

... AMS text input goes here:

Block
Keywork value
OtherKeyword value

End

EOF

This section of the AMS manual documents the syntax of the text input.

6.1.1 General remarks on input structure and parsing

• Most keys are optionals. Defaults values will be used for keys that are not specified in the input

• Keys/blocks can either be unique (i.e. they can appear in the input only once) or non-unique. (i.e. they can
appear multiple times in the input)

• The order in which keys or blocks are specified in the input does not matter. Possible exceptions to this rule are
a) the content of non-standard blocks b) some non-unique keys/blocks)

• Comments in the input file start with one of the following characters: #, !, :::

this is a comment
! this is also a comment
:: yet another comment

• Empty lines are ignored

• The input parsing is case insensitive (except for string values):

107

AMS Manual, Amsterdam Modeling Suite 2019

this:
UseSymmetry false
is equivalent to this:
USESYMMETRY FALSE

• Indentation does not matter and multiple spaces are treaded as a single space (except for string values):

this:
UseSymmetry false

is equivalent to this:
UseSymmetry false

6.1.2 Keys

Key-value pairs have the following structure:

KeyName Value

Possible types of keys:

bool key The value is a single Boolean (logical) value. The value can be True (equivalently Yes) or False (equiv-
alently No.). Not specifying any value is equivalent to specifying True. Example:

KeyName Yes

integer key The value is a single integer number. Example:

KeyName 3

float key The value is a single float number. For scientific notation, the E-notation is used (e.g. −2.5 × 10−3 can be
expressed as -2.5E-3). The decimal separator should be a dot (.), and not a comma (,). Example:

KeyName -2.5E-3

string key The value is a string, which can include white spaces. Only ASCII characters are allowed. Example:

KeyName Lorem ipsum dolor sit amet

multiple_choice key The value should be a single word among the list options for that key (the options are listed in
the documentation of the key). Example:

KeyName SomeOption

integer_list key The value is list of integer numbers. Example:

KeyName 1 6 0 9 -10

float_list key The value is list of float numbers. The convention for float numbers is the same as for Float keys.
Example:

KeywordName 0.1 1.0E-2 1.3

108 Chapter 6. Technical topics

AMS Manual, Amsterdam Modeling Suite 2019

6.1.3 Blocks

Blocks give a hierarchical structure to the input, grouping together related keys (and possibly sub-blocks). In the input,
blocks generally span multiple lines, and have the following structure:

BlockName
KeyName1 value1
KeyName2 value2
...

End

Headers

For some blocks it is possible (or necessary) to specify a header next to the block name:

BlockName someHeader
KeyName1 value1
KeyName2 value2
...

End

Compact notation

It is possible to specify multiple key-value pairs of a block on a single line using the following notation:

This:
BlockName KeyName1=value1 KeyName2=value2

is equivalent to this:
BlockName

KeyName1 value1
KeyName2 value2

End

Notes on compact notation:

• The compact notation cannot be used for blocks with headers.

• Spaces (blanks) between the key, the equal sign and the value are ignored. However, if a value itself needs to
contain spaces (e.g. because it is a list, or a number followed by a unit), the entire value must be put in either
single or double quotes:

This is OK:
BlockName Key1=value Key2 = "5.6 [eV]" Key3='5 7 3 2'
... and equivalent to:
BlockName

Key1 value
Key2 5.6 [eV]
Key3 5 7 3 2

End

This is NOT OK:
BlockName Key1=value Key2 = 5.6 [eV] Key3=5 7 3 2

Non-standard Blocks

A special type of block is the non-standard block. These blocks are used for parts of the input that do not follow the
usual key-value paradigm.

6.1. Input syntax 109

AMS Manual, Amsterdam Modeling Suite 2019

A notable example of a non-standard block is the Atoms block (in which the atomic coordinates and atom types are
defined).

6.1.4 Units

Some keys have a default unit associated (not all keys have units). For such keys, the default unit is mention in the key
documentation. One can specify a different unit within square brackets at the end of the line:

KeyName value [unit]

For example, assuming the key EnergyThreshold has as default unit Hartree, then the following definitions are
equivalent:

Use defaults unit:
EnergyThreshold 1.0

use eV as unit:
EnergyThreshold 27.211 [eV]

use kcal/mol as unit:
EnergyThreshold 627.5 [kcal/mol]

Hartree is the atomic unit of energy:
EnergyThreshold 1.0 [a.u.]

Available units:

• Energy: Hartree, Joule, eV, kJ/mol, kcal/mol, cm1, MHz

• Length: Bohr, Angstrom, meter

• Angles: radian, degree

• Mass: el, proton, atomic, kg

• Pressure: atm, Pascal, GPa, a.u., bar, kbar

6.2 Double parallelism

AMS is a parallel program using MPI for efficient execution on distributed memory machines, aka compute clusters.
For most jobs, the AMS driver part of a calculation is computationally not particularly costly and most of the execution
time is spent inside of the compute engines (page 99). Therefore the main parallelization of AMS is inside of the
engines, making sure that a good performance is obtained for tasks (page 11) such as molecular dynamics (page 33)
or geometry optimizations (page 11), which consist of a series of interdependent engine invocations: We need to have
completed step 𝑛 before we can continue with step 𝑛 + 1.

However, not all workloads are of this sequentially dependent type. Some jobs have a lot of independent work, that
can be done in parallel. This kind of trivial parallelizability can be exploited at the AMS driver level: Instead of having
all cores collaborate on a single PES point and then doing all needed PES points sequentially, we can just distribute
the available PES points over the all the available cores. Normally this leads to a better parallel scaling than the default
parallelization inside of the engines: Parallelizing the engines is relatively complicated and often requires a lot of
communication between cores. Parallelizing on the driver level on the other hand is very easy, and often the only
communication required is at the very end of the calculation, when results are collected.

Note that it is perfectly possible to combine both the in-engine parallelization and the driver level parallelism: At the
driver level we could split our e.g. in total 32 cores into 4 groups of 8 cores, and then have each group of 8 use the

110 Chapter 6. Technical topics

AMS Manual, Amsterdam Modeling Suite 2019

in-engine parallelization to collaborate on a specific calculation. This is especially useful if the total number of cores is
larger than then number of independent calculations we have to do. It might also be that we have a very large number
of calculations to do, but not enough memory to let every core work alone on its own calculation, as would be ideal
from a parallel scaling point of view.

Because of the two levels of parallelism – both at the driver and the engine level – we call this setup double paralleliza-
tion. Double parallelization is used for the calculation of the PES point properties (page 87) which are derivatives, if
these need to be done numerically:

• Numerical calculation of forces / nuclear gradients (page 89). With a double sided derivative this requires
6 × 𝑛atoms independent calculations on geometries with one atom displaced along a cartesian coordinate.

• Numerical calculation of the stress tensor (page 90) for periodic systems. This requires up to 12 calculations
for a double sided derivative along the 6 strain directions, but might require less in case some of the strains are
symmetry equivalent.

• Numerical calculation of the Hessian (page 90) and normal modes of vibration. This is currently only supported
for engines that calculate nuclear gradients analytically and done by numerically differentiating this first (ana-
lytic) derivative. As such it requires 6× 𝑛atoms independent calculations on geometries with one atom displaced
along a cartesian coordinate.

• Numerical calculation of the elastic tensor (page 93). This requires 84 independent geometry optimizations on
systems with differently strained lattices, with each optimization having a variable number of steps.

• Numerical calculation of phonons (page 95). This requires at most 6 × 𝑛atoms displacements, but might require
less in case some of the displacements are symmetry equivalent. Note that the displacements are done in a super
cell system, which for many engines will increase the memory requirements, but also improve the in-engine
parallel scalability.

In order to use double parallelization it has to be enabled explicitly in the input. This is done for the above mentioned
properties individually, as one might want a different grouping strategy for each property. For each property there is
a separate Parallel block somewhere in the input (e.g. ElasticTensor%Parallel for the calculation of the
elastic tensor), which has the following keywords:

Parallel
nGroups integer
nCoresPerGroup integer
nNodesPerGroup integer

End

Note that only one of them should be specified in the input, depending of course on what is the desired strategy for
parallelization.

nGroups n Splits all cores evenly into n groups. We recommend choosing n such that it divides the total number
of cores without a remainder.

nCoresPerGroup n Each group consists of n cores. As such nCoresPerGroup 1 results in the maximum
possible parallelism at the driver level. We recommend choosing n such that it divides the total number of cores
without a remainder.

nNodesPerGroup n Makes groups from all cores within n nodes, e.g. nNodesPerGroup 1 would make every
cluster node into a separate group. Note that this option should only be used on homogeneous compute clusters,
where all used nodes have the same number of cores. Otherwise cores from different nodes will be grouped
together in very surprising and unintended ways, probably resulting in suboptimal performance.

The optimal grouping strategy and number of groups depends on the total number of cores used in the calculation, the
amount of independent tasks to be done in parallel, as well as the parallel scalability of the engine itself. In practice it
can be a bit tricky. Suppose, as an example, that we want to calculate the elastic properties of a bulk material on a 32
core machine. The calculation of the elastic tensor (page 93) should be done on a relaxed geometry, including relaxed

6.2. Double parallelism 111

AMS Manual, Amsterdam Modeling Suite 2019

lattice degrees of freedom. We therefore first perform a geometry optimization, before calculating the elastic tensor.
In AMS this can easily be done with the following input:

Task GeometryOptimization

GeometryOptimization
OptimizeLattice True

End

Properties
ElasticTensor True

End

But what is the most optimal parallel setup for this calculation? First we recognize that performing a lattice opti-
mization requires the calculation of the stress tensor (page 90) at every step of the optimization. Assuming that our
bulk system does not have any symmetries AMS can exploit, the numerical calculation of the stress tensor (which
most engines can not calculate analytically) would require 12 independent strained calculations for every step in the
geometry optimization. Once the geometry optimization is converged, we have to perform 84 independent geometry
optimizations to determine the elements of the elastic tensor. In summary, the graph of dependencies between all these
tasks looks like this:

112 Chapter 6. Technical topics

AMS Manual, Amsterdam Modeling Suite 2019

How do we best parallelize this? For the main steps, e.g. GOStep1 there is no question: We have nothing to do
in parallel and all 32 cores work on it together to finish it as quickly as possible. For the numerical calculation of
the stress tensor we have 12 tasks that can be done in parallel by the 32 cores in our machine. Now 12 obviously
does not divide 32 without a remainder, so there is no way to split into equally sized groups and do all 12 strains in
parallel. The greatest common divisor of 12 and 32 is 4, so it’s probably best to split into 4 groups of 8 cores each.
This is done with nGroups 4. Each group would then do 3 of the 12 strained calculations sequentially, using the in-
engine parallelization to speed up the individual calculations. Once the stress tensor is computed in this way all groups
merge and all 32 cores work together on GOStep2. This splitting and merging now continues until the geometry
optimization is converged. For the elastic tensor we now have 84 tasks to perform in parallel, where each task is a
completely separate geometry optimization (without optimizing the lattice) of a strained system. 84 tasks is more than

6.2. Double parallelism 113

AMS Manual, Amsterdam Modeling Suite 2019

double the number of cores we have. In this case it is probably best to just run as parallel as possible at the driver level
and make 32 “groups” of just one core to throw the 84 tasks at. This is easily done by setting nCoresPerGroup 1
in the ElasticTensor block. Putting everything together we should add the following to our input file in order to
optimally utilize our machine for this example calculation:

NumericalDifferentiation
Parallel

nGroups 4
End

End

ElasticTensor
Parallel

nCoresPerGroup 1
End

End

6.3 Running AMS on compute clusters

AMS is parallelized with MPI and can therefore be run in parallel on distributed memory machines, aka compute
clusters. See the installation manual for general documentation on how to set up and run all the programs from the
Amsterdam Modeling Suite on compute clusters. In this section we give some more advice that is specific to the AMS
driver and its engines.

Normally users use the login node to prepare their jobs and input files somewhere in their home directory, and also
want the results of their jobs to end up there. Quite often, compute clusters are set up such that the user’s home
directory is also mounted on the compute nodes, usually via NFS (Network File System). Before the introduction of
the AMS driver it was not recommended to cd to the home directory in the submission script and have the compute
nodes execute the job directly there. This was simply due to the fact that a lot of file I/O was done on temporary files
in the present working directory, which in this case would be on a slow network-mounted file system.

On the other hand, with AMS, switching to the home directory is the preferred way of running on a cluster where the
home directory is mounted on the compute nodes. Running in the home directory mounted over NFS does not come
with a performance penalty for AMS, but has many advantages. This is because AMS and its engines are already built
under the assumption that access to this directory is slow. Basically there are three directories that are used by the
AMS driver and its engines:

1. The starting directory, i.e. the present working directory at the time the AMS driver is started. This folder is
generally read-only for AMS, except for creating the results directory there at the beginning of a calculation.
Note that all relative paths in the AMS input, e.g. for loading results from previous calculations, are relative to
the starting directory. The starting directory is assumed to be on a slow filesystem, but since data is normally
only read once from there in the beginning of a calculation, this is in practice not a problem.

2. The results directory, where the results of a calculation as well as important intermediate steps (e.g. restart
files) are collected. It also contains the log file which can be used to monitor a running calculations. The results
directory is assumed to be on a slow filesystem, so AMS and its engines will be very careful not to do much disk
I/O there. Generally something is only written to the results directory when AMS is sure that it should remain
on disk when the calculation finishes. The results directory can also contain some intermediate restart files, so
the contents of the result directory should be all that is needed in case the calculation crashes or is killed before
it finishes normally.

3. The scratch directory, the location of which is set with the $SCM_TMPDIR environment variable, see also the
installation manual. This directory should be put on a fast disk, e.g. an SSD in the compute node, as it will
be used to store temporary results on disk. Users do not really need to care or know about the temporary files
in the scratch directory. Normally, any files and directories created in the scratch directory are cleaned up at

114 Chapter 6. Technical topics

AMS Manual, Amsterdam Modeling Suite 2019

the end of the calculation. In case of errors, AMS tries to copy anything useful (e.g. the text output of all the
different ranks) to the results directory in order to make finding the problem easier. However, for some kinds of
crashes (or if the SIGKILL signal is sent to AMS), the cleanup of the scratch directory might not be performed,
in which case users might want to manually check or remove the amstmp_* folders in the scratch directory.

With this setup there is no performance penalty for running directly on a network mounted home directory: Results
will just be put there immediately, instead of being copied there at the end of a calculation.

Normally all batch systems provide an environment variable that is set to the directory from which the job was sub-
mitted, which is then where one should cd in the run script:

#!/bin/sh

if [-z "$PBS_O_WORKDIR"]; then
PBS batch system
cd "$PBS_O_WORKDIR"

elif [-z "$SLURM_SUBMIT_DIR"]; then
Slurm batch system
cd "$SLURM_SUBMIT_DIR"

elif [-z "..."]; then
add other batch systems as necessary ...
cd "..."

fi

export AMS_JOBNAME=myJob

$ADFBIN/ams << EOF

Normal AMS text input, but with all paths
relative to where the job was submitted from, e.g.:
LoadSystem previousJob.results/ams.rkf

EOF

With this runscript the AMS driver would make a myJob.results folder in the directory where the job was sub-
mitted from, and there is no need to copy results around manually in the run script. Furthermore this runscript always
produces exactly the same files in the same locations, no matter if it is run interactively or submitted to a compute
node through the batch system. Furthermore all paths in the input file can be specified relative to the location from
where the runscript is submitted (normally the folder in which the runscript is located). This removes the need to copy
or specify absolute paths to previous results, e.g. when restarting calculations. Finally, files useful for monitoring the
running calculation are also conveniently there and not hidden somewhere on the compute node.

6.4 Python interface

There is a complete Python interface to AMS, which allows users to set up and run arbitrary AMS jobs, and to
conveniently analyze the calculation results directly from Python. In this way AMS jobs can be automatized and
complex multi-stage workflows implemented.

The scripting framework is called PLAMS as in “Python Library for Automating Molecular Simulation”, which con-
veniently can also be read as “Python Layer for AMS”. It is documented in a separate manual:

• PLAMS introduction

• Running AMS through PLAMS

6.4. Python interface 115

AMS Manual, Amsterdam Modeling Suite 2019

116 Chapter 6. Technical topics

CHAPTER

SEVEN

EXAMPLES

7.1 Geometry optimization

7.1.1 Example: Simple geometry optimization

Download GO_formaldehyde_noSCC.run

#!/bin/sh

$ADFBIN/ams << EOF

Task GeometryOptimization

System
Atoms [Bohr]

C 0.0 0.0 -1.0
O 0.0 0.0 1.247
H 0.0 -1.738 -2.097
H 0.0 1.738 -2.097

End
End

Engine DFTB
ResourcesDir Dresden
Model DFTB0
DispersionCorrection Auto

EndEngine

EOF

7.1.2 Example: Two-stage geometry optimization with initial Hessian

Download 2StepGO.run

#!/bin/sh

Preoptimization with DFTB and calculation of the Hessian
==
#
We will reuse the geometry optimized at the DFTB level as a starting point for
the DFT geometry optimization. We will also calculate the real Hessian with
DFTB and use that as the initial Hessian for the Quasi-Newton based

117

AMS Manual, Amsterdam Modeling Suite 2019

optimization at the DFT level. DFTB is so fast compared to DFT, that all of
this is basically instantaneous. Our goal here is really just to reduce the
number of steps in the DFT geometry optimization. If we save just a single
step there, the initial DFTB calculation will already have paid for itself ...

AMS_JOBNAME=dftb_preopt $ADFBIN/ams << EOF

Specify the system geometry: Aspirin
System

Atoms
C 0.000000 0.000000 0.000000
C 1.402231 0.000000 0.000000
C 2.091015 1.220378 0.000000
C 1.373539 2.425321 0.004387
C -0.034554 2.451759 0.016301
C -0.711248 1.213529 0.005497
O -0.709522 3.637718 0.019949
C -2.141910 1.166077 -0.004384
O -2.727881 2.161939 -0.690916
C -0.730162 4.530447 1.037168
C -0.066705 4.031914 2.307663
H -0.531323 -0.967191 -0.007490
H 1.959047 -0.952181 -0.004252
H 3.194073 1.231720 -0.005862
H 1.933090 3.376356 -0.002746
O -2.795018 0.309504 0.548870
H -2.174822 2.832497 -1.125018
O -1.263773 5.613383 0.944221
H -0.337334 4.693941 3.161150
H 1.041646 4.053111 2.214199
H -0.405932 3.005321 2.572927

End
End

Do a geometry optimization.
Task GeometryOptimization

Also compute the Hessian at the optimized geometry.
Properties

Hessian True
End

Parallelize the calculation of the displacements used for the numerical
calculation of the Hessian. Aspirin is much too small for the DFTB engine
to parallelize efficiently internally, so parallelization at the driver
level will give better performance.
NumericalDifferentiation

Parallel nCoresPerGroup=1
End

Settings for the DFTB engine:
Engine DFTB

Model DFTB3
ResourcesDir DFTB.org/3ob-3-1

EndEngine

EOF

118 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

Geometry optimization with DFT
==============================

AMS_JOBNAME=dft_opt $ADFBIN/ams << EOF

Start from the geometry that is already optimized at the DFTB level.
LoadSystem

File dftb_preopt.results/dftb.rkf
End
(equivalent to loading the system from dftb_preopt.results/ams.rkf)

Task GeometryOptimization

GeometryOptimization
InitialHessian

Load the DFTB Hessian as the initial Hessian for the
Quasi-Newton based optimizer.
Type FromFile
File dftb_preopt.results/dftb.rkf

End
End

Settings for the BAND engine:
Engine BAND

Basis Type=TZP
XC GGA=PBE

EndEngine

EOF

7.1.3 Example: Periodic lattice optimization under pressure

Download Diamond_under_pressure.run

#! /bin/sh

Calculate the phonon dispersion curves for diamond under pressure.

Loop over pressure values (in GPa):
for P in -40 0 40 160 ; do
AMS_JOBNAME=pressure_$P $ADFBIN/ams << EOF

Task GeometryOptimization

System
Atoms

C -0.44625 -0.44625 -0.44625
C 0.44625 0.44625 0.44625

End
Lattice

0.0 1.785 1.785
1.785 0.0 1.785
1.785 1.785 0.0

End
End

7.1. Geometry optimization 119

AMS Manual, Amsterdam Modeling Suite 2019

GeometryOptimization
OptimizeLattice Yes
Pressure $P
Convergence Gradients=1.0e-5

End

NumericalDifferentiation
Parallelize the calculation of the strain displacements, necessary for
numerically calculating the stress tensor during the lattice optimization.
Parallel nGroups=2

End

Properties
Request the calculation of phonons at the optimized geometry.
Phonons Yes

End

NumericalPhonons
Parallel nGroups=2
SuperCell

2 0 0
0 2 0
0 0 2

End
End

Engine DFTB
ResourcesDir DFTB.org/mio-1-1
KSpace

Type Symmetric
Symmetric KInteg=5

End
EndEngine

EOF
done

7.1.4 Example: Constrained optimizations

Download constraints.run

#!/bin/sh

This example demonstrates the setup of all different types of constraints.
Note that all constraints types can be combined with each other, as long as
the resulting set of constraints actually makes sense. (It must of course be
possible to satisfy all of them at the same time. AMS is not able to check
that and you might get really surprising results if that is not the case ...)

1. Angle constraints
====================

AMS_JOBNAME=angle $ADFBIN/ams << EOF

120 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

Task GeometryOptimization

System
Atoms

O 0.001356 0.000999 0.000000
H 0.994442 -0.037855 0.000000
H -0.298554 0.948531 0.000000

End
End

Constraints
Fix the H--O--H angle to 125 degrees.
Angle 3 1 2 125.0

End

Engine DFTB
ResourcesDir Dresden
DispersionCorrection Auto

EndEngine

EOF

2. Distance constraints
=======================

AMS_JOBNAME=dist $ADFBIN/ams << EOF

Task GeometryOptimization

System
Atoms

O 0.001356 0.000999 0.000000
H 0.994442 -0.037855 0.000000
H -0.298554 0.948531 0.000000

End
End

Constraints
Fix the O--H bond distances to 1.03 Angstrom.
Distance 1 2 1.03
Distance 1 3 1.03

End

Engine DFTB
ResourcesDir Dresden
DispersionCorrection Auto

EndEngine

EOF

3. Dihedral angle constraint
============================

AMS_JOBNAME=dihed $ADFBIN/ams << EOF

Task GeometryOptimization

7.1. Geometry optimization 121

AMS Manual, Amsterdam Modeling Suite 2019

System
Atoms

C -0.004115 -0.000021 0.000023
C 1.535711 0.000022 0.000008
H -0.399693 1.027812 -0.000082
H -0.399745 -0.513934 0.890139
H -0.399612 -0.513952 -0.890156
H 1.931188 0.514066 0.890140
H 1.931432 0.513819 -0.890121
H 1.931281 -1.027824 0.000244

End
End

Constraints
Fix the dihedral angle H(6)--C(2)--C(1)--H(3) to 20 degrees.
Dihedral 6 2 1 3 20.00

End

Engine DFTB
ResourcesDir Dresden
DispersionCorrection Auto

EndEngine

EOF

4. Fixed atom constraint
========================

AMS_JOBNAME=atom $ADFBIN/ams << EOF

Task GeometryOptimization

GeometryOptimization
Convergence Energy=1.0e-6 Gradients=1.0e-4 Step=1.0e-3
CoordinateType Cartesian

End

System
Atoms

C -0.2460249052 -1.70363153 0.0005128649944
O 1.152833576 -1.81594932 -0.0004409224206
C 1.489235475 0.61782051 10.0004771689226
O 0.5700116914 0.627761615 10.0005491194077

End
End

Constraints
Fix atom 1 and 2 at their initial positions.
Atom 1
Atom 2

End

Engine DFTB
ResourcesDir DFTB.org/mio-1-1

EndEngine

122 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

EOF

5. Fixed coordinate constraint
==============================

AMS_JOBNAME=coord $ADFBIN/ams << EOF

Task GeometryOptimization

GeometryOptimization
Convergence Energy=1.0e-6 Gradients=1.0e-4 Step=1.0e-3
CoordinateType Cartesian

End

System
Atoms

C -0.2460249052 -1.70363153 0.0005128649944
O 1.152833576 -1.81594932 -0.0004409224206
C 1.489235475 0.61782051 10.0004771689226
O 0.5700116914 0.627761615 10.0005491194077

End
End

Constraints
Fix the x-coordinate of all atoms.
Coordinate 1 x
Coordinate 2 x
Coordinate 3 x
Coordinate 4 x

End

Engine DFTB
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

6. Fixed atom constraint (in periodic system)
===

AMS_JOBNAME=pbcatom $ADFBIN/ams << EOF

Task GeometryOptimization

System
Atoms

C -1.23 -0.710140830 0.0
C -1.23 -0.710140830 3.8
C 0.0 0.0 0.4
C 0.0 -1.42028166 3.355

End

Lattice
1.23 -2.130422493309719 0.0
1.23 2.130422493309719 0.0

End

7.1. Geometry optimization 123

AMS Manual, Amsterdam Modeling Suite 2019

End

Constraints
Fix atom 1 and 3 at their initial positions.
Atom 1
Atom 3

End

Engine DFTB
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

7. Block constraints (with listing the atoms in a block)
==

AMS_JOBNAME=block_list $ADFBIN/ams << EOF

Task GeometryOptimization

System
Atoms

C 0.5584839616765542 0.5023705181144142 -0.4625483159356394
C 1.07173137896726 0.2125484528111251 -1.892767990599312
C 1.699248504588085 -1.006061067555322 -2.191856791501442
C 2.242484629452111 -1.236470028363516 -3.455616615521399
C 2.18874580207099 -0.2444337131062739 -4.435483595049287
C 1.604409798904145 0.9866950282217637 -4.135465239465763
C 1.061086793296828 1.217355116664161 -2.871773146851866
H 1.763625603740592 -1.780903563899969 -1.431707209662057
H 2.716038261390732 -2.190869049673275 -3.672115451399807
H 2.611833078693977 -0.4241619800888815 -5.420308290235123
H 1.578029796368043 1.774138556616255 -4.884624561698751
H 0.6247213391616491 2.187200330357715 -2.64521108544713
C 1.303528070245188 -0.1416812092038768 0.7303699949711653
C 0.8164830922475474 -1.314631142230651 1.326337082260565
C 1.531799364672407 -1.947399963062604 2.342825210379356
C 2.757684862125068 -1.432061688813837 2.765634667957531
C 3.271640455523863 -0.2897364031184506 2.150731553729188
C 2.556535912403799 0.3432056352653093 1.134221563049466
H -0.128925843064934 -1.7366201913903 0.9939642396630857
H 1.133600273086767 -2.849990046242235 2.799740694330775
H 3.31486005979636 -1.925049398411132 3.557912279830031
H 4.236604921323707 0.1064455961800578 2.457138367063388
H 2.976510069814392 1.222131876866508 0.6510413538003352
C -0.930165749820548 0.9153412637395284 -0.5420710991631585
C -1.791729737216814 0.6892660986048864 0.5418285200469819
C -3.111373625199894 1.139542032267652 0.5090625363459357
C -3.586568528476239 1.843983986018719 -0.5977864609101087
C -2.726152821786783 2.111108432452229 -1.663369105880468
C -1.406454626777386 1.660929752085611 -1.63085383469072
H -1.428888457076976 0.1571120160719108 1.417905619994904
H -3.76723983501283 0.9462006794587581 1.35432032282366
H -4.614972346570283 2.194578435055282 -0.6233521468909432
H -3.080200905921361 2.678981846821393 -2.520207901691867
H -0.7413545301831963 1.891248563160919 -2.459672151335554

124 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

C 1.235557647765805 1.735720249011045 0.1803884343948648
C 1.377191890012647 1.826646222422494 1.573181692925026
C 1.905898822116255 2.975086608901246 2.16214311213053
C 2.280792642899383 4.061906342938987 1.371311861877147
C 2.105006642447361 3.998471351380415 -0.0115253875199488
C 1.576317094651283 2.850163227898022 -0.6007264381779673
H 1.072424817958776 0.9937816064904853 2.202306496283991
H 2.017471491684088 3.023369029562452 3.242524256706377
H 2.693031233132915 4.956641734238467 1.830324484771476
H 2.372569859099136 4.8485771293401 -0.6342066225733602
H 1.427765851939196 2.820397327218896 -1.677480576376967

End
End

GeometryOptimization
Convergence

Energy 1.0e-6
Gradients 1.0e-4
Step 1.0e-4

End
End

Constraints
Create blocks from the 4 phenyl groups by specifying the atom indices
explicitly. (The indices follow the order in the System%Atoms block,
where we happen to have the atoms belonging to the different phenyl
groups consecutive.)
BlockAtoms 2 3 4 5 6 7 8 9 10 11 12
BlockAtoms 13 14 15 16 17 18 19 20 21 22 23
BlockAtoms 24 25 26 27 28 29 30 31 32 33 34
BlockAtoms 35 36 37 38 39 40 41 42 43 44 45

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ

EndEngine

EOF

8. Block constraints (with named blocks)
==

AMS_JOBNAME=block_names $ADFBIN/ams << EOF

Task GeometryOptimization

System
Atoms

C 0.5584839616765542 0.5023705181144142 -0.4625483159356394
C.phenyl1 1.07173137896726 0.2125484528111251 -1.892767990599312
C.phenyl1 1.699248504588085 -1.006061067555322 -2.191856791501442
C.phenyl1 2.242484629452111 -1.236470028363516 -3.455616615521399
C.phenyl1 2.18874580207099 -0.2444337131062739 -4.435483595049287
C.phenyl1 1.604409798904145 0.9866950282217637 -4.135465239465763
C.phenyl1 1.061086793296828 1.217355116664161 -2.871773146851866

7.1. Geometry optimization 125

AMS Manual, Amsterdam Modeling Suite 2019

H.phenyl1 1.763625603740592 -1.780903563899969 -1.431707209662057
H.phenyl1 2.716038261390732 -2.190869049673275 -3.672115451399807
H.phenyl1 2.611833078693977 -0.4241619800888815 -5.420308290235123
H.phenyl1 1.578029796368043 1.774138556616255 -4.884624561698751
H.phenyl1 0.6247213391616491 2.187200330357715 -2.64521108544713
C.phenyl2 1.303528070245188 -0.1416812092038768 0.7303699949711653
C.phenyl2 0.8164830922475474 -1.314631142230651 1.326337082260565
C.phenyl2 1.531799364672407 -1.947399963062604 2.342825210379356
C.phenyl2 2.757684862125068 -1.432061688813837 2.765634667957531
C.phenyl2 3.271640455523863 -0.2897364031184506 2.150731553729188
C.phenyl2 2.556535912403799 0.3432056352653093 1.134221563049466
H.phenyl2 -0.128925843064934 -1.7366201913903 0.9939642396630857
H.phenyl2 1.133600273086767 -2.849990046242235 2.799740694330775
H.phenyl2 3.31486005979636 -1.925049398411132 3.557912279830031
H.phenyl2 4.236604921323707 0.1064455961800578 2.457138367063388
H.phenyl2 2.976510069814392 1.222131876866508 0.6510413538003352
C.phenyl3 -0.930165749820548 0.9153412637395284 -0.5420710991631585
C.phenyl3 -1.791729737216814 0.6892660986048864 0.5418285200469819
C.phenyl3 -3.111373625199894 1.139542032267652 0.5090625363459357
C.phenyl3 -3.586568528476239 1.843983986018719 -0.5977864609101087
C.phenyl3 -2.726152821786783 2.111108432452229 -1.663369105880468
C.phenyl3 -1.406454626777386 1.660929752085611 -1.63085383469072
H.phenyl3 -1.428888457076976 0.1571120160719108 1.417905619994904
H.phenyl3 -3.76723983501283 0.9462006794587581 1.35432032282366
H.phenyl3 -4.614972346570283 2.194578435055282 -0.6233521468909432
H.phenyl3 -3.080200905921361 2.678981846821393 -2.520207901691867
H.phenyl3 -0.7413545301831963 1.891248563160919 -2.459672151335554
C.phenyl4 1.235557647765805 1.735720249011045 0.1803884343948648
C.phenyl4 1.377191890012647 1.826646222422494 1.573181692925026
C.phenyl4 1.905898822116255 2.975086608901246 2.16214311213053
C.phenyl4 2.280792642899383 4.061906342938987 1.371311861877147
C.phenyl4 2.105006642447361 3.998471351380415 -0.0115253875199488
C.phenyl4 1.576317094651283 2.850163227898022 -0.6007264381779673
H.phenyl4 1.072424817958776 0.9937816064904853 2.202306496283991
H.phenyl4 2.017471491684088 3.023369029562452 3.242524256706377
H.phenyl4 2.693031233132915 4.956641734238467 1.830324484771476
H.phenyl4 2.372569859099136 4.8485771293401 -0.6342066225733602
H.phenyl4 1.427765851939196 2.820397327218896 -1.677480576376967
^---- Element symbols augmented with a tag that we will use in the

→˓Constraints block
End

End

GeometryOptimization
Convergence

Energy 1.0e-6
Gradients 1.0e-4
Step 1.0e-4

End
End

Constraints
Use the tag from System%Atoms to set up the block constraints.
Block phenyl1
Block phenyl2
Block phenyl3
Block phenyl4

End

126 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ

EndEngine

EOF

7.2 Transition state search

7.2.1 Example: TS search starting from initial Hessian

Download COChainFreqTS.run

#! /bin/sh

This example demonstrates in the first step how to calculate the Hessian.
The second run uses the pre-calculated Hessian and performs a transition
state search along the frequency mode with the smallest frequency.

First run: Calculate Hessian
============================

AMS_JOBNAME=hessian $ADFBIN/ams << EOF

Task SinglePoint

Properties
Hessian True

End

System
Atoms

C 0.0 0.0 0.0
O 1.5 0.5 0.0

End
Lattice

3.2 0.0 0.0
End

End

Engine Band
Basis Type=DZP
KSpace Quality=Good

EndEngine

EOF

Second run: TS search with initial Hessian
==

AMS_JOBNAME=TS $ADFBIN/ams << EOF

7.2. Transition state search 127

AMS Manual, Amsterdam Modeling Suite 2019

Task TransitionStateSearch

System
Atoms

C 0.0 0.0 0.0
O 1.5 0.5 0.0

End
Lattice

3.2 0.0 0.0
End

End

GeometryOptimization
Convergence Gradients=1.0e-4
InitialHessian

Load the pre-calculated Hessian as the initial Hessian for the
transition state search using the Quasi-Newton based optimizer.
Type FromFile
File hessian.results/band.rkf

End
End

Properties
Also calculate normal modes in the end, so we can see if we actually
found a transition state.
NormalModes True

End

Engine Band
Basis Type=DZP
KSpace Quality=Good

EndEngine

EOF

7.2.2 Example: PES scan and TS search for H2 on graphene

Download PESScan_and_TS_H2_on_Graphene.run

#! /bin/sh

First we do a 2D PES scan varying the z-coordinate of the two hydrogen atoms
In this example we will keep the graphene slab fixed. From a physical/chemical
standpoint this is not a good approximation. The graphene slab is
intentionally not perfectly symmetric.

AMS_JOBNAME=PESScan $ADFBIN/ams << EOF

Task PESScan

System
Atoms

H 0.0 1.53633037 1.1
H 0.0 -0.11341359 1.1
C 0.001 1.42028166 0.0

128 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

C 1.230 2.13042249 0.0
C 1.230 -0.71014083 0.0
C 2.460 0.00000000 0.0
C 2.460 1.42028167 0.0
C 0.000 0.00000000 0.0

End
Lattice

3.69 -2.13042249 0.0
0.00 4.26084499 0.0

End
End

PESScan
ScanCoordinate

nPoints 10
Coordinate 1 Z 1.1 2.0

End
ScanCoordinate

nPoints 10
Coordinate 2 Z 1.1 2.0

End
End

Constraints
Fix the entire graphene slab.
Atom 3
Atom 4
Atom 5
Atom 6
Atom 7
Atom 8

End

Engine DFTB
Model DFTB
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ
KSpace

Type Symmetric
Symmetric KInteg=3

End
EndEngine

EOF

A human looks at the PES scan and picks a reasonable starting point for the
TS search. (Normally you would do that in ADFMovie by looking at the PES and
then exporting the geometry into an xyz file.)

_ ____
___)) [| \
) //o | |]
_ (_ > | |]
(O) __< | |]
[/] / \) [__|/_
[\]| (\ __/________
[/]| \ __ ___| |

7.2. Transition state search 129

AMS Manual, Amsterdam Modeling Suite 2019

[\]| ___E/%%/|____________|_
[/]|=====__ (_________________)

cat << EOF > initial_geometry_for_TS.xyz
8

H 0.4145668856457391 1.72927656037925 1.100000023839768
H -0.05533871972549955 -0.06805093626643093 1.500000013242627
C 0.001 1.42028166 0.0
C 1.230 2.13042249 0.0
C 1.230 -0.71014083 0.0
C 2.460 0.00000000 0.0
C 2.460 1.42028167 0.0
C 0.000 0.00000000 0.0
VEC1 3.69 -2.13042249 0.0
VEC2 0.0 4.26084499 0.0
EOF

Compute the partial initial Hessian to be used in the transition state
search. (The Hessian will be computed only for the hydrogen atoms.)

AMS_JOBNAME=Hessian $ADFBIN/ams << EOF

Task SinglePoint

System
Load the geometry we just saved.
GeometryFile initial_geometry_for_TS.xyz

End

Properties
Calculate the Hessian (implied when calculating normal modes) ...
NormalModes True
... but only the part related to the hydrogen atoms.
SelectedAtomsForHessian 1 2

End

Engine DFTB
Model DFTB
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ
KSpace

Type Symmetric
Symmetric KInteg=3

End
EndEngine

EOF

echo "Extract the frequencies from the kf file using adfreport:"
$ADFBIN/adfreport Hessian.results/dftb.rkf -r "Vibrations%Frequencies[cm-1]##1"

Do a transition state search using the initial Hessian just computed (the
Graphene slab is constrained). Also compute the final Hessian for the
hydrogen atoms to validate the TS.

130 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

AMS_JOBNAME=TS $ADFBIN/ams << EOF

Task TransitionStateSearch

System
Load the geometry we just saved.
GeometryFile initial_geometry_for_TS.xyz

End

GeometryOptimization
Quasi-Newton

Step TrustRadius=0.05
End
Convergence Gradients=1.0e-4
InitialHessian

Load previously calculated Hessian as initial Hessian for a
transition state search with the Quasi-Newton optimizer.
Type FromFile
File Hessian.results/dftb.rkf

End
End

TransitionStateSearch
Follow the mode with the smallest frequency.
ModeToFollow 1
(This is also the default, we wouldn't need to specify this.)

End

Constraints
Fix the entire graphene slab.
Atom 3
Atom 4
Atom 5
Atom 6
Atom 7
Atom 8

End

Properties
NormalModes Yes
SelectedAtomsForHessian 1 2

End

Engine DFTB
Model DFTB
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ

KSpace
Type Symmetric
Symmetric KInteg=3

End
EndEngine

EOF

echo "Extract energy from the rkf file using adfreport:"
$ADFBIN/adfreport TS.results/dftb.rkf -r "AMSResults%Energy"

7.2. Transition state search 131

AMS Manual, Amsterdam Modeling Suite 2019

7.3 Intrinsic reaction coordinate (IRC)

7.3.1 Example: IRC for HCN

Download IRC_HCN.run

#!/bin/sh

== IRC scan of the reaction path ==

The IRC calculation is split in two steps to illustrate the Restart feature.

In the first calculation only a few points are computed along the so-called
'forward' path. The definition of which is 'forward' and which is
'backward' depends on the sign of the largest component of the normal mode
corresponding to the reaction coordinate.

The RKF file from this partial IRC scan serves as restart file
for the next calculations that will continue the IRC scan.

The 'MaxPoints' key in the IRC block is used to limit the number of IRC
points to compute.

AMS_JOBNAME=irc1 $ADFBIN/ams << eor

Task IRC
System

Atoms
C 0.000000000000 0.000000000000 0.000000000000
N 0.000000000000 0.000000000000 -1.182644220000
H -1.103250760411 0.000000000000 -0.322462130000

End
End

IRC
MaxPoints 5
Direction Forward
CoordinateType Cartesian
InitialHessian

Type Calculate
End

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1

EndEngine

eor

In the second IRC run, the IRC scan is finished. We start with the RKF file
from the previous run and omit the MaxPoints from the settings, which means
that the default 100 will be used. Note that the 100 also includes any points
computed in the previous calculation. The program starts on
the forward path, continuing where the first calculation had stopped,

132 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

and completes it. Since we set the Direction to Both
then AMS proceeds to the backward path. After both paths are finished a summary
of the path characteristics is printed at the end of the output file.

AMS_JOBNAME=irc2 $ADFBIN/ams << eor

Task IRC
System

Atoms
C 0.000000000000 0.000000000000 0.000000000000
N 0.000000000000 0.000000000000 -1.182644220000
H -1.103250760411 0.000000000000 -0.322462130000

End
End

IRC
Restart

File irc1.results/ams.rkf
End
! Change options from the ones found in the restart file
! (MaxIRCPoints and MaxPoints will be reset to defaults automatically)
Direction Both

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1

EndEngine

eor

7.3.2 Example: TS and IRC for Claisen reaction

Download TS_and_IRC_Claisen.run

#! /bin/sh

Transition State Search (TS search) followed by Intrinsic Reaction
Coordinates (IRC) for two similar Claisen rearrangement reactions.

==
Claisen rearrangement from C=CCC1C=CC=CC1=O to C=CCOc1ccccc1
==

AMS_JOBNAME=TS_molecule $ADFBIN/ams << eor

Task TransitionStateSearch

System
Atoms

C -1.6622561642524 -1.4933421191817 0.6484353677288
C -2.6070283916282 -1.7718977641902 -0.3933564306530
C -2.7546368861548 -3.0534770331072 -0.8757259422474
C -1.9443405437492 -4.1131780924428 -0.3870796280948

7.3. Intrinsic reaction coordinate (IRC) 133

AMS Manual, Amsterdam Modeling Suite 2019

C -1.0139402388630 -3.8827189276564 0.5979937257975
C -0.7543606665660 -2.5518266272325 1.0788971265869
H -3.2590342954832 -0.9734836183880 -0.7410179986476
H -3.5074724102535 -3.2690301027846 -1.6324229738243
H -2.1044351565280 -5.1220091436618 -0.7615296311573
H -0.4323033724363 -4.7107876462166 1.0021729248699
H -0.3533176373037 -2.4841001370767 2.0927436180830
O -1.5058234397159 -0.2844936546832 1.1029538316409
C 0.1375150486634 0.3928947854321 0.4626789880484
C 1.0578648498087 -0.6180364119671 0.7737587143345
C 0.8861173890663 -1.8991002496105 0.2125497351161
H 0.5725481135101 -1.9591100578644 -0.8292382400922
H -0.2171264706145 0.4859594211539 -0.5641152540806
H 0.1902646842718 1.3359879065177 1.0025369222419
H 1.5779002347488 -0.5540482019233 1.7307360489935
H 1.6031168776346 -2.6724262749099 0.4842127285858

End
End

Properties NormalModes=Yes

GeometryOptimization
InitialHessian Type=Calculate

End

NumericalDifferentiation
Parallel nCoresPerGroup=1

End

Engine DFTB
ResourcesDir DFTB.org/3ob-3-1

EndEngine
eor

AMS_JOBNAME=IRC_molecule $ADFBIN/ams << eor

Task IRC

IRC
MaxIterations 1000
InitialHessian

Type FromFile
File TS_molecule.results/dftb.rkf

End
end

LoadSystem
File TS_molecule.results/ams.rkf

End

Engine DFTB
ResourcesDir DFTB.org/3ob-3-1

EndEngine
eor

===

134 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

Claisen rearrangement for a (periodic) polymer containing the same aromatic
ring of the previous calculation (from C=CCC1C=CC=CC1=O to C=CCOc1ccccc1)
===

AMS_JOBNAME=TS_polymer $ADFBIN/ams << eor

Task TransitionStateSearch

System
Atoms

C 9.4367476128766 1.6156795441351 0.8542644025030
C 8.6813349262903 0.7302865575002 0.0170374963868
C 9.3238583586638 -0.1438417574104 -0.8314773024306
C 10.741095802442 -0.1538813927018 -0.9297572682512
C 11.499909556383 0.6929842950328 -0.1576524435776
C 10.884234857485 1.6861365363275 0.6817028097694
C 7.1928255650616 0.6847044785103 0.0090333093191
H 8.7472521390038 -0.8479982636647 -1.4293934603813
H 11.224348014063 -0.8771406786637 -1.5831686891584
C 12.930798908912 0.8113031163622 -0.1971191730819
H 11.474366091679 2.0120169601893 1.5412690799783
O 8.8401614254340 2.4539245100299 1.6503819438045
C 9.0152184164720 4.1939147755043 0.9354292967913
C 10.386800460742 4.3070474573655 0.6675488559614
C 10.983233806221 3.4166811386158 -0.2473786535066
H 10.425317882010 3.1661173633779 -1.1491528320010
H 8.3301833043316 4.0024301166114 0.1091130317749
H 8.5863952766270 4.7863410214548 1.7409077918798
H 11.023307058306 4.7274400682699 1.4475913648158
H 12.053474297431 3.5124067242738 -0.4244212846926
C 13.897191373368 -0.0308805104165 -0.7206407708622
C 15.267346128343 0.2274543686942 -0.4348415320624
C 16.387786908031 -0.4341710477973 -0.8962646879782
C 6.2048264493065 -0.0924013581064 -0.6266734325417
C 4.8694123304551 0.1638639419185 -0.3442585289372
C 3.7074226634814 -0.4584344973285 -0.8689206409329
C 2.4653410147781 0.0102007864139 -0.4848760767909
H 16.298210512111 -1.2787892169088 -1.5797017846452
H 3.7984002771976 -1.2806821291979 -1.5787594353897
H 6.8240750625775 1.4435007199212 0.7047818340481
H 13.314194383001 1.6434188966421 0.3984353613768
H 13.626424975736 -0.8770823766787 -1.3528414377622
H 15.451469431625 1.0743039058568 0.2322503424471
H 2.4641684561885 0.8477050600186 0.2182734314177
H 6.4819803798672 -0.8741436365939 -1.3339335062636
H 4.6807561767470 0.9698264886906 0.3703766590249

End
Lattice

15.210 0.0 0.0
End

End

Properties
NormalModes Yes

End

GeometryOptimization
Method Quasi-Newton

7.3. Intrinsic reaction coordinate (IRC) 135

AMS Manual, Amsterdam Modeling Suite 2019

InitialHessian Type=Calculate
End

NumericalDifferentiation
Parallel nCoresPerGroup=1

End

Engine DFTB
ResourcesDir DFTB.org/3ob-3-1

EndEngine
eor

AMS_JOBNAME=IRC_polymer $ADFBIN/ams << eor

Task IRC

IRC
MaxIterations 1000
InitialHessian

Type FromFile
File TS_polymer.results/dftb.rkf

End
Direction Forward

end

LoadSystem
File TS_polymer.results/ams.rkf

End

Engine DFTB
ResourcesDir DFTB.org/3ob-3-1

EndEngine
eor

7.4 PES scan

7.4.1 Example: Linear transit

Download LinearTransit.run

#!/bin/sh

echo "================="
echo "HCN isomerization"
echo "================="
echo

AMS_JOBNAME=HCN_isomerization $ADFBIN/ams << EOF

Task PESScan
(Linear transit is just a PES scan with 1 scan coordinate.)

136 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

System
Atoms

C 0.00000000 0.00000000 1.04219000
H 0.00000000 0.00000000 -0.03324000
N 0.00000000 0.00000000 2.20064000

End
End

PESScan
ScanCoordinate

nPoints 25
Angle 2 1 3 180.0 0.0

End
End

Engine DFTB
Model DFTB0
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

echo
echo "==================="
echo "Water angle transit"
echo "==================="
echo

AMS_JOBNAME=water_angle $ADFBIN/ams << EOF

Task PESScan

System
Atoms

O 0.00000000 0.00000000 0.59372000
H 0.00000000 0.76544000 -0.00836000
H 0.00000000 -0.76544000 -0.00836000

End
End

PESScan
ScanCoordinate

nPoints 25
Angle 2 1 3 80.0 180.0

End
End

GeometryOptimization
! Delocalized coordinates currently have a problem with linear systems.
! So we will use cartesian coordinates here.
CoordinateType Cartesian

End

Engine DFTB
Model DFTB0
ResourcesDir DFTB.org/mio-1-1

7.4. PES scan 137

AMS Manual, Amsterdam Modeling Suite 2019

EndEngine

EOF

echo
echo "===================="
echo "Hydrocarbon reaction"
echo "===================="
echo

AMS_JOBNAME=hydcarb $ADFBIN/ams << EOF

Task PESScan

System
Atoms

C 0.14667300 -0.21503500 0.40053800
C 1.45297400 -0.07836900 0.12424400
C 2.23119700 1.15868100 0.12912100
C 1.78331500 2.39701500 0.38779700
H -0.48348000 0.63110600 0.67664100
H -0.33261900 -1.19332100 0.35411600
H 2.01546300 -0.97840100 -0.14506700
H 3.29046200 1.03872500 -0.12139700
H 2.45728900 3.25301000 0.35150400
H 0.74193400 2.60120700 0.64028800
C -0.75086900 1.37782400 -2.43303700
C -0.05392100 2.51281000 -2.41769100
H -1.78964800 1.33942600 -2.09651100
H -0.30849400 0.43896500 -2.76734700
H -0.49177100 3.45043100 -2.06789100
H 0.98633900 2.54913500 -2.74329400

End
End

PESScan
ScanCoordinate

nPoints 25
Distance 1 11 3.36 1.538
Distance 4 12 3.36 1.538

End
End

Engine DFTB
Model DFTB0
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

echo
echo "====================================="
echo "Retinal trans -> 11-cis isomerization"
echo "====================================="

138 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

echo

AMS_JOBNAME=retinal_transcis $ADFBIN/ams << EOF

Task PESScan

System
Atoms

H -2.10968473 -1.58238733 0.78224517
C -2.10306857 -0.54058322 0.46363503
C -0.89436995 0.04807217 0.25528247
H -0.85555481 1.05432693 -0.15803658
C 0.38987539 -0.58661182 0.49038464
C 1.53213446 0.09657801 0.14394773
H 1.40518949 1.08783970 -0.29205231
H 3.05232192 -1.34477492 0.72115301
C 2.88311454 -0.36358433 0.28105432
C 3.96024700 0.37378345 -0.12385974
H 3.77965758 1.35231793 -0.56821856
C 5.34627719 -0.04025647 -0.02249097
C 6.32191717 0.80135945 -0.49190463
H 6.00090638 1.74979100 -0.92101391
C -4.46825064 -0.90426552 -0.39585925
C -5.87277429 -0.25303564 -0.45007491
C -3.41139545 0.06493448 0.19516310
C -3.67932839 1.38221399 0.41656971
C -5.81598497 1.19032366 -0.92660753
C -5.00049358 2.01922634 0.05561242
C -4.58391145 -2.18782901 0.46346394
C -4.01729542 -1.30039402 -1.82272212
C -2.72429960 2.32303313 1.10290124
C 0.40919453 -1.96244629 1.09501374
C 5.64155973 -1.38034133 0.59419110
C 7.76996060 0.56699126 -0.48750226
O 8.57693167 1.36615612 -0.92976322
H -6.51997817 -0.84904979 -1.10100203
H -6.32039371 -0.28079023 0.54871092
H -5.36159995 1.23817633 -1.92112092
H -6.82595442 1.60207678 -1.01946858
H -5.58216571 2.18390764 0.97424181
H -4.81292271 3.01993001 -0.35246294
H -4.74166770 -1.94289144 1.51126095
H -5.43008715 -2.78247632 0.12572479
H -3.69644845 -2.81116549 0.38705593
H -3.02900804 -1.75403268 -1.79820003
H -4.71056940 -2.01489741 -2.26202914
H -3.97070839 -0.42860260 -2.47090348
H -2.16469005 2.92261100 0.38111736
H -3.27791517 3.02297911 1.72885233
H -2.00470188 1.79865198 1.72726573
H -0.13689001 -1.97717074 2.03825359
H -0.07664772 -2.68134154 0.43362393
H 1.41837401 -2.31391556 1.28591185
H 5.15278730 -2.17622743 0.03222328
H 6.70436647 -1.59729505 0.62729622
H 5.25700064 -1.42489613 1.61313095
H 8.12614442 -0.41441814 -0.04549414

End

7.4. PES scan 139

AMS Manual, Amsterdam Modeling Suite 2019

End

PESScan
ScanCoordinate

nPoints 25
Dihedral 6 9 10 12 180 0
Dihedral 8 9 10 11 180 0

End
End

Engine DFTB
Model DFTB0
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

7.4.2 Example: 2D PES scan

Download PESScan.run

#!/bin/sh

echo "=============="
echo "Ethane torsion"
echo "=============="
echo

AMS_JOBNAME=ethane_torsion $ADFBIN/ams << EOF

Task PESScan

System
Atoms

C 0.0 0.0 0.76576
C 0.0 0.0 -0.76576
H -0.88668938 0.51193036 1.16677
H 0.88668938 0.51193036 1.16677
H 0.0 -1.02386071 1.16677
H 0.0 1.02386071 -1.16677
H -0.88668938 -0.51193036 -1.16677
H 0.88668938 -0.51193036 -1.16677

End
End

PESScan
First scan coordinate: C--C bond distance
ScanCoordinate

nPoints 5
Distance 1 2 1.3 1.7

End
Second scan coordinate: One of the H--C--C--H dihedral angles (others will

→˓follow naturally)
ScanCoordinate

nPoints 21

140 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

Dihedral 3 1 2 6 60.0 0.0
End

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ

EndEngine

EOF

echo "=============="
echo "Ethene torsion"
echo "=============="
echo

AMS_JOBNAME=ethene_torsion $ADFBIN/ams << EOF

Task PESScan

System
Atoms

C 0.0 0.0 0.66687
C 0.0 0.0 -0.66687
H 0.0 0.92974 -1.23912
H 0.0 0.92974 1.23912
H 0.0 -0.92974 1.23912
H 0.0 -0.92974 -1.23912

End
End

PESScan
First scan coordinate: C--C bond distance
ScanCoordinate

nPoints 5
Distance 1 2 1.1 1.8

End
Second scan coordinate: Two of the H--C--C--H dihedrals
ScanCoordinate

nPoints 21
Dihedral 4 1 2 3 0.0 60.0
Dihedral 5 1 2 6 0.0 60.0

End
End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ

EndEngine

EOF

Below are more technical examples, demonstrating the PES scan gap filling.

7.4. PES scan 141

AMS Manual, Amsterdam Modeling Suite 2019

echo "============================="
echo "Ethane gap filling test (1/2)"
echo "============================="
echo

AMS_JOBNAME=ethane_nofillgaps $ADFBIN/ams << EOF

Task PESScan

System
Atoms

C -2.333834610464788 -2.268837915270455 -0.2417723425321957
C -0.8081611038872945 -2.334371994724881 -0.04271045326758349
H -0.2505615773096904 -1.473443563856088 -0.38077110593546
H -0.3249814761083244 -3.235478579439597 -0.3904810245975267
H -0.583247370537557 -2.349691649662279 1.013499336841977
H -2.817014238243758 -1.367731330555738 0.1059982287977475
H -2.891434137042391 -3.129766346139247 0.09628831013568076
H -2.558748343814525 -2.253518260333056 -1.297982132641757

End
End

GeometryOptimization
CoordinateType Cartesian

End

PESScan
FillUnconvergedGaps False
CalcPropertiesAtPESPoints True
ScanCoordinate

nPoints 10
Distance 1 2 1.4 1.7

End
ScanCoordinate

nPoints 10
Distance 7 1 1.0 1.2
Dihedral 7 1 2 3 60.0 180.0

End
End

Engine DFTB
ResourcesDir QUASINANO2015

EndEngine

EOF

echo "============================="
echo "Ethane gap filling test (2/2)"
echo "============================="
echo

AMS_JOBNAME=ethane_fillgaps $ADFBIN/ams << EOF

Task PESScan

System

142 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

Atoms
C -2.333834610464788 -2.268837915270455 -0.2417723425321957
C -0.8081611038872945 -2.334371994724881 -0.04271045326758349
H -0.2505615773096904 -1.473443563856088 -0.38077110593546
H -0.3249814761083244 -3.235478579439597 -0.3904810245975267
H -0.583247370537557 -2.349691649662279 1.013499336841977
H -2.817014238243758 -1.367731330555738 0.1059982287977475
H -2.891434137042391 -3.129766346139247 0.09628831013568076
H -2.558748343814525 -2.253518260333056 -1.297982132641757

End
End

GeometryOptimization
CoordinateType Cartesian

End

PESScan
FillUnconvergedGaps True
CalcPropertiesAtPESPoints True
ScanCoordinate

nPoints 10
Distance 1 2 1.4 1.7

End
ScanCoordinate

nPoints 10
Distance 7 1 1.0 1.2
Dihedral 7 1 2 3 60.0 180.0

End
End

Engine DFTB
ResourcesDir QUASINANO2015

EndEngine

EOF

7.5 Molecular dynamics

7.5.1 Example: Simple MD for H2

Download MD_hydrogen_longrun.run

#!/bin/sh

$ADFBIN/ams << eor

Task MolecularDynamics

MolecularDynamics
nSteps 1000
TimeStep 0.1
InitialVelocities Type=zero
Thermostat Type=none
Trajectory SamplingFreq=100

End

7.5. Molecular dynamics 143

AMS Manual, Amsterdam Modeling Suite 2019

System
Atoms [Bohr]

H -2.0 0.0 0.0
H 2.0 0.0 0.0

End
End

Engine DFTB
ResourcesDir Dresden
Occupation Strategy=Fermi Temperature=5
Repulsion

forcePolynomial true
End
DispersionCorrection Auto

EndEngine

eor

7.5.2 Example: MD for a box of water

Download H2O_nreac.run

7.6 Vibrational analysis

7.6.1 Example: Mode Refinement

Download VATools_dydrogesterone.run

#! /bin/sh

This example shows a mode refinement of the band associated with the
C=O and C=C stretch modes in the dydrogesterone molecule. This was one
of the example calculations in the original paper on mode refinement:
#
J. Phys. Chem. Lett., 2018, 9 (23), pp 6878-6882

Step 1: Get DFTB modes at the optimized DFT geometry
--

AMS_JOBNAME=FREQ_DFTB $ADFBIN/ams << EOF

System
Atoms

Dydrogesterone geometry already optimized with DFT (BP86/TZP).
C 0.179402320119871 1.1462568499773749 -1.34045805553897
C -1.0397129548582973 1.4038864822738149 -0.42742864655449175
C -1.9187723039939633 0.15407663507305838 -0.2887082902723144
C 5.26339021966562 -0.0803229279006518 0.15901574737297627
C 4.387948120190181 -1.2500901532169464 0.1985138671042922
C 3.0305058270434313 -1.2006020082109579 0.06687676611264043
C 2.2733069275281843 0.12162323554336309 -0.08656132560038762
C 3.224495049036027 1.1562588842598234 -0.7427294996476081

144 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

C 4.589580248129175 1.2673670000240371 -0.055599205726051454
C -2.593712600512111 -0.1967276203097069 -1.6287069723510241
C -2.011183672049868 -2.0904848406306247 0.6637924766824627
C -3.24333170765593 -1.3040476226855777 1.1949612943873085
C -2.9910039148987044 0.19289628304945772 0.8647395097635705
C 1.8832501895313913 0.6066618903839885 1.3319251022509289
C -1.021215985785471 -0.9883577256376227 0.2595406535945511
C 0.950572917185341 -2.499497885394989 -0.17845795742396
C 2.2618422613458535 -2.429295894019406 0.12998062227671012
C 0.14931427176016024 -1.3398555308999998 -0.6810919840203331
C 1.0424571714734645 -0.11148243146945544 -1.0381151732514977
C -4.261014768367461 0.9709543041281233 0.5302962418813911
C -4.2770282131623745 2.4457823410117943 0.8829249061723259
O -5.23153866013212 0.4348316478674291 0.006835058476534351
O 6.486629619384615 -0.1787206146841789 0.3101830744372818
H 4.496419281348679 1.7413060958817603 0.9361407723186962
H 4.889108126023183 -2.2103967123783246 0.34783394165927906
H -2.5053803890738937 0.6948315694295174 1.7185731459759712
H 2.747947397670055 2.147017249296297 -0.7608107343500633
H 3.3788188981072294 0.8618896159833123 -1.7937886227370627
H 5.278515387629924 1.9033945262275014 -0.6280820487414189
H -0.313881863508176 -1.6818474813482587 -1.6263008186833716
H 2.7970964757389787 -3.3338033858599037 0.4312075853898926
H 0.4355882565839679 -3.460258453470549 -0.09628540747796212
H 2.7788926695047853 0.7904363143118734 1.939504792825026
H 1.3142558486724543 1.5445870277271823 1.281760102768146
H 1.2817550339094792 -0.13839730232383732 1.865618408504196
H 1.519857325493626 -0.37989780969443004 -1.9963570252289853
H -3.35526145791249 2.9466219355670638 0.5538746959825623
H -0.5844412872674496 -0.5966200898063014 1.193600037988863
H 0.8128688006525261 2.043605920072621 -1.3496094336049678
H -0.18858319204633375 1.0503960522723468 -2.3730012879550473
H -1.6112343483079186 2.2461900431605373 -0.8495116990527544
H -0.710640496667605 1.7174589936204205 0.5760379282354502
H -1.5937002785491352 -2.7672883134736264 1.4205298630102559
H -2.2836000112559893 -2.709635208733019 -0.2046201598348845
H -3.3761548431942434 -1.4386051747789588 2.276540650869438
H -4.174084527825135 -1.628156544022731 0.7132317870749941
H -1.860827847389362 -0.4325042173503644 -2.4102132115597854
H -3.2757258446436426 -1.0505046678063983 -1.5382984747892279
H -3.1932088604642455 0.6502553019056425 -1.9892714020438331
H -4.314908973244162 2.55066722711135 1.9790476680048945
H -5.155478941054673 2.9311753898910595 0.44480850527661253

End
End

Task SinglePoint

Properties
NormalModes Yes

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-freq-1-2

EndEngine

Do displacements for the numerical Hessian in parallel.

7.6. Vibrational analysis 145

AMS Manual, Amsterdam Modeling Suite 2019

NumericalDifferentiation
Parallel nCoresPerGroup=1

End

EOF

Step 2: Mode refinement of the DFTB C=O and C=C stretch bands at the DFT level
--

AMS_JOBNAME=ModeRefinement $ADFBIN/ams << EOF

LoadSystem
File FREQ_DFTB.results/dftb.rkf

End

Task ModeRefinement

ModeRefinement
ModePath FREQ_DFTB.results/dftb.rkf
ModeSelect

FreqRange 1500 1800
End

End

Engine BAND
Settings from the paper:
XC

GGA BP86
End
Basis

Type TZP
End
Just to make this test run faster:
NumericalQuality Basic

EndEngine

NumericalDifferentiation
Do +/- displacements along the mode in parallel.
Parallel nCoresPerGroup=1

End

EOF

7.6.2 Example: Mode Tracking

Download VATools_cyclohexanone.run

#! /bin/sh

This example demonstrates the usage of the AMS vibrational analysis tools
on the cyclohexanone molecule.

1. Optimization with DFT

146 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

AMS_JOBNAME=DFT $ADFBIN/ams << EOF

System
Atoms

C 0.00000000 -0.00000000 0.00000000
C 0.97860571 1.25132756 1.95058924
C 0.97860571 -1.25132756 1.95058924
C 0.81256878 -0.00000000 2.80673224
C -0.03962209 -1.27292583 0.80215060
C -0.03962209 1.27292583 0.80215060
O 0.06261908 0.00000000 -1.25128260
H 0.12330579 -2.12275790 0.11986078
H -1.06001189 -1.37219989 1.22906269
H 0.87152406 -2.16703679 2.56054100
H 2.00106532 -1.26374568 1.52181021
H -0.19678477 0.00000000 3.26831156
H 1.54931293 -0.00000000 3.63180857
H 0.87152406 2.16703679 2.56054100
H 2.00106532 1.26374568 1.52181021
H 0.12330579 2.12275790 0.11986078
H -1.06001189 1.37219989 1.22906269

End
End

Task GeometryOptimization

GeometryOptimization
Convergence Gradients=1.0e-4

End

Engine BAND
EndEngine

EOF

2. Obtain DFTB hessian and modes as preconditioner and guess
--

AMS_JOBNAME=DFTB $ADFBIN/ams << EOF

LoadSystem
File DFT.results/ams.rkf

End

Task GeometryOptimization

GeometryOptimization
Convergence Gradients=1.0e-4

End

Properties
NormalModes Yes

End

Engine DFTB
Model DFTB3

7.6. Vibrational analysis 147

AMS Manual, Amsterdam Modeling Suite 2019

ResourcesDir DFTB.org/3ob-freq-1-2
EndEngine

NumericalDifferentiation
Parallel nCoresPerGroup=1

End

EOF

3. ModeScanning of DFTB C=O stretch mode with DFT

AMS_JOBNAME=ModeScanning $ADFBIN/ams << EOF

LoadSystem
File DFTB.results/ams.rkf

End
LoadEngine DFT.results/band.rkf

Task ModeScanning

ModeScanning
ModePath DFTB.results/dftb.rkf
ModeSelect

HighIR 1 # This should select the C=O stretch
End

End

NumericalDifferentiation
Parallel nCoresPerGroup=1

End

EOF

4. Mode tracking with DFT starting from DFTB C=O stretch mode

AMS_JOBNAME=ModeTracking $ADFBIN/ams << EOF

LoadSystem
File DFT.results/ams.rkf

End
LoadEngine DFT.results/band.rkf

Task ModeTracking

ModeTracking
TrackedMode File
ModePath DFTB.results/dftb.rkf
HessianGuess File
HessianPath DFTB.results/dftb.rkf
ModeSelect

HighIR 1 # This should select the C=O stretch
End

End

148 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

NumericalDifferentiation
Parallel nCoresPerGroup=1

End

EOF

5. Mode tracking with DFT starting from a pure C=O stretch
--

AMS_JOBNAME=ModeTracking_COStretch $ADFBIN/ams << EOF

LoadSystem
File DFT.results/ams.rkf

End
LoadEngine DFT.results/band.rkf

Task ModeTracking

ModeTracking
TrackedMode Inline
ModeInline

0.0 0.0 0.7071 # This is the C attached to the O
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 -0.7071 # This is the O
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

End
HessianGuess File
HessianPath DFTB.results/dftb.rkf
ModeSelect

HighIR 1 # This should select the C=O stretch
End
TrackingMethod OverlapPrevious

^-- Probably better than the default.
Our initial mode is not particularly close yet ...

End

NumericalDifferentiation
Parallel nCoresPerGroup=1

End

EOF

7.6. Vibrational analysis 149

AMS Manual, Amsterdam Modeling Suite 2019

7.7 PES point properties

7.7.1 Example: Phonons for graphene

Download Phonons_Graphene.run

#!/bin/sh

AMS_JOBNAME=graphene $ADFBIN/ams << EOF

Task GeometryOptimization

GeometryOptimization
OptimizeLattice True
Convergence Gradients=1.0e-5

End

NumericalDifferentiation
Parallel nGroups=2

End

Properties
Phonons True

End

NumericalPhonons
SuperCell

2 0
0 2

End
Parallel nGroups=4

End

System
Atoms

C 0.0 0.0 0.0
C 0.5 0.28867513459481 0.0

End

Lattice
1.0 0.0 0.0
0.5 0.86602540378443 0.0

End
End

Engine DFTB
ResourcesDir Dresden
Model DFTB0
KSpace

Type Symmetric
Symmetric KInteg=9

End
EndEngine

EOF

echo ""

150 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

echo "Begin TOC of result file"

$ADFBIN/dmpkf -n 1 graphene.results/dftb.rkf --toc

echo "End TOC of result file"

7.7.2 Example: Phonons with isotopes

Download Phonons_Isotopes.run

#! /bin/sh

====================================
Phonons with default nuclear masses:
====================================

AMS_JOBNAME=defmasses $ADFBIN/ams << EOF

Task SinglePoint

Properties
Phonons True

End

NumericalPhonons
StepSize 0.01
SuperCell

4
End
Parallel nCoresPerGroup=1

End

System
Atoms

C -2.42906152 -0.3445528299 -0.1353492062
C -1.146891508 -1.134644249 0.1353492061
H -2.429062041 0.004468895147 -1.185797304
H -2.429062011 0.5753101439 0.4803683017
H -1.146891017 -2.054507222 -0.4803683019
H -1.146890987 -1.483665974 1.185797304

End

Lattice
2.564338467 0.0 0.0

End
End

Engine DFTB
ResourcesDir QUASINANO2015
Model DFTB0
KSpace

Type Symmetric
Symmetric KInteg=9

End
EndEngine

7.7. PES point properties 151

AMS Manual, Amsterdam Modeling Suite 2019

EOF

echo ""
echo "Begin TOC of result file"
$ADFBIN/dmpkf -n 1 defmasses.results/dftb.rkf --toc
echo "End TOC of result file"

===
Phonons with two deuterium atoms (via the AtomMasses key)
===

AMS_JOBNAME=usermasses $ADFBIN/ams << EOF

Task SinglePoint

Properties
Phonons true

End

NumericalPhonons
StepSize 0.01
SuperCell

4
End
Parallel nCoresPerGroup=1

End

System
Atoms

C -2.42906152 -0.3445528299 -0.1353492062
C -1.146891508 -1.134644249 0.1353492061
H -2.429062041 0.004468895147 -1.185797304
H -2.429062011 0.5753101439 0.4803683017
H.d -1.146891017 -2.054507222 -0.4803683019
H.d -1.146890987 -1.483665974 1.185797304

End

AtomMasses
H.d 2.014

End

Lattice
2.564338467 0.0 0.0

End
End

Engine DFTB
ResourcesDir QUASINANO2015
Model DFTB0
KSpace

Type Symmetric
Symmetric KInteg=9

End
EndEngine

EOF

152 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

echo ""
echo "Begin TOC of result file"
$ADFBIN/dmpkf -n 1 usermasses.results/dftb.rkf --toc
echo "End TOC of result file"

7.7.3 Example: Elastic tensor

Download ElasticTensor.run

#! /bin/sh

=== Diamond ===

AMS_JOBNAME=Diamond $ADFBIN/ams << EOF

Task GeometryOptimization

Properties
ElasticTensor Yes

End

Maximum possible parallelism at the driver level
NumericalDifferentiation

Parallel nCoresPerGroup=1
End
ElasticTensor

Parallel nCoresPerGroup=1
End

System
Atoms

C 0.44625 0.44625 2.23125
C 2.23125 2.23125 2.23125
C -2.23125 -2.23125 -2.23125
C -0.44625 -0.44625 -2.23125
C -0.44625 -2.23125 -0.44625
C 1.33875 -0.44625 -0.44625
C -2.23125 -0.44625 -0.44625
C -0.44625 1.33875 -0.44625
C -0.44625 -0.44625 1.33875
C 1.33875 1.33875 1.33875
C -1.33875 -1.33875 -1.33875
C 0.44625 0.44625 -1.33875
C 0.44625 -1.33875 0.44625
C 2.23125 0.44625 0.44625
C -1.33875 0.44625 0.44625
C 0.44625 2.23125 0.44625

End
Lattice

0.0 3.57 3.57
3.57 0.0 3.57
3.57 3.57 0.0

End
End

7.7. PES point properties 153

AMS Manual, Amsterdam Modeling Suite 2019

GeometryOptimization
OptimizeLattice Yes
Convergence Gradients=1.0e-4

End

Engine DFTB
Model DFTB
ResourcesDir DFTB.org/mio-1-1
KSpace

Type Symmetric
Symmetric KInteg=3

End
EndEngine

EOF

=== Boron-Nitride sheet ===

3x3 super-cell, no k-space sampling

AMS_JOBNAME=BN_sheet $ADFBIN/ams << EOF

Task GeometryOptimization

Properties
ElasticTensor Yes

End

Maximum possible parallelism at the driver level
NumericalDifferentiation

Parallel nCoresPerGroup=1
End
ElasticTensor

Parallel nCoresPerGroup=1
End

System
Atoms

N 3.76095075 0.723795 0.0
N 5.01460112 2.89518114 0.0
B -3.76095112 -2.17138614 0.0
B -2.50730075 0.0 0.0
B -1.25365038 2.17138614 0.0
B -1.25365037 -2.17138614 0.0
B 0.0 0.0 0.0
B 1.25365037 2.17138614 0.0
B 1.25365038 -2.17138614 0.0
B 2.50730075 0.0 0.0
B 3.76095112 2.17138614 0.0
N -2.50730112 -1.44759114 0.0
N -1.25365075 0.723795 0.0
N -3.8e-07 2.89518114 0.0
N -3.7e-07 -1.44759114 0.0
N 1.25365 0.723795 0.0
N 2.50730037 2.89518114 0.0
N 2.50730038 -1.44759114 0.0

154 Chapter 7. Examples

AMS Manual, Amsterdam Modeling Suite 2019

End
Lattice

7.52190225 0.0
3.76095111 6.51415842

End
End

GeometryOptimization
OptimizeLattice Yes
Convergence Gradients=1.0e-4

End

Engine DFTB
ResourcesDir DFTB.org/matsci-0-3

EndEngine

EOF

=== Polyoxyethylene ===

primitive cell with k-space sampling

AMS_JOBNAME=Polyoxyethylene $ADFBIN/ams << EOF

Task GeometryOptimization

Properties
ElasticTensor Yes

End

ElasticTensor
StrainStepSize 0.002
MaxGradientForGeoOpt 2.0e-4
Parallel nCoresPerGroup=1

End

System
Atoms

C -0.279368361 -0.125344097 -0.026221791
O 0.840592835 -0.919621431 -0.193214154
H -0.279527057 0.337014408 0.997733792
H -0.281697417 0.707951120 -0.778297849

End
Lattice

2.240292981
End

End

GeometryOptimization
OptimizeLattice Yes
Convergence Gradients=1.0e-4

End

Engine DFTB
ResourcesDir DFTB.org/3ob-3-1
KSpace

Type Symmetric

7.7. PES point properties 155

AMS Manual, Amsterdam Modeling Suite 2019

Symmetric KInteg=5
End

EndEngine

EOF

Note: the elastic tensor is also printed to standard output.

echo ""
echo "Extract the elastic tensor of Diamond from the rkf file:"
$ADFBIN/adfreport Diamond.results/dftb.rkf -r "AMSResults%ElasticTensor#12.4f##6"

echo ""
echo "Extract the elastic tensor of Boron-Nitride from the rkf file:"
$ADFBIN/adfreport BN_sheet.results/dftb.rkf -r "AMSResults%ElasticTensor#12.4f##3"

echo ""
echo "Extract the elastic tensor of Polyoxyethylene from the rkf file:"
$ADFBIN/adfreport Polyoxyethylene.results/dftb.rkf -r "AMSResults%ElasticTensor#12.4f#
→˓#1"

156 Chapter 7. Examples

CHAPTER

EIGHT

APPENDICES

8.1 Environment variables

The behaviour of AMS can be modified through a number of environment variables.

AMS_JOBNAME Sets the name of a job. This name is used to determine the name of the results folder AMS creates,
which is $AMS_JOBNAME.results or ams.results if this environment variable is not set.

AMS_RESULTSDIR If this environment variable is set, instead of creating a new results folder, AMS will use the set
directory as the results folder. Not that the directory set here will not be created by AMS and therefore has to
exist before starting AMS. Note that this environment variable can be used to prevent AMS from creating result
folders, by setting AMS_RESULTSDIR=.. This reproduces the pre-AMS behaviour of putting all result files
into the directory from which a job is started.

AMS_SWITCH_LOGFILE_AND_STDOUT If this environment variable is set, AMS will redirect what is normally
printed on standard output to a file (ams.out) in the results directory. Instead the contents of the log file
(ams.log) will be printed to standard output while a job is running, allowing users to easily monitor the jobs
progress. Note that the log file will still be created normally as if this environment variable was not set. This
environment variable is just a convenience feature for users that would always redirect their output into a file
and then use tail -f on the log file to monitor the running calculation.

8.2 Extended XYZ file format

The .xyz file format is a simple text based format for molecular geometries. .xyz files have the number of atoms in
the first line, followed by a comment line, followed by one line per atom, specifying the element as well as the x, y,
and z coordinates of this atom.

However, the standard .xyz file format does not include lattice vectors. AMS therefore uses an extended .xyz file
format which is also suitable for periodic systems. In this extended format the lattice vectors are specified at the end
of the .xyz file via the keys VEC1, VEC2 and VEC3. For 1D periodic systems (chains) only VEC1 is needed. For 2D
periodic systems (slabs) only VEC1 and VEC2 are needed. An example extended .xyz for graphene looks like this:

2

C 0.0 0.0 0.0
C 1.23 0.71014 0.0
VEC1 2.46 0.0 0.0
VEC2 1.23 2.13042 0.0

Note that the extended .xyz format is also understood by the AMS GUI for importing and exporting geometries
from/to .xyz files.

157

AMS Manual, Amsterdam Modeling Suite 2019

8.3 Developer options

Print
Timers [None | Normal | Detail | TooMuchDetail]

End

Print

Type Block

Description This block controls the printing of additional information to stdout.

Timers

Type Multiple Choice

Default value None

Options [None, Normal, Detail, TooMuchDetail]

Description Printing timing details to see how much time is spend in which part of the code.

EngineDebugging
CheckInAndOutput [True | False]
ForceContinousPES [True | False]
IgnoreGradientsRequest [True | False]
IgnoreStressTensorRequest [True | False]
RandomFailureChance float

End

EngineDebugging

Type Block

Description This block contains some options useful for debugging the computational engines.

CheckInAndOutput

Type Bool

Default value False

Description Enables some additional checks on the input and output of and engine, e.g. for NaN
values.

ForceContinousPES

Type Bool

Default value False

Description If this option is set, the engine will always run in continuous PES mode. For many
engines this disables the use of symmetry, as this one always leads to a discontinuous PES
around the symmetric points: Basically there is jump in the PES at the point where the
symmetry detection starts classifying the system as symmetric. Normally the continuous
PES mode of the engine (often disabling the symmetry) is only used when doing numerical
derivatives, but this flag forces the engine to continuously run in this mode.

IgnoreGradientsRequest

Type Bool

Default value False

158 Chapter 8. Appendices

AMS Manual, Amsterdam Modeling Suite 2019

Description If this option is set, the engine will not do analytical gradients if asked for it, so that
gradients will have to be evaluated numerically by AMS.

IgnoreStressTensorRequest

Type Bool

Default value False

Description If this option is set, the engine will not calculate an analytical stress tensor if asked
for it, so that the stress tensor will have to be evaluated numerically by AMS.

RandomFailureChance

Type Float

Default value 0.0

Description Makes the engine randomly report failures, even though the results are actually fine.
Useful for testing error handling on the application level.

8.3. Developer options 159

AMS Manual, Amsterdam Modeling Suite 2019

160 Chapter 8. Appendices

CHAPTER

NINE

REQUIRED CITATIONS

9.1 General references

When you publish results in the scientific literature that were obtained through the AMS driver program, you are
required to include a reference to the program package with the appropriate release number:

AMS 2019, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
Optionally, you may add the following list of authors and contributors: R. Rüger, M. Franchini, T. Trnka, A. Yakovlev,
E. van Lenthe, P. Philipsen, B. Klumpers, T. Soini

The engine used for a particular calculation might require you to include other references. Please refer to the specific
engine manuals (page 101) for required citations.

In addition to these general references, certain AMS features require additional citations, in case you have used them.
An overview of these is given in the Feature references section below.

Note: If you have used a modified (by yourself, for instance) version of the code, you should mention in the citation
that a modified version has been used.

9.2 Feature references

9.2.1 Vibrational analysis

Mode tracking

The following references must be cited, in addition to the standard engine citations, if you publish results obtained
using this Mode Tracking module:

1. M. Reiher, J. Neugebauer, A mode-selective quantum chemical method for tracking molecular vi-
brations applied to functionalized carbon nanotubes, Journal of Chemical Physics 118, 1634 (2003)
(https://doi.org/10.1063/1.1523908)

2. M. Reiher, J. Neugebauer, Convergence characteristics and efficiency of mode-tracking calcula-
tions on pre-selected molecular vibrations, Physical Chemistry Chemical Physics 6, 4621 (2004)
(http://dx.doi.org/10.1039/B406134A)

3. C. Herrmann, M. Reiher, J. Neugebauer, Finding a needle in a haystack: direct determination of vibrational
signatures in complex systems, New Journal of Chemistry 31, 818 (2007) (http://dx.doi.org/10.1039/B618769M)

If you ran calculations using the Intensity Tracking options, use the following citations instead:

161

http://www.scm.com
https://doi.org/10.1063/1.1523908
http://dx.doi.org/10.1039/B406134A
http://dx.doi.org/10.1039/B618769M

AMS Manual, Amsterdam Modeling Suite 2019

1. M. Reiher, J. Neugebauer, A mode-selective quantum chemical method for tracking molecular vi-
brations applied to functionalized carbon nanotubes, Journal of Chemical Physics 118, 1634 (2003)
(https://doi.org/10.1063/1.1523908)

2. S. Luber, J. Neugebauer, M. Reiher, Intensity tracking for theoretical infrared spectroscopy of large molecules,
Journal of Chemical Physics 130, 064105 (2009) (https://doi.org/10.1063/1.3069834)

Mode refinement

The following reference must be cited, in addition to the standard engine citations, if you publish results obtained
using the vibrational mode refinement module:

T.Q. Teodoro, M.A.J. Koenis, S.E. Galembeck, V.P. Nicu, W.J. Buma, L. Visscher, A frequency range selection method
for vibrational spectra, Submitted

162 Chapter 9. Required citations

https://doi.org/10.1063/1.1523908
https://doi.org/10.1063/1.3069834

CHAPTER

TEN

REFERENCES

1. L. Versluis and T. Ziegler, The determination of Molecular Structure by Density Functional Theory, Journal of
Chemical Physics 88, 322 (1988) (https://doi.org/10.1063/1.454603)

2. L. Versluis, The determination of molecular structures by the HFS method, PhD thesis, University of Calgary,
1989

3. L. Fan and T. Ziegler, Optimization of molecular structures by self consistent and non-local density functional
theory, Journal of Chemical Physics 95, 7401 (1991) (https://doi.org/10.1063/1.461366)

4. M. Swart and F.M. Bickelhaupt, Optimization of strong and weak coordinates, International Journal of Quantum
Chemistry 106, 2536 (2006) (https://doi.org/10.1002/qua.21049)

5. E. Bitzek, P. Koskinen, F. Gähler, M. Moseler and P. Gumbsch, Structural Relaxation Made Simple, Physical
Review Letters 97, 170201 (2006) (https://doi.org/10.1103/PhysRevLett.97.170201)

6. T. Weymuth, M.P. Haag, K. Kiewisch, S. Luber, S. Schenk, C.R. Jacob, C. Herrmann, J. Neugebauer, M. Rei-
her, MoViPac: Vibrational Spectroscopy with a Robust Meta-Program for Massively Parallel Standard Inverse
Calculations, Journal of Computational Chemistry 33, 2186 (2012) (https://doi.org/10.1002/jcc.23036)

7. M. Reiher, J. Neugebauer, A mode-selective quantum chemical method for tracking molecular vi-
brations applied to functionalized carbon nanotubes, Journal of Chemical Physics 118, 1634 (2003)
(https://doi.org/10.1063/1.1523908)

8. M. Reiher, J. Neugebauer, Convergence characteristics and efficiency of mode-tracking calcula-
tions on pre-selected molecular vibrations, Physical Chemistry Chemical Physics 6, 4621 (2004)
(http://dx.doi.org/10.1039/B406134A)

9. C. Herrmann, M. Reiher, J. Neugebauer, Finding a needle in a haystack: direct determination of vibrational
signatures in complex systems, New Journal of Chemistry 31, 818 (2007) (http://dx.doi.org/10.1039/B618769M)

10. S. Luber, J.Neugebauer, M. Reiher, Intensity tracking for theoretical infrared spectroscopy of large molecules,
Journal of Chemical Physics 130, 064105 (2009) (https://doi.org/10.1063/1.3069834)

11. G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi-Davidson Iteration Method for Linear Eigen-
value Problems, SIAM Journal on Matrix Analysis and Applications 17, 401 (1996)
(https://doi.org/10.1137/S0895479894270427)

12. T.Q. Teodoro, M.A.J. Koenis, S.E. Galembeck, V.P. Nicu, W.J. Buma, L. Visscher, A frequency
range selection method for vibrational spectra, J. Phys. Chem. Lett., 9 (23), 6878–6882 (2018)
(https://doi.org/10.1021/acs.jpclett.8b02963)

13. T.P. Senftle, R.J. Meyer, M.J. Janik, A.C.T. van Duin, Development of a ReaxFF potential for Pd/O and appli-
cation to palladium oxide formation, J. Chem. Phys. 139, 044109 (2013) (https://doi.org/10.1063/1.4815820)

14. T.P. Senftle, A.C.T. van Duin, M.J. Janik, Determining in situ phases of a nanoparticle catalyst via
grand canonical Monte Carlo simulations with the ReaxFF potential, Catalysis Communications 52, 72–77
(https://doi.org/10.1016/j.catcom.2013.12.001)

163

https://doi.org/10.1063/1.454603
https://doi.org/10.1063/1.454603
https://doi.org/10.1063/1.461366
https://doi.org/10.1002/qua.21049
https://doi.org/10.1002/qua.21049
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1002/jcc.23036
https://doi.org/10.1063/1.1523908
http://dx.doi.org/10.1039/B406134A
http://dx.doi.org/10.1039/B618769M
https://doi.org/10.1063/1.3069834
https://doi.org/10.1137/S0895479894270427
https://doi.org/10.1021/acs.jpclett.8b02963
https://doi.org/10.1063/1.4815820
https://doi.org/10.1016/j.catcom.2013.12.001

AMS Manual, Amsterdam Modeling Suite 2019

15. L. Deng, T. Ziegler and L. Fan, A combined density functional and intrinsic reaction coordinate
study on the ground state energy surface of H2 CO, Journal of Chemical Physics 99, 3823 (1993)
(https://doi.org/10.1063/1.466129)

16. L. Deng and T. Ziegler, The determination of Intrinsic Reaction Coordinates by density functional theory, Inter-
national Journal of Quantum Chemistry 52, 731 (1994) (https://doi.org/10.1002/qua.560520406)

17. (a) Gonzalez and H.B. Schlegel, Reaction Path Following In Mass-Weighted Internal Coordinates J. Phys.
Chem. 94, 5523-5527 (1990) (https://doi.org/10.1021/j100377a021)

18. (a) Ikeshoji and B. Hafskjold, Non-equilibrium molecular dynamics calculation of heat con-
duction in liquid and through liquid-gas interface Molecular Physics 81, 251-261 (1994)
(https://doi.org/10.1080/00268979400100171)

19. (a) Wirnsberger, D. Frenkel, and C. Dellago, An enhanced version of the heat exchange algorithm
with excellent energy conservation properties Journal of Chemical Physics 143, 124104 (2015)
(http://dx.doi.org/10.1063/1.4931597)

10.1 External programs and libraries

Click here for the list of programs and/or libraries used in the Amsterdam Modeling Suite. On some platforms opti-
mized libraries have been used and/or vendor specific MPI implementations.

164 Chapter 10. References

https://doi.org/10.1063/1.466129
https://doi.org/10.1002/qua.560520406
https://doi.org/10.1002/qua.560520406
https://doi.org/10.1021/j100377a021
https://doi.org/10.1021/j100377a021
https://doi.org/10.1080/00268979400100171
http://dx.doi.org/10.1063/1.4931597

CHAPTER

ELEVEN

KEYWORDS

11.1 Links to manual entries

• MolecularDynamics (page 34)

11.2 Summary of all keywords

Constraints

Type Block

Description The Constraints block allows geometry optimizations and potential energy surface
scans with constraints. The constraints do not have to be satisfied at the start of the calcula-
tion.

Angle

Type String

Recurring True

Description Fix the angle between three atoms. Three atom indices followed by an angle in
degrees.

Atom

Type Integer

Recurring True

Description Fix the position of an atom. Just one integer referring to the index of the atom in
the [System%Atoms] block.

Block

Type String

Recurring True

Description Name of the block to constrain as specified in the atom tag within the Sys-
tem%Atoms block.

BlockAtoms

Type Integer List

Recurring True

165

AMS Manual, Amsterdam Modeling Suite 2019

Description List of atom indices for a block constraint, where the internal degrees of freedom
are frozen.

Coordinate

Type String

Recurring True

Description Fix a particular coordinate of an atom. Atom index followed by (x|y|z).

Dihedral

Type String

Recurring True

Description Fix the dihedral angle between four atoms. Four atom indices followed by an angle
in degrees.

Distance

Type String

Recurring True

Description Fix the distance between two atoms. Two atom indices followed by the distance in
Angstrom.

ElasticTensor

Type Block

Description Options for numerical evaluation of the elastic tensor.

MaxGradientForGeoOpt

Type Float

Default value 0.0001

Unit Hartree/Angstrom

Description Maximum nuclear gradient for the relaxation of the internal degrees of freedom of
strained systems.

Parallel

Type Block

Description The evaluation of the elastic tensor via numerical differentiation is an embarrass-
ingly parallel problem. Double parallelization allows to split the available processor cores
into groups working through all the available tasks in parallel, resulting in a better parallel
performance. The keys in this block determine how to split the available processor cores into
groups working in parallel.

nCoresPerGroup

Type Integer

Description Number of cores in each working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

166 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

nNodesPerGroup

Type Integer

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

StrainStepSize

Type Float

Default value 0.001

Description Step size (relative) of strain deformations used for computing the elastic tensor
numerically.

Engine

Type Block

Description The input for the computational engine. The header of the block determines the type of
the engine.

EngineDebugging

Type Block

Description This block contains some options useful for debugging the computational engines.

CheckInAndOutput

Type Bool

Default value False

Description Enables some additional checks on the input and output of and engine, e.g. for NaN
values.

ForceContinousPES

Type Bool

Default value False

Description If this option is set, the engine will always run in continuous PES mode. For many
engines this disables the use of symmetry, as this one always leads to a discontinuous PES
around the symmetric points: Basically there is jump in the PES at the point where the
symmetry detection starts classifying the system as symmetric. Normally the continuous
PES mode of the engine (often disabling the symmetry) is only used when doing numerical
derivatives, but this flag forces the engine to continuously run in this mode.

IgnoreGradientsRequest

Type Bool

Default value False

Description If this option is set, the engine will not do analytical gradients if asked for it, so that
gradients will have to be evaluated numerically by AMS.

IgnoreStressTensorRequest

Type Bool

Default value False

11.2. Summary of all keywords 167

AMS Manual, Amsterdam Modeling Suite 2019

Description If this option is set, the engine will not calculate an analytical stress tensor if asked
for it, so that the stress tensor will have to be evaluated numerically by AMS.

RandomFailureChance

Type Float

Default value 0.0

Description Makes the engine randomly report failures, even though the results are actually fine.
Useful for testing error handling on the application level.

RandomNoiseInEnergy

Type Float

Default value 0.0

Unit Hartree

Description Adds a random noise to the energy returned by the engine. The random contribution
is drawn from [-r,r] where r is the value of this keyword.

RandomNoiseInGradients

Type Float

Default value 0.0

Unit Hartree/Angstrom

Description Adds a random noise to the gradients returned by the engine. A random number in
the range [-r,r] (where r is the value of this keyword) is drawn and added separately to each
component of the gradient.

EngineRestart

Type String

Description The path to the file from which to restart the engine.

GCMC

Type Block

Description This block controls the Grand Canonical Monte Carlo (GCMC) task. By default,
molecules are added at random positions in the simulation box. The initial position is controlled
by

AccessibleVolume

Type Float

Default value 0.0

Description Volume available to GCMC, in cubic Angstroms. AccessibleVolume should be
specified for “Accessible” and “FreeAccessible” [VolumeOption].

Box

Type Block

Description Boundaries of the insertion space, i.e. coordinates of the origin of an inserted
molecule (coordinates of an atom of the inserted system may fall outside the box). For a
periodic dimension it is given as a fraction of the simulation box (the full 0 to 1 range by de-
fault). For a non-periodic dimension it represents absolute Cartesian coordinates in Angstrom
(the system’s bounding box extended by the MaxDistance value by default).

168 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Amax

Type Float

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Description Coordinate of the lower bound along the third axis.

Ensemble

Type Multiple Choice

Default value Mu-VT

Options [Mu-VT, Mu-PT]

Description Select the MC ensemble: Mu-VT for fixed volume or Mu-PT for variable volume.
When the Mu-PT ensemble is selected the [Pressure] and [VolumeChangeMax] should also
be specified.

Iterations

Type Integer

Description Number of GCMC moves.

MapAtomsToOriginalCell

Type Bool

Default value True

Description Keeps the atom (mostly) in the original cell by mapping them back before the ge-
ometry optimizations.

MaxDistance

Type Float

Default value 3.0

Unit Angstrom

11.2. Summary of all keywords 169

AMS Manual, Amsterdam Modeling Suite 2019

Description The max distance to other atoms of the system when adding the molecule.

MinDistance

Type Float

Default value 0.3

Unit Angstrom

Description Keep the minimal distance to other atoms of the system when adding the molecule.

Molecule

Type Block

Recurring True

Description This block defines the molecule (or atom) that can be inserted/moved/deleted with
the MC method. The coordinates should form a reasonable structure. The MC code uses
these coordinates during the insertion step by giving them a random rotation, followed by a
random translation to generate a random position of the molecule inside the box. Currently,
there is no check to make sure all atoms of the molecule stay inside the simulation box. The
program does check that the MaxDistance/MinDistance conditions are satisfied.

ChemicalPotential

Type Float

Unit Hartree

Description Chemical potential of the molecule (or atom) reservoir. It is used when cal-
culating the Boltzmann accept/reject criteria after a MC move is executed. This value
can be derived from first principles using statistical mechanics, or equivalently, it can be
determined from thermochemical tables available in literature sources. For example, the
proper chemical potential for a GCMC simulation in which single oxygen atoms are ex-
changed with a reservoir of O2 gas, should equal 1/2 the chemical potential of O2 at the
temperature and pressure of the reservoir: cmpot = Mu_O(T,P) = 1/2*Mu_O2(T,P) = 1/2
* [Mu_ref(T,P_ref) + kT*Log(P/Pref) - E_diss] where the reference chemical potential
[Mu_ref(T,P_ref)] is the experimentally determined chemical potential of O2 at T and Pref;
kT*Log(P/Pref) is the pressure correction to the free energy, and E_diss is the dissociation
energy of the O2 molecule.

NoAddRemove

Type Bool

Default value False

Description Set to True to tell the GCMC code to keep the number of molecules/atoms of
this type fixed. It will thus disable Insert/Delete moves on this type, meaning it can only
do a displacement move, or volume change move (for an NPT ensemble).

SystemName

Type String

Description String ID of a named [System] to be inserted. The lattice specified with this
System, if any, is ignored and the main system’s lattice is used instead.

NonAccessibleVolume

Type Float

Default value 0.0

170 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Description Volume not available to GCMC, in cubic Angstroms. NonAccessibleVolume may
be specified for the “Free” [VolumeOption] to reduce the accessible volume.

NumAttempts

Type Integer

Default value 1000

Description Try inserting/moving the selected molecule up to the specified number of times
or until all constraints are satisfied. If all attempts fail a message will be printed and the
simulation will stop. If the MaxDistance-MinDistance interval is small this number may
have to be large.

Pressure

Type Float

Default value 0.0

Unit Pascal

Description Pressure used to calculate the energy correction in the Mu-PT ensemble. Set it to
zero for incompressible solid systems unless at very high pressures.

Removables

Type Non-standard block

Description The Removables can be used to specify a list of molecules that can be removed or
moved during this GCMC calculation. Molecules are specified one per line in the format
following format: MoleculeName atom1 atom2 ... The MoleculeName must match a name
specified in one of the [Molecule] blocks. The atom indices refer to the whole input System
and the number of atoms must match that in the specified Molecule. A suitable Removables
block is written to the standard output after each accepted MC move. If you do so then you
should also replace the initial atomic coordinates with the ones found in the same file. If a
[Restart] key is present then the Removables block is ignored.

Restart

Type String

Description Name of an RKF restart file. Upon restart, the information about the GCMC in-
put parameters, the initial system (atomic coordinates, lattice, charge, etc.) and the MC
molecules (both already inserted and to be inserted) are read from the restart file. The global
GCMC input parameters and the MC Molecules can be modified from input. Any parameter
not specified in the input will use its value from the restart file (i.e. not the default value).
Molecules found in the restart file do not have to be present as named Systems in the input,
however if there is a System present that matches the name of a molecule from restart then
the System’s geometry will replace that found in the restart file. It is also possible to spec-
ify new Molecules in the input, which will be added to the pool of the MC molecules from
restart.

Temperature

Type Float

Default value 300.0

Unit Kelvin

Description Temperature of the simulation. Increase the temperature to improve the chance of
accepting steps that result in a higher energy.

11.2. Summary of all keywords 171

AMS Manual, Amsterdam Modeling Suite 2019

UseGCPreFactor

Type Bool

Default value True

Description Use the GC pre-exponential factor for probability.

VolumeChangeMax

Type Float

Default value 0.05

Description Fractional value by which logarithm of the volume is allowed to change at each step.
The new volume is then calculated as Vnew = exp(random(-1:1)*VolumeChangeMax)*Vold

VolumeOption

Type Multiple Choice

Default value Free

Options [Free, Total, Accessible, FreeAccessible]

Description Specifies the method to calculate the volume used to calculate the GC pre-
exponential factor and the energy correction in the Mu-PT ensemble: Free: V = totalVol-
ume - occupiedVolume - NonAccessibleVolume; Total: V = totalVolume; Accessible: V =
AccessibleVolume; FreeAccessible: V = AccessibleVolume - occupiedVolume. The Acces-
sibleVolume and NonAccessibleVolume are specified in the input, the occupiedVolume is
calculated as a sum of atomic volumes.

GeometryOptimization

Type Block

Description Configures details of the geometry optimization and transition state searches.

CalcPropertiesOnlyIfConverged

Type Bool

Default value True

Description Compute the properties requested in the ‘Properties’ block, e.g. Frequencies or
Phonons, only if the optimization (or transition state search) converged. If False, the proper-
ties will be computed even if the optimization did not converge.

ConjugateGradients

Type Block

Description Configures details of the conjugate gradients geometry optimizer.

Step

Type Block

Description

MinRadius

Type Float

Default value 0.0

Description Minimum value for the trust radius.

TrustRadius

172 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Type Float

Default value 0.2

Description Initial value of the trust radius.

Convergence

Type Block

Description Convergence is monitored for two items: the energy and the Cartesian gradients.
Convergence criteria can be specified separately for each of these items.

Energy

Type Float

Default value 1e-05

Unit Hartree

Description The criterion for changes in the energy.

Gradients

Type Float

Default value 0.001

Unit Hartree/Angstrom

Description The criterion for changes in the gradients.

Step

Type Float

Default value 0.001

Unit Angstrom

Description The maximum Cartesian step allowed for a converged geometry.

CoordinateType

Type Multiple Choice

Default value Auto

Options [Auto, Delocalized, Cartesian]

Description Select the type of coordinates in which to perform the optimization. If ‘Auto’, delo-
calized coordinates will be used for molecular systems, while Cartesian coordinates will be
used for periodic systems. Optimization in delocalized coordinates [Delocalized] can only
be used for geometry optimizations or transition state searches of molecular systems with the
Quasi-Newton method. The experimental SCMGO optimizer supports [Delocalized] coordi-
nates for both molecular and periodic systems.

FIRE

Type Block

Description This block configures the details of the FIRE optimizer. The keywords name corre-
spond the the symbols used in the article describing the method, see PRL 97, 170201 (2006).

MapAtomsToUnitCell

Type Bool

11.2. Summary of all keywords 173

AMS Manual, Amsterdam Modeling Suite 2019

Default value False

Description Map the atoms to the central cell at each geometry step.

NMin

Type Integer

Default value 5

Description Number of steps after stopping before increasing the time step again.

RejectEnergyIncrease

Type Bool

Default value False

Description Makes the optimizer reject steps that increase the energy. This can speed up
convergence, but often causes the optimizer to get stuck on small discontinuities on the
potential energy surface. It is therefore disabled by default.

alphaStart

Type Float

Default value 0.1

Description Steering coefficient.

dtMax

Type Float

Default value 1.0

Unit Femtoseconds

Description Maximum time step used for the integration.

dtStart

Type Float

Default value 0.25

Unit Femtoseconds

Description Initial time step for the integration.

fAlpha

Type Float

Default value 0.99

Description Reduction factor for the steering coefficient.

fDec

Type Float

Default value 0.5

Description Reduction factor for reducing the time step in case of uphill movement.

fInc

Type Float

Default value 1.1

174 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Description Growth factor for the integration time step.

strainMass

Type Float

Default value 0.5

Description Fictitious relative mass of the lattice degrees of freedom. This controls the
stiffness of the lattice degrees of freedom relative to the atomic degrees of freedom, with
smaller values resulting in a more aggressive optimization of the lattice.

InitialHessian

Type Block

Description Options for initial model Hessian when optimizing systems with either the Quasi-
Newton or the SCMGO method.

File

Type String

Description KF file containing the initial Hessian. This can be used to load a Hessian cal-
culated in a previously with the [Properties%Hessian] keyword.

Type

Type Multiple Choice

Default value Auto

Options [Auto, UnitMatrix, Swart, FromFile, Calculate]

Description Select the type of initial Hessian. Auto: let the program pick an initial model
Hessian. UnitMatrix: simplest initial model Hessian, just a unit matrix in the optimization
coordinates. Swart: model Hessian from M. Swart. FromFile: load the Hessian from
the results of a previous calculation (see InitialHessian%File). Calculate: compute the
initial Hessian (this may be computationally expensive and it is mostly recommended for
TransitionStateSearch calculations).

KeepIntermediateResults

Type Bool

Default value False

Description Whether the full engine result files of all intermediate steps are stored on disk. By
default only the last step is kept, and only if the geometry optimization converged. This can
easily lead to huge amounts of data being stored on disk, but it can sometimes be conve-
nient to closely monitor a tricky optimization, e.g. excited state optimizations going through
conical intersections, etc. ...

MaxIterations

Type Integer

Description The maximum number of geometry iterations allowed to converge to the desired
structure.

Method

Type Multiple Choice

Default value Auto

Options [Auto, Quasi-Newton, SCMGO, FIRE, ConjugateGradients]

11.2. Summary of all keywords 175

AMS Manual, Amsterdam Modeling Suite 2019

Description Select the optimization algorithm employed for the geometry relaxation. Currently
supported are: the Hessian-based Quasi-Newton-type BFGS algorithm, the experimental
SCMGO optimizer, the fast inertial relaxation method (FIRE), and the conjugate gradients
method. The default is to choose an appropriate method automatically based on the engine’s
speed, the system size and the supported optimization options.

OptimizeLattice

Type Bool

Default value False

Description Whether to also optimize the lattice for periodic structures. This is currently only
supported with the Quasi-Newton and SCMGO optimizers.

Pressure

Type Float

Default value 0.0

Description Optimize the structure under pressure (this will only have an effect if you are opti-
mizing the lattice vectors). Currently only working in combination with the Quasi-Newton
optimizer. For phase transitions you may consider disabling or breaking the symmetry.

PressureUnit

Type Multiple Choice

Default value GPa

Options [a.u., Pascal, GPa, atm, bar, kbar]

Description The unit for pressure to be used for optimizations under pressure

Quasi-Newton

Type Block

Description Configures details of the Quasi-Newton geometry optimizer.

MaxGDIISVectors

Type Integer

Default value 0

Description Sets the maximum number of GDIIS vectors. Setting this to a number >0 en-
ables the GDIIS method.

Step

Type Block

Description

TrustRadius

Type Float

Description Initial value of the trust radius.

SCMGO

Type Block

Description Configures details SCMGO.

ContractPrimitives

176 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Type Bool

Default value True

Description Form non-redundant linear combinations of primitive coordinates sharing the
same central atom

NumericalBMatrix

Type Bool

Default value False

Description Calculation of the B-matrix, i.e. Jacobian of internal coordinates in terms of
numerical differentiations

Step

Type Block

Description

TrustRadius

Type Float

Default value 0.2

Description Initial value of the trust radius.

VariableTrustRadius

Type Bool

Default value True

Description Whether or not the trust radius can be updated during the optimization.

logSCMGO

Type Bool

Default value False

Description Verbose output of SCMGO internal data

testSCMGO

Type Bool

Default value False

Description Run SCMGO in test mode.

IRC

Type Block

Description Configures details of the Intrinsic Reaction Coordinate optimization.

Convergence

Type Block

Description Convergence at each given point is monitored for two items: the Cartesian gradient
and the calculated step size. Convergence criteria can be specified separately for each of
these items. The same criteria are used both in the inner IRC loop and when performing
energy minimization at the path ends.

Gradients

11.2. Summary of all keywords 177

AMS Manual, Amsterdam Modeling Suite 2019

Type Float

Default value 0.001

Unit Hartree/Angstrom

Description Convergence criterion for the max component of the residual energy gradient.

Step

Type Float

Default value 0.001

Unit Angstrom

Description Convergence criterion for the max component of the step in the optimization
coordinates.

CoordinateType

Type Multiple Choice

Default value Cartesian

Options [Cartesian, Delocalized]

Description Select the type of coordinates in which to perform the optimization. Note that the
Delocalized option should be considered experimental. Besides, it is not possible to use
delocalized coordinates for periodic systems.

Direction

Type Multiple Choice

Default value Both

Options [Both, Forward, Backward]

Description Select direction of the IRC path. The difference between the Forward and the Back-
ward directions is determined by the sign of the largest component of the vibrational normal
mode corresponding to the reaction coordinate at the transition state geometry. The For-
ward path correspond to the positive sign of the component. If Both is selected then first the
Forward path is computed followed by the Backward one.

InitialHessian

Type Block

Description Options for initial Hessian at the transition state. The first eigenvalue of the initial
Hessian defines direction of the first forward or backward step. This block is ignored when
restarting from a previous IRC calculation because the initial Hessian found in the restart file
is used.

File

Type String

Description If ‘Type’ is set to ‘FromFile’ then in this key you should specifiy the RKF file
containing the initial Hessian. This can be used to load a Hessian calculated previously
with the ‘Properties%Hessian’ keyword. If you want to also use this file for the initial
geometry then also specify it in a ‘LoadSystem’ block.

Type

Type Multiple Choice

178 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Default value Calculate

Options [Calculate, FromFile]

Description Calculate the exact Hessian for the input geometry or load it from the results of
a previous calculation.

KeepConvergedResults

Type Bool

Default value True

Description Keep the binary RKF result file for every converged IRC point. These files may
contain more information than the main ams.rkf result file.

MaxIRCSteps

Type Integer

Description Soft limit on the number of IRC points to compute in each direction. After the
specified number of IRC steps the program will switch to energy minimization and complete
the path. This option should be used when you are interested only in the reaction path area
near the transition state. Note that even if the soft limit has been hit and the calculation has
completed, the IRC can still be restarted with a ‘RedoBackward’ or ‘RedoForward’ option.

MaxIterations

Type Integer

Default value 300

Description The maximum number of geometry iterations allowed to converge the inner IRC
loop. If optimization does not converge within the specified number of steps, the calculation
is aborted.

MaxPoints

Type Integer

Default value 100

Description Hard limit on the number of IRC points to compute in each direction. After the
specified number of IRC steps the program will stop with the current direction and switch
to the next one. If both ‘MaxPoints’ and ‘MaxIRCSteps’ are set to the same value then
‘MaxPoints’ takes precedence, therefore this option should be used to set a limit on the
number of IRC steps if you intend to use the results later for a restart.

MinEnergyProfile

Type Bool

Default value False

Description Calculate minimum energy profile (i.e. no mass-weighting) instead of the IRC.

MinPathLength

Type Float

Default value 0.1

Unit Angstrom

Description Minimum length of the path required before switching to energy minimization. Use
this to overcome a small kink or a shoulder on the path.

11.2. Summary of all keywords 179

AMS Manual, Amsterdam Modeling Suite 2019

Restart

Type Block

Description Restart options. Upon restart, the information about the IRC input parameters and
the initial system (atomic coordinates, lattice, charge, etc.) is read from the restart file. The
IRC input parameters can be modified from input. Except for ‘MaxPoints’ and ‘Direction’
all parameters not specified in the input will use their values from the restart file. The ‘Max-
Points’ and ‘Direction’ will be reset to their respective default values if not specified in the
input. By default, the IRC calculation will continue from the point where it left off. However,
the ‘RedoForward’ and/or ‘RedoBackward’ option can be used to enforce recalculation of a
part of the reaction path, for example, using a different ‘Step’ value.

File

Type String

Description Name of an RKF restart file generated by a previous IRC calculation. Do not
use this key to provide an RKF file generated by a TransitionStateSearch or a SinglePoint
calculation, use the ‘LoadSystem’ block instead.

RedoBackward

Type Integer

Default value 0

Description IRC step number to start recalculating the backward path from. By default, if
the backward path has not been completed then start after the last completed step. If the
backward path has been completed and the ‘RedoBackward’ is omitted then no point on
the backward path will be recomputed.

RedoForward

Type Integer

Default value 0

Description IRC step number to start recalculating the forward path from. By default, if the
forward path has not been completed then start after the last completed step. If the forward
path has been completed and the ‘RedoForward’ is omitted then no point on the forward
path will be recomputed.

Step

Type Float

Default value 0.2

Description IRC step size in mass-weighted coordinates, sqrt(amu)*bohr. One may have to
increase this value when heavy atoms are involved in the reaction, or decrease it if the reactant
or products are very close to the transition state.

LoadEngine

Type String

Description The path to the file from which to load the engine configuration. Replaces the Engine
block.

LoadSystem

Type Block

Recurring True

180 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Description Block that controls reading the chemical system from a KF file instead of the [System]
block.

File

Type String

Description The path of the KF file from which to load the system.

Section

Type String

Default value Molecule

Description The section on the KF file from which to load the system.

ModeRefinement

Type Block

Description Input data for ModeRefinement tasks.

Displacement

Type Float

Default value 0.001

Description Step size for finite difference calculation of frequencies and IR intensities.

ModePath

Type String

Description Path to a .rkf file containing the modes which are to be scanned. Which modes will
be refined is selected using the criteria from the [ModeSelect] block.)

ModeSelect

Type Block

Description Pick which modes to refine from those read from file.

FreqAndIRRange

Type Float List

Unit cm-1 and km/mol

Recurring True

Description Specifies a combined frequency and IR intensity range within which all modes
will be refined. (First 2 numbers are the frequency range, last 2 numbers are the IR intensity
range.)

FreqRange

Type Float List

Unit cm-1

Recurring True

Description Specifies a frequency range within which all modes will be refined. (2 numbers:
a upper and a lower bound.)

Full

Type Bool

11.2. Summary of all keywords 181

AMS Manual, Amsterdam Modeling Suite 2019

Default value False

Description Refine all modes.

HighFreq

Type Integer

Description Refine the N modes with the highest frequencies.

HighIR

Type Integer

Description Refine the N modes with the largest IR intensities.

IRRange

Type Float List

Unit km/mol

Recurring True

Description Specifies an IR intensity range within which all modes will be refined. (2 num-
bers: a upper and a lower bound.)

ImFreq

Type Bool

Default value False

Description Refine all modes with imaginary frequencies.

LowFreq

Type Integer

Description Refine the N modes with the lowest frequencies. (Includes imaginary modes
which are recorded with negative frequencies.)

LowFreqNoIm

Type Integer

Description Refine the N modes with the lowest non-negative frequencies. (Imaginary
modes have negative frequencies and are thus omitted here.)

LowIR

Type Integer

Description Refine the N modes with the smallest IR intensities.

ModeNumber

Type Integer List

Description Indices of the modes to refine.

ScanModes

Type Bool

Default value False

Description If enabled an additional displacement will be performed along the new modes at the
end of the calculation to obtain refined frequencies and IR intensities. Equivalent to running
the output file of the mode tracking calculation through the AMS ModeScanning task.

182 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

ModeScanning

Type Block

Description Input data for the ModeScanning task.

Displacement

Type Float

Default value 0.001

Description Step size for finite difference calculation of frequencies and IR intensities.

ModePath

Type String

Description Path to a .rkf file containing the modes which are to be scanned. Which modes will
be scanned is selected using the criteria from the [ModeSelect] block.)

ModeSelect

Type Block

Description Pick which modes to scan from those read from file.

FreqAndIRRange

Type Float List

Unit cm-1 and km/mol

Recurring True

Description Specifies a combined frequency and IR intensity range within which all modes
will be scanned. (First 2 numbers are the frequency range, last 2 numbers are the IR
intensity range.)

FreqRange

Type Float List

Unit cm-1

Recurring True

Description Specifies a frequency range within which all modes will be scanned. (2 num-
bers: a upper and a lower bound.)

Full

Type Bool

Default value False

Description Scan all modes.

HighFreq

Type Integer

Description Scan the N modes with the highest frequencies.

HighIR

Type Integer

Description Scan the N modes with the largest IR intensities.

11.2. Summary of all keywords 183

AMS Manual, Amsterdam Modeling Suite 2019

IRRange

Type Float List

Unit km/mol

Recurring True

Description Specifies an IR intensity range within which all modes will be scanned. (2
numbers: a upper and a lower bound.)

ImFreq

Type Bool

Default value False

Description Scan all modes with imaginary frequencies.

LowFreq

Type Integer

Description Scan the N modes with the lowest frequencies. (Includes imaginary modes
which are recorded with negative frequencies.)

LowFreqNoIm

Type Integer

Description Scan the N modes with the lowest non-negative frequencies. (Imaginary modes
have negative frequencies and are thus omitted here.)

LowIR

Type Integer

Description Scan the N modes with the smallest IR intensities.

ModeNumber

Type Integer List

Description Indices of the modes to scan.

ModeTracking

Type Block

Description Input data for ModeTracking task.

Displacement

Type Float

Default value 0.01

Description Step size (in Bohr) for finite difference calculation of frequencies and IR intensities
during mode tracking iterations.

HessianGuess

Type Multiple Choice

Default value UFF

Options [Unit, File, UFF, Inline]

Description Sets how to obtain the guess for the Hessian used in the preconditioner.

184 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

HessianInline

Type Non-standard block

Description Initial guess for the (non-mass-weighted) Hessian in a 3N x 3N block, used when
[HessianGuess] = [Inline].

HessianPath

Type String

Description Path to a .rkf file containing the initial guess for the Hessian, used when [Hes-
sianGuess] = [File].

MassWeighInlineMode

Type Bool

Default value True

Description The supplied modes must be mass-weighed. This tells the program to mass-weigh
the supplied modes in case this has not yet been done. (True means the supplied modes will
be mass-weighed by the program, e.g. the supplied modes are non-mass-weighed.)

MaxIterations

Type Integer

Description Maximum number of allowed iterations.

ModeInline

Type Non-standard block

Recurring True

Description Coordinates of the mode which will be tracked in a N x 3 block (same as for atoms),
used when [TrackedMode] = [Inline]. Rows must be ordered in the same way as in the
[System%Atoms] block.

ModePath

Type String

Description Path to a .rkf file containing the modes which are to be tracked. Which modes will
be refined is selected using the criteria from the [ModeSelect] block.)

ModeSelect

Type Block

Description Pick which modes to track from modes generated from Hessian or read from file.

FreqAndIRRange

Type Float List

Unit cm-1 and km/mol

Recurring True

Description Specifies a combined frequency and IR intensity range within which all modes
will be tracked. (First 2 numbers are the frequency range, last 2 numbers are the IR inten-
sity range.)

FreqRange

Type Float List

11.2. Summary of all keywords 185

AMS Manual, Amsterdam Modeling Suite 2019

Unit cm-1

Recurring True

Description Specifies a frequency range within which all modes will be tracked. (2 numbers:
a upper and a lower bound.)

Full

Type Bool

Default value False

Description Track all modes.

HighFreq

Type Integer

Description Track the N modes with the highest frequencies.

HighIR

Type Integer

Description Track the N modes with the largest IR intensities.

IRRange

Type Float List

Unit km/mol

Recurring True

Description Specifies an IR intensity range within which all modes will be tracked. (2 num-
bers: a upper and a lower bound.)

ImFreq

Type Bool

Default value False

Description Track all modes with imaginary frequencies.

LowFreq

Type Integer

Description Track the N modes with the lowest frequencies. (Includes imaginary modes
which are recorded with negative frequencies.)

LowFreqNoIm

Type Integer

Description Track the N modes with the lowest non-negative frequencies. (Imaginary modes
have negative frequencies and are thus omitted here.)

LowIR

Type Integer

Description Track the N modes with the smallest IR intensities.

ModeNumber

Type Integer List

186 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Description Indices of the modes to track.

ScanModes

Type Bool

Default value False

Description If enabled an additional displacement will be performed along the new modes at the
end of the calculation to obtain refined frequencies and IR intensities. Equivalent to running
the output file of the mode tracking calculation through the AMS ModeScanning task.

ToleranceForBasis

Type Float

Default value 0.0001

Description Convergence tolerance for the contribution of the newest basis vector to the tracked
mode.

ToleranceForNorm

Type Float

Default value 0.0005

Description Convergence tolerance for residual RMS value.

ToleranceForResidual

Type Float

Default value 0.0005

Description Convergence tolerance for the maximum component of the residual vector.

TrackedMode

Type Multiple Choice

Default value File

Options [Inline, File, Hessian]

Description Set how the initial guesses for the modes are supplied.

TrackingMethod

Type Multiple Choice

Default value OverlapInitial

Options [OverlapInitial, DifferenceInitial, FreqInitial, IRInitial, OverlapPrevious, Differen-
cePrevious, FreqPrevious, IRPrevious, HighestFreq, HighestIR, LowestFreq, LowestResid-
ual]

Description Set the tracking method that will be used.

UpdateMethod

Type Multiple Choice

Default value JD

Options [JD, D]

Description Chooses the method for expanding the Krylov subspace: (D) Davidson or (JD)
vdVorst-Sleijpen variant of Jacobi-Davidson.

11.2. Summary of all keywords 187

AMS Manual, Amsterdam Modeling Suite 2019

MolecularDynamics

Type Block

Description Configures molecular dynamics (with the velocity-Verlet algorithm) with and without
thermostats. This block allows to specify the details of the molecular dynamics calculation.

AddMolecules

Type Block

Recurring True

Description This block controls adding molecules to the system (a.k.a. the Molecule Gun).
Multiple occurrences of this block are possible. By default, molecules are added at random
positions in the simulation box with velocity matching the current system temperature. The
initial position can be modified using one of the following keywords: Coords, CoordsBox,
FractionalCoords, FractionalCoordsBox. The Coords and FractionalCoords keys can option-
ally be accompanied by CoordsSigma or FractionalCoordsSigma, respectively.

AtomTemperature

Type Float

Default value 0.0

Unit Kelvin

Description Add random velocity corresponding to the specified temperature to individual
atoms of the molecule. The total momentum of the added molecule is not conserved.

Coords

Type Float List

Unit Angstrom

Description Place molecules at or around the specified Cartesian coordinates. This setting
takes precedence over other ways to specify initial coordinates of the molecule: [Coords-
Box], [FractionalCoords], and [FractionalCoordsBox].

CoordsBox

Type Float List

Unit Angstrom

Description Place molecules at random locations inside the specified box in Cartesian co-
ordinates. Coordinates of the box corners are specified as: Xmin, Xmax, Ymin, Ymax,
Zmin, Zmax. This setting is ignored if Coords is used. In ADFinput, if this field is not
empty it will be used instead of the default Coords.

CoordsSigma

Type Float List

Unit Angstrom

Description Sigma values (one per Cartesian axis) for a Gauss distribution of the initial
coordinates. Can only be used together with Coords.

Energy

Type Float

Unit Hartree

188 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Description Initial kinetic energy of the molecule in the shooting direction.

EnergySigma

Type Float

Default value 0.0

Unit Hartree

Description Sigma value for the Gauss distribution of the initial kinetic energy around the
specified value. Should only be used together with Energy.

FractionalCoords

Type Float List

Description Place molecules at or around the specified fractional coordinates in the main
system’s lattice. For non-periodic dimensions a Cartesian value in Angstrom is expected.
This setting is ignored if [Coords] or [CoordsBox] is used.

FractionalCoordsBox

Type Float List

Description Place molecules at random locations inside the box specified as fractional coor-
dinates in the main system’s lattice. Coordinates of the box corners are specified as: Xmin,
Xmax, Ymin, Ymax, Zmin, Zmax. For non-periodic dimensions the Cartesian value in
Angstrom is expected. This setting is ignored if [Coords], [CoordsBox], or [FractionalCo-
ords] is used.

FractionalCoordsSigma

Type Float List

Description Sigma values (one per axis) for a Gauss distribution of the initial coordinates.
For non-periodic dimensions the Cartesian value in Angstrom is expected. Can only be
used together with FractionalCoords.

Frequency

Type Integer

Default value 0

Description A molecule is added every [Frequency] steps after the StartStep. There is never
a molecule added at step 0.

MinDistance

Type Float

Default value 0.0

Unit Angstrom

Description Keep the minimal distance to other atoms of the system when adding the
molecule.

NumAttempts

Type Integer

Default value 10

11.2. Summary of all keywords 189

AMS Manual, Amsterdam Modeling Suite 2019

Description Try adding the molecule up to the specified number of times or until the
MinDistance constraint is satisfied. If all attempts fail a message will be printed and the
simulation will continue normally.

Rotate

Type Bool

Default value False

Description Rotate the molecule randomly before adding it to the system.

StartStep

Type Integer

Default value 0

Description Step number when the first molecule should be added. After that, molecules
are added every Frequency steps. For example, ff StartStep=99 and Frequency=100 then a
molecule will be added at steps 99, 199, 299, etc... No molecule will be added at step 0, so
if StartStep=0 the first molecule is added at the step number equal to [Frequency].

StopStep

Type Integer

Description Do not add this molecule after the specified step.

System

Type String

Description String ID of the [System] that will be added with this ‘gun’. The lattice spec-
ified with this System is ignored and the main system’s lattice is used instead. ADFinput
adds the system at the coordinates of the System (thus setting Coords to the center of the
System).

Temperature

Type Float

Unit Kelvin

Description Initial energy of the molecule in the shooting direction will correspond to the
given temperature.

TemperatureSigma

Type Float

Default value 0.0

Unit Kelvin

Description Sigma value for the Gauss distribution of the initial temperature the specified
value. Should only be used together with TemperatureSigma.

Velocity

Type Float

Unit Angstrom/fs

Description Initial velocity of the molecule in the shooting direction.

VelocityDirection

190 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Type Float List

Description Velocity direction vector for aimed shooting. It will be random if not specified.
In ADFinput add one or two atoms (which may be dummies). One atom: use vector from
center of the system to add to that atom. Two atoms: use vector from the first to the second
atom.

VelocitySigma

Type Float

Default value 0.0

Unit Angstrom/fs

Description Sigma value for the Gauss distribution of the initial velocity around the specified
value. Should only be used together with Velocity.

Barostat

Type Block

Description This block allows to specify the use of a barostat during the simulation.

BulkModulus

Type Float

Default value 2200000000.0

Unit Pascal

Description An estimate of the bulk modulus (inverse compressibility) of the system for
the Berendsen barostat. This is only used to make Tau correspond to the true observed
relaxation time constant. Values are commonly on the order of 10-100 GPa (1e10 to 1e11)
for solids and 1 GPa (1e9) for liquids (2.2e9 for water). Use 1e9 to match the behavior of
standalone ReaxFF.

ConstantVolume

Type Bool

Default value False

Description Keep the volume constant while allowing the box shape to change. This is
currently supported only by the MTK barostat.

Duration

Type Integer List

Description Specifies how many steps should a transition from a particular pressure to the
next one in sequence take.

Equal

Type Multiple Choice

Default value None

Options [None, XYZ, XY, YZ, XZ]

Description Enforce equal scaling of the selected set of dimensions. They will be barostatted
as one dimension according to the average pressure over the components.

Pressure

Type Float List

11.2. Summary of all keywords 191

AMS Manual, Amsterdam Modeling Suite 2019

Unit Pascal

Description Specifies the target pressure.

Scale

Type Multiple Choice

Default value XYZ

Options [XYZ, Shape, X, Y, Z, XY, YZ, XZ]

Description Dimensions that should be scaled by the barostat to maintain pressure. Selecting
Shape means that all three dimensions and also all the cell angles are allowed to change.

Tau

Type Float

Unit Femtoseconds

Description Specifies the time constant of the barostat.

Type

Type Multiple Choice

Default value None

Options [None, Berendsen, MTK]

Description Selects the type of the barostat.

BondOrderCutoff

Type Float

Default value 0.5

Description Bond order cutoff for analysis of the molecular composition. Bonds with bond
order smaller than this value are neglected when determining the molecular composition.

CVHD

Type Block

Recurring True

Description Input for the Collective Variable-driven HyperDynamics (CVHD).

Bias

Type Block

Description The bias is built from a series of Gaussian peaks deposited on the collective
variable axis every [Frequency] steps during MD. Each peak is characterized by its (possi-
bly damped) height and the RMS width (standard deviation).

DampingTemp

Type Float

Default value 0.0

Unit Kelvin

Description During well-tempered hyperdynamics the height of the added bias is scaled
down with an exp(-E/kT) factor [PhysRevLett 100, 020603 (2008)], where E is the current

192 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

value of the bias at the given CV value and T is the damping temperature DampingTemp.
If DampingTemp is zero then no damping is applied.

Delta

Type Float

Description Standard deviation parameter of the Gaussian bias peak.

Height

Type Float

Unit Hartree

Description Height of the Gaussian bias peak.

ColVarBB

Type Block

Recurring True

Description Description of a bond-breaking collective variable (CV) as described in [Bal &
Neyts, JCTC, 11 (2015)]. A collective variable may consist of multiple ColVar blocks.

at1

Type String

Description Atom type name of the first atom of the bond. The name must be as it appears
in the System block. That is, if the atom name contains an extension (e.g C.1) then the
full name including the extension must be used here.

at2

Type String

Description Atom type name of the second atom of the bond. The value is allowed to be
the same as [at1], in which case bonds between atoms of the same type will be included.

cutoff

Type Float

Default value 0.3

Description Bond order cutoff. Bonds with BO below this value are ignored when creating
the initial bond list for the CV. The bond list does not change during lifetime of the variable
even if some bond orders drop below the cutoff.

p

Type Integer

Default value 6

Description Exponent value p used to calculate the p-norm for this CV.

rmax

Type Float

Unit Angstrom

Description Max bond distance parameter Rmax used for calculating the CV. It should be
close to the transition-state distance for the corresponding bond.

rmin

11.2. Summary of all keywords 193

AMS Manual, Amsterdam Modeling Suite 2019

Type Float

Unit Angstrom

Description Min bond distance parameter Rmin used for calculating the CV. It should be
close to equilibrium distance for the corresponding bond.

Frequency

Type Integer

Description Frequency of adding a new bias peak, in steps. New bias is deposited every
[Frequency] steps after [StartStep] if the following conditions are satisfied: the current CV
value is less than 0.9 (to avoid creating barriers at the transition state), the step number is
greater than or equal to [StartStep], and the step number is less than or equal to [StopStep].

StartStep

Type Integer

Description If this key is specified, the first bias will be deposited at this step. Otherwise,
the first bias peak is added at the step number equal to the Frequency parameter. The bias
is never deposited at step 0.

StopStep

Type Integer

Description No bias will be deposited after the specified step. The already deposited bias
will continue to be applied until the reaction event occurs. After that no new CVHD will
be started. By default, the CVHD runs for the whole duration of the MD calculation.

WaitSteps

Type Integer

Description If the CV value becomes equal to 1 and remains at this value for this many steps
then the reaction event is considered having taken place. After this, the collective variable
will be reset and the bias will be removed.

CalcPressure

Type Bool

Default value False

Description Calculate the pressure in periodic systems. This may be computationally expensive
for some engines that require numerical differentiation. Some other engines can calculate the
pressure for negligible additional cost and will always do so, even if this option is disabled.

Checkpoint

Type Block

Description Sets the frequency for storing the entire MD state necessary for restarting the cal-
culation.

Frequency

Type Integer

Default value 1000

Description Write the MD state and engine-specific data to the respective .rkf files once
every N steps.

HeatExchange

194 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Type Block

Recurring True

Description Input for the heat-exchange non-equilibrium MD (T-NEMD).

HeatingRate

Type Float

Unit Hartree/fs

Description Rate at which the energy is added to the Source and removed from the Sink. A
heating rate of 1 Hartree/fs equals to about 0.00436 Watt of power being transfered through
the system.

Method

Type Multiple Choice

Default value Simple

Options [Simple, HEX, eHEX]

Description Heat exchange method used. Simple: kinetic energy of the atoms of the source
and sink regions is modified irrespective of that of the center of mass (CoM) of the region
(recommended for solids). HEX: kinetic energy of the atoms of these regions is modified
keeping that of the corresponding CoM constant. eHEX: an enhanced version of HEX that
conserves the total energy better (recommended for gases and liquids).

Sink

Type Block

Description Defines the heat sink region (where the heat will be removed).

Box

Type Block

Description Part of the simulation box (in fractional cell coordinates) defining the heat sink.
If this block is specified, then by default, the whole box in each of the three dimensions is
used, which usually does not make much sense. Normally, you will want to set the bounds
along one of the axes. This block is mutually exclusive with the FirstAtom/LastAtom
setting.

Amax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Default value 1.0

11.2. Summary of all keywords 195

AMS Manual, Amsterdam Modeling Suite 2019

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the third axis.

FirstAtom

Type Integer

Description Index of the first atom of the region. This key is ignored if the [Box] block is
present.

LastAtom

Type Integer

Description Index of the last atom of the region. This key is ignored if the [Box] block is
present.

Source

Type Block

Description Defines the heat source region (where the heat will be added).

Box

Type Block

Description Part of the simulation box (in fractional cell coordinates) defining the heat
source. If this block is specified, then by default, the whole box in each of the three di-
mensions is used, which usually does not make much sense. Normally, you will want
to set the bounds along one of the axes. This block is mutually exclusive with the
FirstAtom/LastAtom setting.

Amax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Default value 0.0

196 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Default value 1.0

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Default value 0.0

Description Coordinate of the lower bound along the third axis.

FirstAtom

Type Integer

Description Index of the first atom of the region. This key is ignored if the [Box] block is
present.

LastAtom

Type Integer

Description Index of the last atom of the region. This key is ignored if the [Box] block is
present.

StartStep

Type Integer

Default value 0

Description Index of the MD step at which the heat exchange will start.

StopStep

Type Integer

Description Index of the MD step at which the heat exchange will stop.

InitialVelocities

Type Block

Description Sets the frequency for printing to stdout and storing the molecular configuration on
the .rkf file.

File

11.2. Summary of all keywords 197

AMS Manual, Amsterdam Modeling Suite 2019

Type String

Description AMS RKF file containing the initial velocities.

Temperature

Type Float

Unit Kelvin

Description Sets the temperature for the Maxwell-Boltzmann distribution when the type
of the initial velocities is set to random, in which case specifying this key is mandatory.
ADFinput will use the thermostat temperature as default.

Type

Type Multiple Choice

Default value Random

Options [Zero, Random, FromFile, Input]

Description Specifies the initial velocities to assign to the atoms. Three methods to assign
velocities are available. Zero: All atom are at rest at the beginning of the calculation. Ran-
dom: Initial atom velocities follow a Maxwell-Boltzmann distribution for the temperature
given by the [MolecularDynamics%InitialVelocities%Temperature] keyword. FromFile:
Load the velocities from a previous ams result file. Input: Atom’s velocities are set to the
values specified in the [MolecularDynamics%InitialVelocities%Values] block, which can
be accessed via the Expert AMS panel in ADFinput.

Values

Type Non-standard block

Description This block specifies the velocity of each atom, in Angstrom/fs, when [Molecu-
larDynamics%InitialVelocities%Type] is set to Input. Each row must contain three floating
point values (corresponding to the x,y,z component of the velocity vector) and a number
of rows equal to the number of atoms must be present, given in the same order as the
[System%Atoms] block.

NSteps

Type Integer

Default value 1000

Description The number of steps to be taken in the MD simulation.

PRD

Type Block

Description This block is used for Parallel Replica Dynamics simulations.

BondChange

Type Block

Recurring True

Description Detect changes to the bonding topology and bond orders returned by the engine.

ChangeThreshold

Type Float

Default value 0.5

198 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Description Trigger an event when the bond order of a bond changes from the reference
state by more than this value.

DissociationThreshold

Type Float

Default value 0.3

Description Trigger an event when a bond dissociates (its bond order drops below this value
while it was above FormationThreshold in the reference state).

FormationThreshold

Type Float

Default value 0.8

Description Trigger an event when a new bond forms (its bond order exceeds this value
while it was below DissociationThreshold in the reference state).

CorrelatedSteps

Type Integer

Default value 100

Description How many steps to wait for correlated events after detecting an initial event.

DephasingSteps

Type Integer

Default value 100

Description Spend this many steps dephasing the individual replicas after an event.

MolCount

Type Block

Recurring True

Description Detect changes to the molecular composition of the system.

nReplicas

Type Integer

Default value 1

Description Number of replicas to run in parallel.

Plumed

Type Block

Description Input for PLUMED.

Input

Type Non-standard block

Description Input for PLUMED. Contents of this block is passed to PLUMED as is.

Preserve

Type Block

11.2. Summary of all keywords 199

AMS Manual, Amsterdam Modeling Suite 2019

Description Periodically remove numerical drift accumulated during the simulation to preserve
different whole-system parameters.

AngularMomentum

Type Bool

Default value True

Description Remove overall angular momentum of the system. This option is ignored for
3D-periodic systems.

CenterOfMass

Type Bool

Default value False

Description Translate the system to keep its center of mass at the coordinate origin. This
option is not very useful for 3D-periodic systems.

Momentum

Type Bool

Default value True

Description Remove overall (linear) momentum of the system.

Print

Type Block

Description This block controls the printing of additional information to stdout.

System

Type Bool

Default value False

Description Print the chemical system before and after the simulation.

Velocities

Type Bool

Default value False

Description Print the atomic velocities before and after the simulation.

RemoveMolecules

Type Block

Recurring True

Description This block controls removal of molecules from the system. Multiple occurrences
of this block are possible.

Formula

Type String

Description Molecular formula of the molecules that should be removed from the system.
The order of elements in the formula is very important and the correct order is: C, H, all
other elements in the strictly alphabetic order. Element names are case-sensitive, spaces in
the formula are not allowed. Digit ‘1’ must be omitted. Valid formula examples: C2H6O,

200 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

H2O, O2S. Invalid formula examples: C2H5OH, H2O1, OH, SO2. Invalid formulas are
silently ignored.

Frequency

Type Integer

Default value 0

Description The specified molecules are removed every so many steps after the StartStep.
There is never a molecule removed at step 0.

SafeBox

Type Block

Description Part of the simulation box where molecules may not be removed. Only one of
the SinkBox or SafeBox blocks may be present. If this block is present a molecule will
not be removed if any of its atoms is within the box. For a periodic dimension it is given
as a fraction of the simulation box (the full 0 to 1 range by default). For a non-periodic
dimension it represents absolute Cartesian coordinates in atomic units.

Amax

Type Float

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Description Coordinate of the lower bound along the third axis.

SinkBox

Type Block

Description Part of the simulation box where molecules will be removed. By default,
molecules matching the formula will be removed regardless of their location. If this block
is present a molecule will be removed if any of its atoms is within the box. For a periodic
dimension it is given as a fraction of the simulation box (the full 0 to 1 range by default).
For a non-periodic dimension it represents absolute Cartesian coordinates in atomic units.

11.2. Summary of all keywords 201

AMS Manual, Amsterdam Modeling Suite 2019

Amax

Type Float

Description Coordinate of the upper bound along the first axis.

Amin

Type Float

Description Coordinate of the lower bound along the first axis.

Bmax

Type Float

Description Coordinate of the upper bound along the second axis.

Bmin

Type Float

Description Coordinate of the lower bound along the second axis.

Cmax

Type Float

Description Coordinate of the upper bound along the third axis.

Cmin

Type Float

Description Coordinate of the lower bound along the third axis.

StartStep

Type Integer

Default value 0

Description Step number when molecules are removed for the first time. After that,
molecules are removed every [Frequency] steps. For example, if StartStep=99 and Fre-
quency=100 then molecules will be removed at steps 99, 199, 299, etc... No molecule will
be removed at step 0, so if StartStep=0 the first molecules are removed at the step number
equal to [Frequency].

StopStep

Type Integer

Description Do not remove the specified molecules after this step.

ReplicaExchange

Type Block

Description This block is used for (temperature) Replica Exchange MD (Parallel Tempering)
simulations.

SwapFrequency

Type Integer

Default value 100

Description Attempt an exchange every N steps.

TemperatureFactor

202 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Type Float List

Description This is the ratio of the temperatures of two successive replicas. The first value
sets the temperature of the second replica with respect to the first replica, the second value
sets the temperature of the third replica with respect to the second one, and so on. If there
are fewer values than nReplicas, the last value of TemperatureFactor is used for all the
remaining replicas.

nReplicas

Type Integer

Default value 1

Description Number of replicas to run in parallel.

Restart

Type String

Description The path to the ams.rkf file from which to restart the simulation.

Thermostat

Type Block

Recurring True

Description This block allows to specify the use of a thermostat during the simulation. Depend-
ing on the selected thermostat type, different additional options may be needed to character-
ize the specific thermostat’ behavior.

BerendsenApply

Type Multiple Choice

Default value Global

Options [Local, Global]

Description Select how to apply the scaling correction for the Berendsen thermostat: - per-
atom-velocity (Local) - on the molecular system as a whole (Global).

ChainLength

Type Integer

Default value 10

Description Number of individual thermostats forming the NHC thermostat

Duration

Type Integer List

Description Specifies how many steps should a transition from a particular temperature to
the next one in sequence take.

FirstAtom

Type Integer

Default value 1

Description Index of the first atom to be thermostatted

LastAtom

Type Integer

11.2. Summary of all keywords 203

AMS Manual, Amsterdam Modeling Suite 2019

Default value 0

Description Index of the last atom to be thermostatted. A value of zero means the last atom
in the system.

Tau

Type Float

Unit Femtoseconds

Description The time constant of the thermostat.

Temperature

Type Float List

Unit Kelvin

Description The target temperature of the thermostat.

Type

Type Multiple Choice

Default value None

Options [None, Berendsen, NHC]

Description Selects the type of the thermostat.

TimeStep

Type Float

Default value 0.25

Unit Femtoseconds

Description The time difference per step.

Trajectory

Type Block

Description Sets the frequency for printing to stdout and storing the molecular configuration on
the .rkf file.

SamplingFreq

Type Integer

Default value 100

Description Write the the molecular geometry (and possibly other properties) to the .rkf file
once every N steps.

TProfileGridPoints

Type Integer

Default value 0

Description Number of points in the temperature profile. If TProfileGridPoints is greater
than 0 then a temperature profile will be generates along each of the three unit cell axes.
By default, no profile is generated.

NormalModes

Type Block

204 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Description Configures details of a normal modes calculation.

UseSymmetry

Type Bool

Default value True

Description Whether or not to exploit the symmetry of the system in the normal modes calcula-
tion.

NumericalDifferentiation

Type Block

Description Define options for numerical differentiations, that is the numerical calculation of gra-
dients, Hessian and the stress tensor for periodic systems.

NuclearStepSize

Type Float

Default value 0.005

Unit Bohr

Description Step size for numerical nuclear gradient calculation.

Parallel

Type Block

Description Numerical differentiation is an embarrassingly parallel problem. Double paral-
lelization allows to split the available processor cores into groups working through all the
available tasks in parallel, resulting in a better parallel performance. The keys in this block
determine how to split the available processor cores into groups working in parallel.

nCoresPerGroup

Type Integer

Description Number of cores in each working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

StrainStepSize

Type Float

Default value 0.001

Description Step size (relative) for numerical stress tensor calculation.

UseSymmetry

Type Bool

11.2. Summary of all keywords 205

AMS Manual, Amsterdam Modeling Suite 2019

Default value True

Description Whether or not to exploit the symmetry of the system for numerical differentiations.

NumericalPhonons

Type Block

Description Configures details of a numerical phonons calculation.

DoubleSided

Type Bool

Default value True

Description By default a two-sided (or quadratic) numerical differentiation of the nuclear gra-
dients is used. Using a single-sided (or linear) numerical differentiation is computationally
faster but much less accurate. Note: In older versions of the program only the single-sided
option was available.

Interpolation

Type Integer

Default value 100

Description Use interpolation to generate smooth phonon plots.

NDosEnergies

Type Integer

Default value 1000

Description Nr. of energies used to calculate the phonon DOS used to integrate thermodynamic
properties. For fast compute engines this may become time limiting and smaller values can
be tried.

Parallel

Type Block

Description Computing the phonons via numerical differentiation is an embarrassingly paral-
lel problem. Double parallelization allows to split the available processor cores into groups
working through all the available tasks in parallel, resulting in a better parallel performance.
The keys in this block determine how to split the available processor cores into groups work-
ing in parallel. Keep in mind that the displacements for a phonon calculation are done on a
super-cell system, so that every task requires more memory than the central point calculated
using the primitive cell.

nCoresPerGroup

Type Integer

Description Number of cores in each working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

206 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

StepSize

Type Float

Default value 0.04

Unit Angstrom

Description Step size to be taken to obtain the force constants (second derivative) from the
analytical gradients numerically.

SuperCell

Type Non-standard block

Description Used for the phonon run. The super lattice is expressed in the lattice vectors. Most
people will find a diagonal matrix easiest to understand.

UseSymmetry

Type Bool

Default value True

Description Whether or not to exploit the symmetry of the system in the phonon calculation.

PESScan

Type Block

Description Configures the details of the potential energy surface scanning task.

CalcPropertiesAtPESPoints

Type Bool

Default value False

Description Whether to perform an additional calculation with properties on all the sampled
points of the PES. If this option is enabled AMS will produce a separate engine output file
for every sampled PES point.

FillUnconvergedGaps

Type Bool

Default value True

Description After the initial pass over the PES, restart the unconverged points from converged
neighboring points.

ScanCoordinate

Type Block

Recurring True

Description Specifies a coordinate along which the potential energy surface is scanned. If this
block contains multiple entries, these coordinates will be varied and scanned together as if
they were one.

Angle

Type String

11.2. Summary of all keywords 207

AMS Manual, Amsterdam Modeling Suite 2019

Recurring True

Description Scan the angle between three atoms. Three atom indices followed by two real
numbers delimiting the transit range in degrees.

Coordinate

Type String

Recurring True

Description Scan a particular coordinate of an atom. Atom index followed by (x|y|z) fol-
lowed by two real numbers delimiting the transit range.

Dihedral

Type String

Recurring True

Description Scan the dihedral angle between four atoms. Four atom indices followed by
two real numbers delimiting the transit angle in degrees.

Distance

Type String

Recurring True

Description Scan the distance between two atoms. Two atom indices followed by two real
numbers delimiting the transit distance in Angstrom.

nPoints

Type Integer

Default value 10

Description The number of points along the scanned coordinate. Must be greater or equal 2.

Print

Type Block

Description This block controls the printing of additional information to stdout.

Timers

Type Multiple Choice

Default value None

Options [None, Normal, Detail, TooMuchDetail]

Description Printing timing details to see how much time is spend in which part of the code.

Properties

Type Block

Description Configures which AMS level properties to calculate for SinglePoint calculations or
other important geometries (e.g. at the end of an optimization).

BondOrders

Type Bool

Default value False

208 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Description Requests the engine to calculate bond orders. For MM engines these might just be
the defined bond orders that go into the force-field, while for QM engines, this might trigger
a bond order analysis based on the electronic structure.

ElasticTensor

Type Bool

Default value False

Description Whether or not to calculate the elastic tensor.

Gradients

Type Bool

Default value False

Description Whether or not to calculate the gradients.

Hessian

Type Bool

Default value False

Description Whether or not to calculate the Hessian.

Molecules

Type Bool

Default value False

Description Requests an analysis of the molecular components of a system, based on the bond
orders calculated by the engine.

NormalModes

Type Bool

Default value False

Description Whether or not to calculate the normal modes of vibration (and of molecules the
corresponding Ir intensities.)

Other

Type Bool

Default value True

Description Other (engine specific) properties. Details are configured in the engine block.

Phonons

Type Bool

Default value False

Description Whether or not to calculate the phonons for periodic systems.

SelectedAtomsForHessian

Type Integer List

Description Compute the Hessian matrix elements only for the atoms defined in this list (index).
If not specified, the Hessian will be computed for all atoms.

StressTensor

11.2. Summary of all keywords 209

AMS Manual, Amsterdam Modeling Suite 2019

Type Bool

Default value False

Description Whether or not to calculate the stress tensor.

RNGSeed

Type Integer List

Description Initial seed for the (pseudo)random number generator. This should be omitted in most
calculations to avoid introducing bias into the results. If this is unset, the generator will be
seeded randomly from external sources of entropy. If you want to exactly reproduce an older
calculation, set this to the numbers printed in its output.

Symmetry

Type Block

Description Specifying details about the details of symmetry detection and usage.

Tolerance

Type Float

Default value 1e-07

Description Tolerance used to detect symmetry in the system.

System

Type Block

Recurring True

Description Specification of the chemical system. For some applications more than one system may
be present in the input. In this case, all systems except one must have a non-empty string ID
specified after the System keyword. The system without an ID is considered the main one.

AtomMasses

Type Non-standard block

Description User defined atomic masses.

Atoms

Type Non-standard block

Description The atom types and coordinates. Unit can be specified in the header. Default unit
is Angstrom.

BondOrders

Type Non-standard block

Description Defined bond orders. May by used by MM engines.

Charge

Type Float

Default value 0.0

Description The system’s total charge in atomic units (only for non-periodic systems).

FractionalCoords

Type Bool

210 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Default value False

Description Whether the atomic coordinates in the Atoms block are given in fractional coordi-
nates of the lattice vectors. Requires the presence of the Lattice block.

GeometryFile

Type String

Description Read the geometry from a file (instead of from Atoms and Lattice blocks). Sup-
ported formats: .xyz

Lattice

Type Non-standard block

Description Up to three lattice vectors. Unit can be specified in the header. Default unit is
Angstrom.

LatticeStrain

Type Float List

Description Deform the input system by the specified strain. The strain elements are in Voigt
notation, so one should specify 6 numbers for 3D periodic system (order: xx,yy,zz,yz,xz,xy),
3 numbers for 2D periodic systems (order: xx,yy,xy) or 1 number for 1D periodic systems.

RandomizeCoordinates

Type Float

Default value 0.0

Unit Angstrom

Description Apply a random noise to the atomic coordinates. This can be useful if you want to
deviate from an ideal symmetric geometry.

RandomizeStrain

Type Float

Default value 0.0

Description Apply a random strain to the system. This can be useful if you want to deviate
from an ideal symmetric geometry, for example if you look for a phase change due to high
pressure.

SuperCell

Type Integer List

Description Create a supercell of the input system (only possible for periodic systems). The
integer numbers represent the diagonal elements of the supercell transformation; you should
specify as many numbers as lattice vectors (i.e. 1 number for 1D, 2 numbers for 2D and 3
numbers for 3D periodic systems).

SuperCellTrafo

Type Integer List

Description Create a supercell of the input system (only possible for periodic systems)
�⃗�′𝑖 =

∑︀
𝑗 𝑇𝑖𝑗 �⃗�𝑗 . The integer numbers represent the supercell transformation 𝑇𝑖𝑗 : 1

number for 1D PBC, 4 numbers for 2D PBC corresponding to a 2x2 matrix (order:
(1,1),(1,2),(2,1),(2,2)) and 9 numbers for 3D PBC corresponding to a 3x3 matrix (order:
(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)).

11.2. Summary of all keywords 211

AMS Manual, Amsterdam Modeling Suite 2019

Task

Type Multiple Choice

Options [SinglePoint, GeometryOptimization, TransitionStateSearch, PESScan, MolecularDynam-
ics, ModeScanning, ModeRefinement, ModeTracking, GCMC, IRC]

Description This key is used to specify the computational task to perform.

Thermo

Type Block

Description Options for thermodynamic properties (assuming an ideal gas). The properties are
computed for ‘nSteps’ temperatures in the range [TMin,TMax].

Pressure

Type Float

Default value 1.0

Unit atm

Description The pressure at which the thermodynamic properties are computed.

TMax

Type Float

Default value 298.15

Unit Kelvin

Description Maximum value for the temperature range.

TMin

Type Float

Default value 298.15

Unit Kelvin

Description Minimum value for the temperature range.

nSteps

Type Integer

Default value 1

Description The number of temperatures in the range [TMin,TMax].

TransitionStateSearch

Type Block

Description Configures some details of the transition state search.

ModeToFollow

Type Integer

Default value 1

Description In case of Transition State Search, here you can specify the index of the normal
mode to follow (1 is the mode with the lowest frequency).

UseSymmetry

212 Chapter 11. Keywords

AMS Manual, Amsterdam Modeling Suite 2019

Type Bool

Default value True

Description Whether to use the system’s symmetry at the application level.

11.2. Summary of all keywords 213

AMS Manual, Amsterdam Modeling Suite 2019

214 Chapter 11. Keywords

INDEX

A
Add Molecules (molecular dynamics), 45
ADF, 101
AMS input file, 107
ams.rkf, 4
AMS_JOBNAME, 157
AMS_RESULTSDIR, 157
AMS_SWITCH_LOGFILE_AND_STDOUT, 157
Applications, 9
Atomic Masses, 8
Available engines, 101

B
BAND, 101
Barostats, 41
Block contraints, 15
Bulk modulus, 93

C
Cell optimization, 13
Charge, 8
Compute clusters, 114
Conjugate gradients (geometry optimizer), 21
Constrained optimization, 14
Constraints, 14
CVHD, 51

D
Developer options, 157
DFTB, 101
Double parallelism, 110

E
eHEX method (NEMD), 53
Elastic properties, 93
Elastic tensor, 93
Engine input, 101
Engine output files, 4
Engines, 99
Enthalpy, 91
Entropy, 91
Environment variables, 157

examples, 115
External engines, 101

F
FIRE (geometry optimizer), 18
Fixed atoms, 14
Forces, 89
Fractional coordinates, 6

G
GCMC, 79
Geometry constraints, 14
Geometry convergence, 12
Geometry optimization, 11
Geometry optimization methods, 15
Geometry relaxation, 11
Gibbs free energy, 91
Grand Canonical Monte Carlo, 79

H
Heat Capacity, 91
Heat exchange (molecular dynamics), 53
Hessian, 90
HEX method (NEMD), 53

I
Infrared spectroscopy, 57
Initial Hessian, 17
Input file syntax, 107
Intensity Tracking, 70
Interface to external programs, 101
Internal Energy, 91
Intrinsic Reaction Coordinate, 28
IR spectrum, 57
IRC, 28
Isotopes, 8

J
Job name, 157

L
Lattice optimization, 13

215

AMS Manual, Amsterdam Modeling Suite 2019

Lattice Vectors, 6
Lattice vibrations, 95
Lennard-Jones potential, 105
Linear Transit, 24

M
MEP, 28
Minimum Energy Profile, 28
Mode Refinement, 62
Mode Tracking, 58, 66
Molecular dynamics, 33
Molecular dynamics checkpoint, 43
Molecular vibrations, 57
Molecule Gun (molecular dynamics), 45
MOPAC, 101

N
NEMD, 53
Normal modes of vibration, 57
Nuclear gradients, 89

P
Partial Vibrational Density of States, 92
Partial Vibrational Spectra, 92
PES point properties, 87
PES Scan, 24
Phonons, 95
PLAMS, 115
PLUMED library, 50
Pressure (geometry optimization), 13
Pressure (molecular dynamics), 43
PVDOS, 92
Python, 115

Q
Quasi-Newton (geometry optimizer), 16

R
ReaxFF, 101
Remove molecules (molecular dynamics), 48
Restart (Geometry), 9
Restart (molecular dynamics), 38
Results directory, 114
Run types, 9

S
Scan coordinate, 25
ScanFreq, 58
SCM_TMPDIR, 114
SCMGO (geometry optimizer), 20
Scratch directory, 114
Scripting, 115
Shear modulus, 93

Single point calculation, 11
Starting directory, 114
Stress tensor, 90
Structure relaxation, 11
Super Cell, 7

T
T-NEMD, 53
Task farming, 110
Tasks, 9
Temperature (molecular dynamics), 43
Temporary directory, 114
Thermodynamics, 91
Thermostat, 39
Trajectory sampling, 43
Transition state search, 23
Two-level parallelism, 110

U
UFF, 101

V
Vibrational analysis, 56
Vibrations, 57

X
XYZ file format, 157

Y
Young modulus, 93

216 Index

	General
	Overview
	What's new in the AMS2019 driver?
	Motivation and progress
	Input, execution and output

	System definition
	System geometry
	Additional system properties
	Restoring a system from disk

	Exploring the PES: Tasks
	Single point calculations
	Geometry optimization
	Constrained optimization
	Optimization methods
	Quasi-Newton
	FIRE
	SCMGO
	Conjugate gradients

	Troubleshooting
	Failure to converge
	Restarting a geometry optimization

	Transition state search
	PES scan
	Troubleshooting

	Intrinsic Reaction Coordinate (IRC) Scan
	Method details
	Input
	Output

	Molecular dynamics
	General
	(Re-)Starting a simulation
	Thermostats and barostats
	Temperature and pressure regimes

	Trajectory sampling and output
	Molecule Gun: adding molecules during simulation
	Removing molecules during simulation
	The PLUMED library support in AMS
	Collective Variable-driven HyperDynamics (CVHD)
	Non-equilibrium MD (NEMD): heat exchange

	Vibrational analysis
	Full analysis
	Mode selective analysis
	Mode Scanning
	Mode Refinement
	Mode Tracking
	Selecting modes

	Grand Canonical Monte Carlo (GCMC)
	General info
	Method Details
	Input
	Output

	PES point properties
	Nuclear gradients and stress tensor
	Hessian and normal modes of vibration
	Thermodynamics (ideal gas)
	Partial Vibrational Spectra (PVDOS)

	Elastic tensor
	Phonons
	Numerical differentiation options

	Engines
	Available engines
	External programs as engines
	Toy engines

	Technical topics
	Input syntax
	General remarks on input structure and parsing
	Keys
	Blocks
	Units

	Double parallelism
	Running AMS on compute clusters
	Python interface

	Examples
	Geometry optimization
	Example: Simple geometry optimization
	Example: Two-stage geometry optimization with initial Hessian
	Example: Periodic lattice optimization under pressure
	Example: Constrained optimizations

	Transition state search
	Example: TS search starting from initial Hessian
	Example: PES scan and TS search for H2 on graphene

	Intrinsic reaction coordinate (IRC)
	Example: IRC for HCN
	Example: TS and IRC for Claisen reaction

	PES scan
	Example: Linear transit
	Example: 2D PES scan

	Molecular dynamics
	Example: Simple MD for H2
	Example: MD for a box of water

	Vibrational analysis
	Example: Mode Refinement
	Example: Mode Tracking

	PES point properties
	Example: Phonons for graphene
	Example: Phonons with isotopes
	Example: Elastic tensor

	Appendices
	Environment variables
	Extended XYZ file format
	Developer options

	Required citations
	General references
	Feature references
	Vibrational analysis
	Mode tracking
	Mode refinement

	References
	External programs and libraries

	Keywords
	Links to manual entries
	Summary of all keywords

	Index

