
Installation Manual
Amsterdam Modeling Suite 2019.3

www.scm.com

Nov 12, 2019

CONTENTS

1 Windows Quickstart Guide 1

2 Linux Quickstart Guide 3

3 MacOS Quickstart Guide 5

4 Introduction 7
4.1 Requirements . 7

4.1.1 Summary . 7
4.1.2 Detailed Hardware requirements . 8
4.1.3 Software requirements . 9

4.2 Important changes since AMS2018 . 10
4.3 Important changes since ADF2017 . 10

5 Installation 11
5.1 Decide which version to install . 11
5.2 Download and install the software . 12
5.3 Set up the environment . 12
5.4 Set up the license . 13

5.4.1 Floating license . 16
5.5 Set up the scratch space . 17
5.6 Test your installation . 18

5.6.1 Check the license file . 18
5.6.2 Run some basic tests . 19
5.6.3 Test the GUI . 19
5.6.4 Test parallel execution . 19
5.6.5 Test parallel performance . 20

5.7 Configure ADFjobs queues and 3rd party software (optional) . 21
5.7.1 ADFjobs queues . 21
5.7.2 Managing remote jobs . 21

6 Additional Information and Known Issues 23
6.1 Shared memory and batch systems (SLURM) . 23
6.2 GPFS file system . 23
6.3 Running MPI jobs . 23

6.3.1 Technical explanation . 24
6.4 More on running MPI jobs . 24
6.5 IntelMPI and core-binding . 25
6.6 IntelMPI and SLURM . 25
6.7 IntelMPI and SGE . 25
6.8 IntelMPI and ABI compatibility . 25

i

6.9 OpenMPI on Linux . 26
6.10 Corrupted License File . 26
6.11 Windows: running jobs from the command line . 26

7 Using the GUI on a remote machine 29
7.1 X11 over SSH . 29
7.2 X11 with OpenGL over SSH (3D graphics) . 29

7.2.1 Intel Graphics (mesa) . 30
7.2.2 NVidia Graphics . 31

libGL.so examples . 31
7.2.3 AMD Graphics . 32

libGL.so examples . 32
7.3 OpenGL direct or indirect rendering . 33

7.3.1 enabling indirect rendering on Xorg 1.17 and newer . 33
CentOS 6 . 33
Ubuntu 16.04 . 33
OSX / MacOS . 34

7.4 OpenGL2+ with X11 over SSH . 34
7.5 ADF2017 and VTK7 . 34
7.6 AMS2019/AMS2018 and VTK7 . 35
7.7 Sources . 35

8 Appendix A. Environment Variables 37
8.1 More on the SCM_TMPDIR variable . 39

9 Appendix B. Directory Structure of the ADF Package 41
9.1 The bin directory . 41
9.2 The atomicdata directory . 41
9.3 The examples directory . 41
9.4 The source code (adf, band, libtc, Install, ...) . 41
9.5 The Doc directory . 42
9.6 The scripting directory . 42

10 Compiling AMS from Sources 43
10.1 Unpacking the distribution . 43
10.2 Setting up environment . 43
10.3 Running Install/configure . 44
10.4 Compiling AMS . 44

ii

CHAPTER

ONE

WINDOWS QUICKSTART GUIDE

This quickstart guide is for installing ADF/AMS on a Windows desktop/laptop machine. Please also read the generic
Installation manual (page 11) if you encounter problems.

Start with downloading AMS2019 for Windows from the main download page
(http://www.scm.com/support/downloads/) (click the orange Download button below the blue Windows logo),
and save it in your Downloads folder. Open adf2019.301.pc64_windows.intelmpi.exe after the download is complete,
for example by opening your Downloads folder in the Windows explorer and double-clicking it. Newer versions of
AMS will have a different number in the file name.

Follow the on-screen instructions to install AMS2019 to your computer. The InstallShield Wizard asks where to
install the program (C:ADF2019.301 by default), where to save your ADF files (C:ADF_DATA by default), and where
to store temporary data (C:SCMTMP by default). All these paths can be changed, but should NOT contain any spaces!

During installation a text console window will open to extract a few more files needed for using AMS, do NOT close
this window! If you do, the installation has to be started all over again.

Once the installation is complete, double-click the “ADFJobs” shortcut on the desktop to start AMS2019.

AMS2019 also includes a bash/python scripting environment, which can be started by starting adf_command_line.bat
from the AMS2019 installation folder. This will open a windows shell with the correct environment set up for running
AMS/ADF. The scripting environment also provides a bash shell (simply type bash and hit enter) and a python stack.

1

http://www.scm.com/support/downloads/

Installation Manual, Amsterdam Modeling Suite 2019.3

2 Chapter 1. Windows Quickstart Guide

CHAPTER

TWO

LINUX QUICKSTART GUIDE

This quickstart guide is for installing ADF/AMS on a Linux desktop/laptop machine. For cluster installations please
read the generic Installation manual (page 11)

NOTE: The following steps should be taken under a normal user account. Do not use the root account or superuser!

Start with downloading AMS2019 for Linux from the main download page
(http://www.scm.com/support/downloads/) (click the orange Download button below the penguin), and save it
in your Downloads folder. You do not need to open the file.

Now open a terminal (Ctrl+Alt+T usually works, otherwise browse your application menus), and run the commands
below to extract the download into your homefolder. Make sure to replace the adf2019.301.pc64_linux.intelmpi
part to match the name of the file you downloaded (in case of a newer version, or if you downloaded a snapshot or
development version). Try to use copy and paste (right-click with your mouse in the terminal screen to paste) to avoid
mistyping the commands.

cd $HOME
tar -xf $HOME/Downloads/adf2019.301.pc64_linux.intelmpi.bin.tgz

Run the following command to source the adfbashrc.sh file, do not forget the dot and space at the beginning of the
line! Also make sure to replace 2019.301 with the version you downloaded.

. $HOME/adf2019.301/adfbashrc.sh

Start up the GUI with this command:

adfjobs &

If this does not open a gui, then use your mouse to select all the text in the terminal window, copy it (right-click and
select copy), and send us an email at support@scm.com with the text. DO NOT PROCEED WITH THE NEXT STEP!

If the ADF GUI started without problems, go back to ther terminal window and run the following command to create
a desktop icon for ADF:

$ADFBIN/create_linux_icon.sh

Finally we can set up our terminal to automatically source the adfbashrc.sh file when starting. Add the source
command to the .bashrc file with the following command in the terminal window:

echo '. $HOME/adf2019.301/adfbashrc.sh' >> $HOME/.bashrc

You can also open the .bashrc file in a text editor, and manually paste the part between the quotes on a new line at the
end of the file.

3

http://www.scm.com/support/downloads/
mailto:support@scm.com

Installation Manual, Amsterdam Modeling Suite 2019.3

4 Chapter 2. Linux Quickstart Guide

CHAPTER

THREE

MACOS QUICKSTART GUIDE

This quickstart guide is for installing ADF/AMS on an Apple MacOS machine. Please also read the generic Installa-
tion manual (page 11) if you encounter problems.

Start with downloading AMS2019 for MacOS from the main download page
(http://www.scm.com/support/downloads/) (click the orange Download button below the grey Apple logo), and
save it on your computer. Open adf2019.301.macintel64.openmpi.dmg after the download is complete. Newer
versions of AMS will have a different number in the file name.

Drag the ADF application (called ADF20XXX) from the disk image to your disk, for example by dropping it on the
icon of the Applications folder in the disk image.

Important: the folder in which you store the ADF application should not contain spaces in its name (or in the names
of any of its parent folders)!

Installing in the standard /Applications folder should work fine.

The ADF package needs a valid license file to run.

Double click the ADF20XXX application.

On MacOS Catalina when you open ADF20XXX for the first time from your Applications, you’ll see a notice
“ADF20XXX can’t be opened because Apple cannot check it for malicious software”. To Fix this

• In the Finder on your Mac, locate the app you want to open.

• Control-click the app icon, then choose Open from the shortcut menu.

• Click Open.

The app is then saved as an exception, and you can open it in the future by double-clicking it or open it from your
Applications on the Dock.

If you have no valid license a window will appear that allows you to request and install a license file. If a license file
is available for you it will be installed automatically.

Otherwise you will receive a mail when a license file is available. Double click the ADF20XXX application again and
request a license again to install it. Note that you will never get more than one license for a particular machine, so no
need to worry about requesting a license twice.

5

http://www.scm.com/support/downloads/

Installation Manual, Amsterdam Modeling Suite 2019.3

6 Chapter 3. MacOS Quickstart Guide

CHAPTER

FOUR

INTRODUCTION

This document describes the installation of the Amsterdam Modeling Suite (AMS) on the supported platforms. For
optimal performance, some system specific tuning may be needed. Therefore, it is strongly recommended to also read
the additional information and known issues .

The Amsterdam Modeling Suite consists of the following main classes of programs:

• Computational engines: ADF, BAND, COSMO-RS, DFTB, UFF, ReaxFF and MOPAC. Each of the engines
has its own (text-based) input and output and can be used from scripts and the command line. New in the
AMS2019 release is the AMS driver program, which houses the BAND, DFTB, UFF and ReaxFF engines.
Within this manual we try to use the word AMS for all the computational engines, and ADF for the molecular
DFT program.

• Utilities and property programs. These are used primarily for pre- and post-processing data of the computational
engines.

• Graphical user interface (GUI), which is used to prepare input for computational engines and to visually present
their results.

AMS is bundled as a complete package and all components are installed at once. Your license file determines which
of the functionality will be available after installation.

The AMS package is written with a Unix-like environment in mind, but Unix/commandline knowledge is not needed
install or use AMS from the GUI. Linux laptop and desktop users can follow the instructions in the Linux Quickstart
Guide (page 3) to install AMS. Windows users can follow the on-screen instructions after starting the installer, or take
a look at the Windows Quickstart Guide (page 1). MacOS/OSX users can simply drag&drop the AMS application to
install it, see the MacOS Quickstart Guide (page 5) for more details.

If you plan to do advanced scripting or run AMS from the command line, then you will need to know how to write
shell scripts and have some knowledge of the environment variables. If you are the one who is going to install the
package on a shared Unix-like system, such as Linux cluster environment, then you need to know how to modify shell
resource files such as .bashrc.

4.1 Requirements

4.1.1 Summary

AMS2019 can be used on anything from a simple laptop to big Linux cluster environments, and is tested on a wide
variety of hardware.

Recommended minimum hardware specification:

• Intel i5 or better 64bit CPU

• 8GB RAM

7

Installation Manual, Amsterdam Modeling Suite 2019.3

• 250GB SSD

• OpenGL 3.2 graphics

Absolute minimum hardware specification:

• 64bit CPU

• 2GB RAM

• 6GB storage for installation

• OpenGL 1.4 graphics

Supported Operating Systems:

• Windows 7/8/10

• OSX 10.9 or newer, but OSX10.13 or newer is recommended

• Linux with GLIBC v2.11 or higher: CentOS/RHEL 6 or 7, Debian 6 or newer, SUSE 11.3 or newer, Ubuntu
10.04 or newer, etc.

Specific hardware and software requirements for the AMS package depend on the platform. The list of supported
platforms, including information on the operating system, parallel environment (MPI), and compilers used is available
in the Download section (http://www.scm.com/support/downloads/) of our web site.

4.1.2 Detailed Hardware requirements

CPU

AMS2019 runs on any x86_64 CPU, but performs best on modern Intel CPUs with AVX or AVX-512 instruction sets.
Intel CPUs in general have better floating point performance compared to AMD processors, and AMS spends most
time on floating point operations. However, AMS2019 on Linux is also available in an OpenBLAS flavor optimized
for running on AMD Zen architecture (Ryzen/Threadripper/Epyc CPUs).

Memory

In a parallel calculation, the total amount of memory used by the job is a sum of that used by each process. Starting
from ADF2010, some large chunks of data are placed in the shared memory so the sum rule does not strictly hold. In
principle, it is more correct to count memory per process but since AMS is an MPI program it runs most efficiently
when the number of processes corresponds to the number of physical processors cores. Therefore, all memory amounts
below are per processor core.

The amount of RAM per core needed to run AMS depends greatly on the kind of calculation you perform. For small
calculations, 256 MB will be sufficient, but if there is a lot of memory available AMS may run significantly faster. A
large amount memory also reduces the load on the disks, which may speed up your calculation depending on the I/O
sub-system and the operating system.

The memory requirement increases with the system size. For example, for a molecule containing 100 atoms with a DZ
basis set it may be sufficient to have 256 MB but for a molecule with 1000 atoms up to 8 gigabytes may be required.
Also, if you are going to perform TDDFT, relativistic spin-orbit or analytical frequency calculations then the amount
of memory should be larger. As an indication, an analytical vibrational frequency calculation of a organometallic
complex containing 105 atoms with a TZP basis set uses up to 1GB of RAM per process but it can be done with less,
even though not as efficiently.

Disk

For installation of the package on Linux/Unix you need from about 5GB (without sources) to 8GB (with sources and
compiled objects). The run-time (scratch) disk space requirements greatly depend on what type of calculation you
perform. For the ADF program, it may range from a few megabytes for a small molecule up to a hundred gigabytes

8 Chapter 4. Introduction

http://www.scm.com/support/downloads/

Installation Manual, Amsterdam Modeling Suite 2019.3

for a large molecule with a large basis set, the amount scaling quadratically with the system size. Using a Solid State
Drive (SSD) helps performance, especially for bigger calculations.

Network

First of all, a network card must be present in the computer as its hardware MAC address is used as the computer’s ID
for the licensing.

In order to enable MPI on a standalone Windows computer, one may need to create a dummy network connection by
adding a network “card” called Microsoft Loopback Adapter. This interface will be assigned an IP address from a
private range.

Multi-host parallel performance.

As far as performance concerned, a switched Gigabit Ethernet network is typically sufficient for good parallel perfor-
mance on up to four nodes if the nodes do not have too many CPU cores per node. If you are going to use more nodes,
or nodes with high core count (>16 cores per node), you may need faster communication hardware, such as Infiniband,
to get good performance. Please note that multi-host execution is not supported on Windows.

Graphics

Starting with ADF2017, the GUI requires OpenGL 3.2 to run. For Linux and Windows users there is an OpenGL1
fallback mode available for older hardware, please read more about it in the Remote GUI documentation.

4.1.3 Software requirements

Operating System

The package runs on Windows and on the following Unix variants: Linux, Mac OS X.

On the Apple systems the Mac OS X 10.9 and newer is supported, but we recommend using OS X 10.13 or newer.

On linux both the compute engines, python scripting environment and GUI require a GLIBC version of 2.11 or higher.
AMS is compiled on CentOS 6, the code gets tested daily on CentOS 6, Ubuntu 16.04, Ubuntu 18.04 and Arch.

The Windows version of AMS is supported on the desktop editions of Windows (7, 8, 8.1 and 10). The Windows
Server is not supported.

Additional libraries

Certain version of AMS will require different libraries to be installed on the system depending on the MPI library
used.

Graphics

In order to run the the graphical user interface (GUI) the computer needs to have an OpenGL-capable graphics subsys-
tem (hardware, drivers and libraries). Besides that, on Linux the following (or equivalent) packages must be installed:

fontconfig
freetype
libdrm
libICE
libSM
libstdc++
libX11
libXau
libXdmcp
libXext
libXft
libXrender
libXScrnSaver (Ubuntu users may need to install libXss1)
libXt

4.1. Requirements 9

Installation Manual, Amsterdam Modeling Suite 2019.3

libXxf86vm
mesa-libGL
mesa-libGLU

The GUI will not able to start without shared libraries provided by these packages.

NOTE: If you receive an error about libXss (libXss.so.1: cannot open shared object file: No such file or directory),
you need to install libXScrnSaver (redhat/centos: yum install libXScrnSaver) or libxss1 (ubuntu/debian: sudo apt
install libxss1).

Compiler

If you have a license for the source code, you can compile the source yourself, with or without your own modifications.

The source consists mainly of Fortran95/2003 code, with some small parts written in C. Some of the Fortran2003
features are also used so a compiler supporting it is required. You must use object-compatible Fortran and C compilers
to those we are using on the same platform, since some parts of the code are available only as object modules. For
all x86 platforms it is currently Intel Fortran 18 or newer. It is very unlikely that other compilers, or even a different
major version of the same compiler, will work with these object modules. We cannot support compilers different from
what we are using ourselves.

To check which compiler to use, check the detailed machine information on the Download section of our web site.

4.2 Important changes since AMS2018

No major technical changes have been made in AMS2019.

4.3 Important changes since ADF2017

Some of the technical changes made since ADF2017:

• No more support for 32-bit Windows: almost all PCs nowadays run on 64-bit processors and 64-bit Operating
Systems. If you need a 32-bit version, we advise you to use ADF2017 instead.

• Automated OpenGL fallback mode for GUI on older graphics: available on 64-bit Windows and Linux.

• No more support for CentOS 5 on Linux: The Intel ifort 18 compiler unfortunately introduces an unavoidable
GLIBC 2.11 requirement, which means AMS2018/AMS2019 no longer works on older Linux systems.

• Linux binaries for AMD Zen processors: AMS2018/AMS2019 is available with OpenBLAS instead of MKL,
optimized for the AMD Zen architecture. These binaries should be used on AMD Ryzen / Threadripper and
Eypc CPUs for better performance.

• Updated Python stack: Our python stack is now based on the Enthought Python v3.6 stack, most included
modules have also been updated.

• AVX-512 support: AMS2018/AMS2019 is compiled with AVX-512 optimizations for the latest Intel Xeon
Scalable Processors (Skylake SP).

10 Chapter 4. Introduction

CHAPTER

FIVE

INSTALLATION

Typically installation of the AMS package is simple and straightforward. If you have problems installing it, contact us
for assistance at support@scm.com.

To install the AMS package you have to go through the following steps:

• 1. Decide which version to install (page 11)

• 2. Download and install the software (page 12)

• 3. Set up environment (page 12)

• 4. Set up the license (page 13)

• 5. Set up the scratch space (page 17)

• 6. Test your installation (page 18)

• 7. Configure ADFjobs queues and 3rd party software (optional) (page 21)

Below we discuss each step separately.

5.1 Decide which version to install

Choose the released version or a snapshot. Normally, you will install the released version
from the main download page (http://www.scm.com/support/downloads/). The bug-fixed binaries
(http://www.scm.com/support/downloads/bug-fixes/) contains the most recent bug fixes. You may want to in-
stall a snapshot version if you know that some bugs have been fixed recently. The development snapshots page
(http://www.scm.com/support/downloads/development-snapshots/) contains the latest developments. You will only
want to download it if you need to use the latest functionality not available in AMS2019.

Choose a platform. AMS is available for a number of platforms. A platform is a combination of the processor ar-
chitecture, operating system, MPI implementation, and any other specialties such as CUDA or OpenBLAS. Currently,
the following platforms are officially supported and available from our website:

• Linux: x86-64 (64-bit): IntelMPI, OpenMPI, IntelMPI+CUDA (beta version only), IntelMPI+OpenBLAS (op-
timized for AMD Zen CPUs)

• Mac OS X Mavericks and later (10.9+): x86-64 (64-bit) with OpenMPI

• Windows: x86-64 (64-bit) with IntelMPI

32 vs. 64 bits. AMS2019 is only supported on 64-bit Operating Systems (and hardware). On 32-bit Windows
ADF2017 can be used.

Choose MPI (on Linux). We advise to use the IntelMPI version if possible. It has been tested on both desktop and
cluster machines and should work out-of-the-box on most cluster queueing systems. The IntelMPI runtime environ-
ment is distributed with AMS. If you prefer to use the OpenMPI version instead, keep in mind that if you wish to run

11

mailto:support@scm.com
http://www.scm.com/support/downloads/
http://www.scm.com/support/downloads/bug-fixes/
http://www.scm.com/support/downloads/development-snapshots/

Installation Manual, Amsterdam Modeling Suite 2019.3

multi-node calculations you need to use a local copy of OpenMPI 2.1 with support for your queueing system build in.
The OpenMPI runtime environment is distributed with AMS but it is limited to single-node (or desktop) usage. Users
of SGI should download a version specifically built for their platform, if available.

Cray XC. Cray users can use the IntelMPI version of AMS because it is binary-compatible with Cray MPI shared
libraries. Read the MPICH ABI compatibility section in the Cray documentation for more information.

GPU acceleration: note: the CUDA version of AMS2019 will be made available at a later time. ADF can use
NVidia GPUs for accelerating SCF cycles and frequency calculations. The GPU should have good double precision
performance, compute capability 2.0 or higher and the operating system needs to be Linux with CUDA 8.0 installed.
See the ADF manual on GPU Acceleration for details.

OpenBLAS (on Linux): AMS2018 introduced a new supported platform, optimized for AMD Zen
(Ryzen/Threadripper/Epyc) processors. It uses OpenBLAS instead of the Intel Math Kernel Libraries (MKL) com-
bined with AVX-2 optimized binaries. This version will NOT work on older AMD processors.

5.2 Download and install the software

All systems: Download an installation package from one of the download pages mentioned above.

Unix and Linux: The installation package is a compressed tar archive. Untar it in the directory of your choice.
Desktop users can follow the Linux Quickstart Guide to install AMS2019. Please note that in a cluster environment
AMS must be installed on a shared file system accessible from all nodes of the cluster. The archive contains one
directory, adf2019.xxx, which, when installed, will be referred to as $ADFHOME.

Mac OS X: The installation package is a disk image (.dmg) file. To install AMS on Mac OS X, double click on the
downloaded disk image and drag AMS2019.xxx somewhere on your hard disk, such as the Applications directory. Be
sure to read the enclosed ReadMe file for further important details!

Windows: The downloaded file is an executable Microsoft Installer package containing an installation wizard that
will guide you through the installation process. Open the file after downloading, and follow the instructions. note:
Do not close the console window that pops up during the installation! . Please note that you need Administrator
privileges to install AMS. After or during the installer you might be asked by the Windows Firewall to grant network
access to some executables, this permission is optional. For third-party firewall applications you will need to grant
access from scmd.exe to the localhost.

5.3 Set up the environment

Windows users can skip to the next section since for them the environment is set up by the installation wizard.

Mac users may follow the UNIX instructions if they (also) wish to run from the command line. However, read
the ReadMe file inside the dmg file for some important extra details! Alternatively, Mac users can start by double
clicking the AMS2019.xxx application. The AMS2019.xxx application will automatically set the environment, and
start ADFjobs for you. Next, all tasks (GUI or computational engines) started from this ADFjobs will inherit the
proper environment.

For users of any Unix-like system the following step is mandatory.

For a single-user installation, the end-user is likely also the person installing AMS. If the user has a bash shell, it
should be sufficient to source the $ADFHOME/adfbashrc.sh:

. $HOME/adf2019.xxx/adfbashrc.sh

12 Chapter 5. Installation

Installation Manual, Amsterdam Modeling Suite 2019.3

Alternatively, it is also possible to edit the $ADFHOME/Utils/adfrc.sh (for sh/bash/zsh users) or
$ADFHOME/Utils/adfrc.csh (for csh/tcsh users) file to set a number of important environment variables and
source the file:

. $HOME/adf2019.xxx/Utils/adfrc.sh

or (for tcsh)

source $HOME/adf2019.xxx/Utils/adfrc.csh

Note: If the adfrc.sh or adfrc.csh file is missing from your Utils folder, you can download then here: Download
adfrc.sh , Download adfrc.csh

To set up the environment automatically when starting a new terminal, add the source command to the $HOME/.bashrc
file. It is also possible to create a launcher icon for the GUI by running the $ADFBIN/create_linux_icon.sh script
AFTER the environment has been set:

$ADFBIN/create_linux_icon.sh

For a multi-user installation, you can either copy both adfrc.* files to the /etc/profile.d directory (after editing them)
or, if your system supports modules, create a module file for AMS2019. The following environment variables must be
defined in the module file:

• ADFHOME: AMS installation directory

• ADFBIN: should be equal to $ADFHOME/bin

• ADFRESOURCES: should be equal to $ADFHOME/atomicdata

• SCMLICENSE: complete path of the license file, typically $ADFHOME/license.txt

• SCM_TMPDIR: path to the user’s scratch directory, for example, /scratch/$USER. This directory must exist
prior to the first execution of any program from the AMS package by that user. Thus it may be a good idea to
add to the user’s profile a command that creates the directory in case it does not exist. You can also choose to
use the same directory for all users. See SCM_TMPDIR Environment variable for more details.

A complete list of environment variables is provided in Appendix A.

If you are planning on using the GUI on a remote machine (for example via ssh with X-forwarding), make sure to also
take a look at Using the GUI on a remote machine.

If you plan on running jobs directly from the command line, please do not mpirun the programs directly. The MPI
startup is done automatically, for more information see the Additional Information on running MPI jobs.

5.4 Set up the license

Which functionality can be used on each computer is determined by the license file pointed to by the SCMLICENSE
environment variable.

When you start any program from the AMS package (like ADF, BAND, ADFjobs or ADFinput) it will try to install a
license file for you if necessary. To do this, some information is needed:

5.4. Set up the license 13

Installation Manual, Amsterdam Modeling Suite 2019.3

e-mail: Your e-mail address, this may be used to contact you and send you a license file.

SCM userid (uxxxxx): The same as the download login you should have received.

Password: The download password belonging to the SCM userid

Remember: If checked, the SCM userid and password will be saved on your computer, so you do not have to enter
them again. They are saved in a readable format, so only do this on a computer and account you trust.

Get license without user confirmation: If checked, a license request will automatically be issued
when necessary, without user intervention. The intended use is for running on clusters, or for use in class-
room/workshop situations. It will work only after arranging this with SCM first.

Click OK to request and install a license to run on your current machine. The information will be sent to the SCM
license server.

If a license is available, or can be generated by the license server (for trial users) it will be installed automatically.

14 Chapter 5. Installation

Installation Manual, Amsterdam Modeling Suite 2019.3

Obviously you will need to have an internet connection with access to the outside world for this to work.

For Non-trial users, license requests are handled manually. After some time (between hours and days) you will be
notified by mail that a license file has been prepared for you.

Run the software again (on the same machine with the same SCM userid), and in many cases the license will au-
tomatically be installed for you. If not, follow the “Manual license installation” instructions (further down on this
page).

Click Cancel when you do not want to request a license to run on the current machine, if your machine has no internet
connection, or if you wish to request and install a license file manually.

A window will appear (either a regular Text editor on your system, or the (License Update Status) appears telling you
a license is needed:

It will show the info that needs to be mailed to SCM to get a license. You can copy that information to your clipboard
by clicking the Copy Info button, or the usual copy tool in your editor.

5.4. Set up the license 15

Installation Manual, Amsterdam Modeling Suite 2019.3

Next, mail this information to license@scm.com if you indeed wish to request a license for this machine.

After some time (hours-days as the license request is processed manually) you should receive a mail from SCM
containing the license file.

You have receive a new license file via email. Do not make any changes to it, as that will break the license!

Mac users can normally just drop the license file on the AMS2019 application icon.

Other users should save the license file such that $SCMLICENSE points to it. Note the value of SCMLICENSE was
shown in the License Update Status dialogue.

The default location of the license file (for Windows and the default SCMLICENSE value from a adfrc.* file) is set
to $ADFHOME/license.txt, which means you should save the file as license.txt in the AMS installation directory. For
macs the default location is “$HOME/Library/Application Support/SCM/license.txt”.

Unix-like users can generate the license information by running the following command at the shell prompt in a
terminal window:

$ADFBIN/dirac info

Output of this command from all computers on which AMS will be running, including all nodes of a cluster if appli-
cable, must be sent to license@scm.com.

After receiving this information SCM will prepare a license file matching your license conditions and e-mail it to you
with instructions on how to install it.

After receiving your license file you will need to save it so that $SCMLICENSE points to it.

In a multi-user environment, make sure that permissions on the license file allow read access for everyone who is going
to run AMS.

5.4.1 Floating license

Note: floating licenses are only intended for Linux clusters.

If you have a floating license, you will need to follow these instructions below to set it up. The instructions are simple,
but it is important you follow them exactly.

If you do not have a floating license you may skip this section.

Create a floating license directory

Make a new directory, for example FloatADF, to keep track of the running ADF processes.

This FloatADF directory must be:

• in a fixed location (the directory name should not change!)

• shared between / mounted on all nodes where you want to run ADF

• writable by all users that want to run ADF

• FloatADF must not be a subdirectory of $ADFHOME

For example:

cd /usr/share
mkdir FloatADF
chmod 1777 FloatADF

16 Chapter 5. Installation

mailto:license@scm.com
mailto:license@scm.com

Installation Manual, Amsterdam Modeling Suite 2019.3

If you also have a floating license for other modules, you need to set up different directories and repeat this procedure
for all these modules (for example FloatBAND, FloatReaxFF, FloatDFTB, ...)

In the example, we have given all users read, write and execute permissions to this directory. If you wish to restrict
this for security reasons, you may do so as long as all ADF users will have read, write and search permission for this
directory. You may create an ADF user group for this purpose.

Important: the directory should not be a sub-directory of $ADFHOME as the directory name will change if you
update to a new version! Also, do not put the license.txt file in the FloatADF directory.

The FloatADF directory may not be moved, deleted or renamed for the duration of your license because these
actions will invalidate it!

E-mail us the license information Send the result of the following commands (using again the name FloatADF and
the location /usr/share as an example) to license@scm.com:

cd /usr/share
ls -lid $PWD/FloatADF

Please note that output of the ls command must include the full path of the FloatADF directory.

Together with the output of the ls command above, you also need to send us output of the $ADFBIN/dirac info
command from each computer on which ADF will possibly run, as the license file is still host-locked.

In the case of very large clusters, it is often sufficient if you send us the output of the $ADFBIN/dirac info command
from the head node and 2 or 3 compute nodes. As most compute node names have the same beginning, we can then
add them with a wild card (for example Linuxchem*). It is important when you use this facility, to let us know that
the info you are sending are not all compute nodes. Otherwise the license will only run on these few compute nodes.

5.5 Set up the scratch space

Most programs from the ADF package use disk for temporary data. This data often takes a significant amount of space
and is used frequently. To avoid run-time errors and performance loss you may want to make sure that the file system
used for temporary files is both big and fast. The SCM_TMPDIR environment variable is used to tell the programs
where to put their temporary data. Please note that SCM_TMPDIR should always be set. If it is not set then each
process will create its own directory in the current working directory where is was started.

Please see Appendix A on additional information about the SCM_TMPDIR variable.

Using multiple disks

Sometimes, if you have multiple non-RAID disks in your system, you may want to spread scratch files across different
physical disks for better performance. It is possible to request that every AMS MPI-rank creates its files in a different
directory by adding “%d” in $SCM_TMPDIR. If a “%d” string is encountered in the value of SCM_TMPDIR variable
it will be replaced by the MPI rank number of the process at run-time. This means, however, that you may have to
create up to 128 or more (depending on the maximum number of processes in one parallel calculation) symbolic links
on each node where AMS is supposed to run. You should also create a directory matching the SCM_TMPDIR’s value
literally so that any process that does not interpret ‘%d’ could also run.

Example: suppose there are two scratch file systems, /scratch1 and /scratch2 located on two different physical disks
of an 8-core workstation. We want the odd rank numbers to use /scratch2 and the even numbers to use /scratch1. One
way to achieve this is to create an empty /scratch directory and create nine symlinks in it as follows:

ln -s /scratch1 /scratch/%d
ln -s /scratch1 /scratch/0
ln -s /scratch2 /scratch/1
ln -s /scratch1 /scratch/2
ln -s /scratch2 /scratch/3

5.5. Set up the scratch space 17

mailto:license@scm.com

Installation Manual, Amsterdam Modeling Suite 2019.3

ln -s /scratch1 /scratch/4
ln -s /scratch2 /scratch/5
ln -s /scratch1 /scratch/6
ln -s /scratch2 /scratch/7

After that set SCM_TMPDIR to “/scratch/%d” and the ranks 0, 2, 4, 6 will use /scratch1 while ranks 1, 3, 5, and
7 will use /scratch2. When running AMS on a cluster it is better to combine multiple disks in a RAID 0 (striping)
configuration as you probably do not want to create hundreds of symbolic links on each node.

5.6 Test your installation

This is a very important step and it should never be skipped.

5.6.1 Check the license file

Windows users test their license by double-clicking the makelicinfo.bat file in the AMS installation folder.

Unix users: first check that the license file has been installed correctly by running (at the shell prompt):

$ADFBIN/dirac check

This should produce the output similar to the following:

Checked: /home/testadf/adf2019.xxx/license.txt

License termination date (mm/dd/yyyy): 1/ 8/2019

According to it, you are allowed to run:

ADF version 2019.990
ADFGUI version 2019.990

GUI version 2019.990
REAXFFGUI version 2019.990

BAND version 2019.990
BANDGUI version 2019.990

CRS version 2019.990
DCDFTB version 2019.101
DFTB version 2019.990

DFTBGUI version 2019.990
MOPAC version 2019.990
NBO version 2019.990

NBO6 version 6.000
QNDFTB version 2019.990
REAXFF version 2019.990
Utils version 2019.990

Number of procs you are allowed to use for:

ADF : 1024 procs
BAND : 1024 procs
DFTB : 1024 procs
ReaxFF : 1024 procs

===
SCM User ID: u999999

18 Chapter 5. Installation

Installation Manual, Amsterdam Modeling Suite 2019.3

release: 2019.101
:example.com:
:Linuxmaster.example.com00:11:22:33:44:55:
:ncores 12:
:CPU Model Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz:
:DMY 1- 7-2016:
:SRCID 3217288:
===

LICENSE INFO READY

If the license check is successful (i.e. you get the “LICENCE INFO READY” message) you can move on. Otherwise
check that the license file has been installed according to instructions above.

5.6.2 Run some basic tests

Verify that you can now run examples provided with AMS and that they give correct results. We recommend that you
consult the Examples document for notes on such comparisons: non-negligible differences do not necessarily indicate
an error. If you have a license for the GUI you can also run a few GUI tutorials as a test.

Note: the example .run files are complete Bourne shell scripts that should be executed as such, they are **not* input
files to be fed into any program. The easiest way to run them is using ADFjobs.

5.6.3 Test the GUI

If the GUI is included in your license, check that you can start any of the GUI modules.

UNIX users:

Enter the following command:

$ADFBIN/adfjobs

An ADFjobs window should appear.

Mac users:

Double click the AMS2019.xxx application to start it. An ADFjobs window should appear.

Windows users:

Double click the ADFjobs icon to start it. An ADFjobs window should appear. If the window does not appear or
appears after a long delay then check the AMS-GUI requirements and check the firewall rules that should allow local
communication.

All users should now be able to start ADFinput via the SCM menu on the top left of the menu bar.

5.6.4 Test parallel execution

It is very important to make sure that computer resources are utilized with the maximum efficiency. Therefore, you
should check that each AMS job uses all processors/cores allocated to it and that the network is not overloaded with
the disk I/O traffic.

Typically, when you submit a parallel job to the batch system you have a possibility to specify how many processors
per node (ppn) to use. If the batch system you are using allows this, then make sure that you request ppn equal to
the number of physical cores on each node. Note that AMD processors from the Familiy 15h based on the so-called
“Bulldozer” cores have one floating-point unit (module) per two physical cores. On these Bulldozer architectures and

5.6. Test your installation 19

Installation Manual, Amsterdam Modeling Suite 2019.3

its successors (Piledriver, Steamroller) AMS will probably perform best when you only run on half the physical cores.
AMS tries to automatically detect the number of floating-point units (half the physical cores), but the user is advised to
check this and otherwise set ppn accordingly. This is no longer the case for the AMD Zen (Ryzen/Threadripper/Epyc)
architecture, but for these processors it is advisable to use the “IntelMPI with OpenBLAS for AMD-Zen” version
of AMS2019. This version uses OpenBLAS instead of Intel Math Kernel Library (MKL) for better performance, as
MKL performs poorly on these AMD Zen processors.

It is also possible that your batch system does not allow you to specify ppn but instead it always assumes that there
only one processor per node. In this case, you will need to edit the $ADFBIN/start file and add some commands for
processing the hostfile.

In order to check that everything is working as intended, create a reasonably small AMS job and start it, preferrably on
more than one node. After the job has finished, open the job’s .out file and find the table that looks like the following:

Parallel Execution: Process Information
==
Rank Node Name NodeID MyNodeRank NodeMaster

0 compute-0-0 0 0 0
1 compute-0-0 0 1 -1
2 compute-0-0 0 2 -1
3 compute-0-0 0 3 -1
4 compute-0-1 1 0 1
5 compute-0-1 1 1 -1
6 compute-0-1 1 2 -1
7 compute-0-1 1 3 -1

==

Check the names in the “Node Name” column and verify that the number of tasks per node is correct. If it is, then
move on to the next section.

5.6.5 Test parallel performance

If the process allocation to nodes looks as expected then scroll down a bit to the following lines:

Communication costs MPI_COMM_WORLD: 1.026 usec per message, 0.0320 usec per 8-
→˓byte item
Communication costs for intra-node: 1.023 usec per message, 0.0318 usec per 8-
→˓byte item

Make sure that you get reasonable numbers (less than 100 usec per message) both for intra-node and
MPI_COMM_WORLD communication costs. Otherwise contact your system administrator. If only the
MPI_COMM_WORLD value is large but the intra-node one looks reasonable, this may mean that the network link
between machines is very slow and you may want to run single-node jobs only.

If all seems to be OK then move to the end of the file to the table called “Timing Statistics”. Before the table, there is
a line of text beginning with “Total Used” that might look as follows:

Total Used : CPU= 8064.87 System= 1144.31 Elapsed= 9212.99

This shows how much time (in seconds) was spent in the AMS code (CPU) and in the kernel (System), and how long
did it take for the calculation to complete (Elapsed). Ideally, the system time should be small compared to the CPU
time and the latter should be close to the Elapsed time. The system time will not always be a small number, however,
the sum of the System and CPU times should always give a number very close to the Elapsed time. If this is not the
case then it means that AMS has to spend a lot of time waiting for something. This can be, for example, disk I/O or
network communication.

20 Chapter 5. Installation

Installation Manual, Amsterdam Modeling Suite 2019.3

If you notice that the system time portion is enormously large or that there is a large difference between the
CPU+System and the Elapsed time, then repeat the job with the “PRINT TimingDetail” keyword in the input and
contact the SCM support.

5.7 Configure ADFjobs queues and 3rd party software (optional)

If you would like to use the GUI as a front-end to submit your jobs to queues, you should configure those queues in
ADFjobs. Third party software MOPAC and ffmpeg (export movies) may also be installed separately.

5.7.1 ADFjobs queues

A video shows how to set up remote queues on Windows (https://www.scm.com/wp-
content/uploads/Videos/RemoteQueuesWithADFJobs.mp4), other platforms are even easier.

ADFjobs can submit and monitor jobs for you on different queues, both locally and remotely. You can use the GUI
on your desktop or laptop for creating, submitting and analyzing your jobs, while running the jobs on remote compute
clusters. In that case you should establish and ssh-agent connection, to enable remote job managing by the GUI. If
you just run local jobs without a queuing system, skip this section.

To set up a new batch queue, select Queue → New... → and choose an example queuing system to starting with (LSF,
PBS, or SGE). Modify the input files such that they correspond to your queue configuration:

• change the Name of the queue

• set the Remote host to the hostname of your cluster

• set Remote user to your username on that cluster

• change the Run command in accordance with your typical queue set up. The $options corresponds to the input
box that can be modified in ADFjobs before submitting, e.g. the time or number of nodes

• you can set what $options defaults to in the Default Options field

• change the Kill, Job status, System status commands, if necessary

• you may define a Prolog or Epilog command

5.7.2 Managing remote jobs

To manage remote jobs, you need automatic authentication with an ssh-agent via an ssh key pair. This is most easily
set up on MacOS or Linux, but is a bit more involved for Windows.

ssh connection on MacOS and Linux

If you don’t have an ssh key pair already, you can generate one in a terminal: ssh-keygen -t rsa Put your pass-word
protected public key on the compute cluster(s) in ~/.ssh/authorized_keys.

Next, you should establish a connection via an ssh-agent. On MacOS an ssh-agent runs by default, and with keychain
you just have to type your password once when you make the first connection.

On various Linux installations ssh-agent is also running by default. If an ssh-agent daemon is not yet running in the
terminal where you will run ADFjobs, start the daemon, e.g. by adding eval $(ssh-agent bash) to your .bashrc. You
need to add your private key to the ssh-agent daemon: ssh-add.

ADFjobs will use SSH to connect to the remote systems, making a new connection for everything it does. This means
that there will be many connections to the remove machine(s). If you arre using OpenSSH (both on the local and the
remote machine), you can instead use one ssh connection and keep it alive, reusing it for many things. This makes
ADFjobs faster, and may avoid complaining system administrators of the remote machines.

5.7. Configure ADFjobs queues and 3rd party software (optional) 21

https://www.scm.com/wp-content/uploads/Videos/RemoteQueuesWithADFJobs.mp4

Installation Manual, Amsterdam Modeling Suite 2019.3

To do this, set the environment variable SCM_SSH_MULTIPLEXING to yes (for example via the GUIprefs applica-
tion).

ssh connection on Windows

PuTTY tools, automatically installed with ADF, can be used to set up an ssh-agent connection. Follow these steps,
using the PuTTY programs located in the bin\Putty directory in your AMS installation directory.

• Run puttygen.exe and follow the instructions to generate an ssh key pair. Make sure you use a password. Put
the public key on the remote host in ~/.ssh/authorized_keys

• Run pageant.exe and add your private ssh key (right-click on the Pageant icon in the task bar) with your password

• Open a Command Prompt and go the Putty directory (e.g. cd C:\AMS2019.xxx\bin\Putty). Run plink user@host
(with correct username and hostname) and type y when prompted to store the key in cache

• In the same Command Prompt, check that you can now connect through the ssh-agent: plink -batch -agent -l
user host uptime

Now you can close the prompt and start using ADFjobs to manage remote jobs. You may test your queue configuration:
Jobs → Generate Test Job and assign it to your new queue before running the test job.

Centrally defined queues

A system administrator may also define a queue centrally, which may then be picked up by any user automatically via
Dynamic queues. Consult the GUI manual for information on how to set these up in ADFjobs.

ffmpeg

The ADFmovie GUI module can make MPEG videos of the system as you see it in the ADFmovie window. This can
be an MD trajectory or vibrational modes, or the course of geometry optimization. For this to work, you need to install
the free ffmpeg program from the FFmpeg website (http://ffmpeg.mplayerhq.hu/) and make sure it can be found in the
path. The simplest way to do this is to copy the ffmpeg executable to $ADFBIN.

22 Chapter 5. Installation

mailto:user@host
http://ffmpeg.mplayerhq.hu/

CHAPTER

SIX

ADDITIONAL INFORMATION AND KNOWN ISSUES

6.1 Shared memory and batch systems (SLURM)

When discussing memory usage by a parallel job one should distinguish the private and shared memory. The private
memory is, well, private to each process and to get the total job’s memory usage one should add up the sizes of private
memory segments from all processes. The shared memory is used by several processes on a shared-memory node,
so for the job’s total one should add each shared memory segment only once. However most batch systems ignore
the fact that shared memory segments are shared and instead of adding it to the total on the per-node basis they add
it per-process. This leads to the batch system greatly overestimating the memory consumption for jobs that use a lot
of shared memory, for example, ADF calculations with hybrid functionals. This may lead to such jobs being killed
and/or the users being over-charged or forced to use the more expensive hugemem queues. This would be totally
unnecessary if the job accounting was properly configured. Luckily, SLURM has the JobAcctGatherParams=UsePss
(https://slurm.schedmd.com/slurm.conf.html) option (off by default) that is supposed to take care of the private vs
shared memory difference and ensure the correct accounting of ADF jobs. You can check the status of JobAcctGath-
erParams on your SLURM system with the following command:

scontrol show config | grep JobAcctGatherParams

6.2 GPFS file system

Starting with AMS2019, the KF sub-system (used for handling binary files such as ADF’s TAPE* files) has been
rewritten to use memory-mapped files. The mmap() system call implementation is file-system dependent and, unfor-
tunately, it is not equally efficient in different file systems. The memory-mapped files implementation in GPFS is
extremely inefficient. Therefore the users should avoid using a GPFS for scratch files.

6.3 Running MPI jobs

Most programs in the Amsterdam Modeling Suite (AMS) are MPI-enabled, and they are set up to run in parallel
automatically, both from the GUI and the command line. For example, to run a parallel AMS calculation from the
command line, simply do:

$ADFBIN/ams < myinputfile

A common mistake by people who have worked with MPI programs before is to “mpirun” the programs manually,
which results in a parallel mpirun call and usually a lot of errors. All MPI programs in the AMS suite are executed via
$ADFBIN/start to set up the environment and call mpirun for you. If you need to modify the mpirun command, please
edit the $ADFBIN/start script.

23

https://slurm.schedmd.com/slurm.conf.html

Installation Manual, Amsterdam Modeling Suite 2019.3

6.3.1 Technical explanation

In the example above, AMS is started in parallel, which involves a couple of files:

• $ADFBIN/ams: a symbolic link to the $ADFBIN/start script

• $ADFBIN/start: this script sources $ADFBIN/setenv.sh to set up most of the environment, determines the name
of the used symlink, and then starts the related binary (ams.exe in this case) via mpirun. On Linux clusters it
also attempts to detect the scheduler to launch the MPI program with the allocated resources.

• $ADFBIN/setenv.sh: when sourced, this script sets up the correct environment for locating libraries and runtimes
such as MKL and IntelMPI

• myinputfile: A valid input file. Some examples can be found in $ADFHOME/examples, and of course the input
is also documented per program in the manual.

Some programs have a more complex starting sequence. ADF for example starts with so-called “create” runs, which
are very short serial calculations to generate per-atom input files for the bigger parallel calculation. This is all hidden
from the user in the $ADFBIN/adf script, which should be executed in the same was as the $ADFBIN/ams example
above.

6.4 More on running MPI jobs

MPI (Message Passing Interface) is a standard describing how to pass messages between programs running on the
same or different machines.

MPI is a formal standard and it is actively supported by all major vendors. Some vendors have highly-optimized MPI
libraries available on their systems. There are also a couple of open-source implementations of the MPI standard, such
as MPICH and OpenMPI. There are also numerous commercial MPI implementations that support a wide range of
systems and interconnects, for example, Platform-MPI and IntelMPI.

Support for a particular MPI implementation in ADF can be considered at three levels: the source code, the configure
script, and pre-compiled binaries. At each level different MPI implementations may be supported.

The ADF source code is not implementation-specific and thus theoretically it supports any MPI library. Many popular
MPI implementations are supported at the level of the configure script, but depending on your local setup you may
need to make some modifications in the buildinfo file after running configure. For example on 64-bit Linux IntelMPI
and OpenMPI should work directly, but using other MPI flavours will most likely require manual changes to the
buildinfo file correct the include and linker paths to the MPI libraries of your system. The configure script will also
try to generate an appropriate $ADFBIN/start script, but this might also need modification when using different MPI
libraries. In general it is best to use the same MPI version used by SCM for the precompiled binaries.

When choosing an MPI implementation for pre-compiled binaries, SCM considers many factors including (but not
limited to) the re-distribution policy, performance, and built-in support for modern interconnects. IntelMPI is currently
the standard MPI implementation supported by SCM because it has the most favorable combination of these factors
at this moment. For platforms where IntelMPI is supported its runtime is distributed with ADF (Windows, Linux).
OpenMPI builds are also available for linux, but should only be used in case of problems with IntelMPI. A different
MPI implementation will be standard on a platform where IntelMPI is not available. It may or may not be distributed
with ADF. For example, SGI MPT is standard on SGI machines and OpenMPI is standard on Mac OS X platforms,
but only the latter is distributed together with ADF.

When pre-compiled binaries do not work on your computer(s) due to incompatibility of the standard MPI library with
your soft- and/or hardware, the SCM staff will be glad to assist you in compiling ADF with the MPI implementation
supported on your machine(s).

If you are going to use an MPI version of the ADF package, and it is not IntelMPI or OpenMPI, you will need to
determine if the corresponding MPI run-time environment is already installed on your machine. If not, you will need

24 Chapter 6. Additional Information and Known Issues

Installation Manual, Amsterdam Modeling Suite 2019.3

to install it separately from ADF. As it has been already mentioned, IntelMPI and OpenMPI are bundled with the
corresponding version of ADF so you don’t need to worry about installing them separately.

Running with MPI on more than one node

When running on more than one machine (for example on a cluster without a batch system) you need to specify a
list of hosts on which mpirun needs to spawn processes. In principle, this is implementation-specific and may be not
required if the MPI is tightly integrated with your operating and/or batch system. For example for MPICH1 you can
do this by preparing a file containing hostnames of the nodes (one per line) you will use in your parallel job. Then you
set the SCM_MACHINEFILE environment variable pointing to the file.

When you submit a parallel job to a batch system the job scheduler usually provides a list of nodes allocated to the
job. The $ADFBIN/start shell script has some logic to extract this information from the batch system and pass it to
the MPI’s launcher command (typically mpirun). In some cases, depending on your cluster configuration, this logic
may fail. If this happens, you should examine the $ADFBIN/start file and edit the relevant portion of it. For example,
you may need to add commands that process the batch system-provided nodelist or change mpirun’s command-line
options or even replace the mpirun command altogether.

6.5 IntelMPI and core-binding

IntelMPI by default uses core binding for the spawned processes (also known as process pinning). This can be disabled
by setting the I_MPI_PIN environment variable to “off”.

6.6 IntelMPI and SLURM

To get IntelMPI work under SLURM one needs to edit the $ADFBIN/start script and change the value of the
I_MPI_PMI_LIBRARY environment variable to point to a correct libpmi library from SLURM. If your SLURM
system is configured to use PMI2, then it could also be sufficient to comment out the I_MPI_PMI_LIBRARY line in
the $ADFBIN/start script.

Depending on your version of SLURM, it might also be necessary to replace “mpirun -bootstrap slurm” with “srun”
in the $ADFBIN/start file.

6.7 IntelMPI and SGE

To get IntelMPI working with Sun Grid Engine, one has to define a parallel environment. How this can be done is
described on the intel website (https://software.intel.com/en-us/articles/integrating-intel-mpi-sge). It is important for
modern versions of IntelMPI (as used in AMS2019) and newer to make sure to set “job_is_first_task FALSE” in the
parallel environment, otherwise jobs will fail to start.

6.8 IntelMPI and ABI compatibility

IntelMPI v5.0 or newer is ABI (Application Binary Interface) compatible with Cray MPT v7.0.0 or newer and MPICH
v3.1 and newer. This means that binaries compiled with one of these libraries can use the other ones during run-time
without problems. Our IntelMPI binaries should work out-of-the-box on Cray machines using the ABI compatibility,
and can also be used in combination with MPICH 3.2.

To run ADF with MPICH instead of IntelMPI, simply export SCM_USE_LOCAL_IMPI=true, and make sure the
MPICH mpirun command is available in your PATH variable. Core binding (process pinning) is disabled by default
for MPICH, to enable this add “-bind-to core” to the mpirun commands in the $ADFBIN/start file.

6.5. IntelMPI and core-binding 25

https://software.intel.com/en-us/articles/integrating-intel-mpi-sge

Installation Manual, Amsterdam Modeling Suite 2019.3

6.9 OpenMPI on Linux

The OpenMPI 2.1.2 binaries supplied with AMS2019 should work on desktop, laptop and workstation machines
out of the box (single-node usage). On cluster environments it might be necessary to compile an OpenMPI
2.1 library with support for the cluster queueing system and/or the infiniband solution. Make sure to export
SCM_USE_LOCAL_OMPI=true before starting programs to enable your local OpenMPI version instead of the one
shipped with ADF. Core binding (process pinning) is enabled by default for OpenMPI, to disable this add “–bind-to
none” to the mpirun commands in the $ADFBIN/start file.

6.10 Corrupted License File

You may find that, after having installed the license file, the program still does not run and prints a message “LICENSE
CORRUPT”. There are a few possible causes. To explain how this error may come about, and how you overcome it, a
few words on license files.

Each license file consists of pairs of lines. The first of each pair is text that states in a human-readable format a couple
of typical aspects: A ‘feature’ that you are allowed to use (for instance ‘ADF’), the expiration date, a (maximum)
release (version) number of the software and so on. The second line contains the same information in encrypted
format: a long string of characters that appear to make little sense. The program reads the license file and checks,
with its internal encrypting formulas, that the two lines match. If not, it stops and prints a “LICENSE CORRUPT”
message.

So, there are two common reasons why this may happen:

You can use the fixlic utility to try to fix this automatically. Please be aware that the fixlic utility will try to fix the file
pointed to by the $SCMLICENSE environment variable and replace it with the fixed copy. Thus, you need to make a
backup of your license file first and you need to have write permissions for it.

cp $SCMLICENSE $SCMLICENSE.backup
$ADFBIN/fixlic

6.11 Windows: running jobs from the command line

In order to run ADF or any other program from the package without the GUI, navigate to the ADF installation di-
rectory and double click the adf_command_file.bat file. It will start a Windows command interpreter and set up
the environment specific for that installation of ADF. Once it has started, cd to your jobs directory by entering the
following commands at the prompt:

C:
cd \ADF_DATA

Then, run your job as follows (assuming the job is called h2o):

sh h2o.job

You can also prepare a job from a .adf file and run it using only two commands:

sh adfprep -t h2o.adf -j h2o > h2o.job
sh h2o.job

Please note that you do need to use sh in the commands above because both h2o.job and adfprep are shell scripts and,
thus, they must be interpreted by a shell.

26 Chapter 6. Additional Information and Known Issues

Installation Manual, Amsterdam Modeling Suite 2019.3

If you are comfortable with a UNIX shell environment, you can also start a bash shell and enjoy a basic msys2 LINUX
environment:

bash

6.11. Windows: running jobs from the command line 27

Installation Manual, Amsterdam Modeling Suite 2019.3

28 Chapter 6. Additional Information and Known Issues

CHAPTER

SEVEN

USING THE GUI ON A REMOTE MACHINE

Running the ADF GUI (adfinput) on a remote machine (X forwarding over SSH) can be tricky sometimes. This page
will try to explain why and might contain some hints into how to get a remote GUI working. If your remote GUI
worked fine with ADF2016 but stopped working with ADF2017, you can probably skip most of this page and read the
last section about ADF2017 and VTK7 (page 34).

7.1 X11 over SSH

When connecting to a remote system (let’s call it RemoteBox) from your local machine (LocalBox) over SSH, there
is the option to enable X forwarding:

ssh -X -Y user@RemoteBox

This allows you to run X11 GUI programs on RemoteBox while the window shows on LocalBox. You can try some
simple X11 programs now:

xterm
xclock

If you got a terminal and a clock popping up in separate windows, you have working X11 forwarding over SSH.

If you got any errors and no window, most likely something fundamental is broken. Check if the RemoteBox allows
X11 Forwarding (/etc/ssh/sshd_config should contain “X11Forwarding yes”), and try both the -X and -Y flag on the
ssh command. Another thing to check is “xhost”, which might also get in the way.

sidenote on ssh -X and -Y: There are two ways of enabling X forwarding with SSH, -X and -Y. The default -X
flag enables X11 forwarding, but with extended security restrictions to protect LocalBox from malicious behavior of
people on the RemoteBox. The -Y flag enables trusted X11 forwarding, which does not enable the additional security
extensions. The security extensions are there for good reason, but they can break so many things that some distros
(Debian for example) disable them by default, even if you use -X and not -Y. Which mode you decide to use is up to
you of course, but if something doesn’t work always try using -X -Y (or -XY) before asking for help.

Attention: If you did not succeed in getting an xterm or xclock window to show, then you MUST solve that
problem before trying to use 3D graphics. The rest of this text assumes you have a working X11 setup.

7.2 X11 with OpenGL over SSH (3D graphics)

X11 over SSH can also support OpenGL 3D graphics, using the GLX extensions. To test this run:

29

Installation Manual, Amsterdam Modeling Suite 2019.3

glxgears

It should pop up a window with 3 gears, which may or may not be spinning. To get more info about the 3D driver
stack, run:

glxinfo | grep -E " version| string| rendering|display"

If the above two commands produce errors (For example: Error: couldn't find RGB GLX visual or
fbconfig or X Error of failed request:) something fundamental is broken with the 3D setup on Re-
moteBox or LocalBox. You should check the 3D driver stack on both machines, and pay special attention to the
libGL.so and libGLX*.so libraries. Make sure you can run glxgears and glxinfo on LocalBox before investi-
gating the remote machine.

7.2.1 Intel Graphics (mesa)

If LocalBox has intel graphics, you might run into problems if RemoteBox uses proprietary hardware & drivers. First
check which libGL.so is used on RemoteBox by logging in via SSH and running:

ldd `which glxinfo`

The output will contain a line similar to:

libGL.so.1 => /usr/lib/x86_64-linux-gnu/libGL.so.1 (0x00007f76cdcaf000)

/usr/lib/x86_64-linux-gnu/libGL.so.1 is most likely a symlink, so use ls -l to find its true destination:

ls -l /usr/lib/x86_64-linux-gnu/libGL.so.1

if this points to a proprietary graphics library (for example: lrwxrwxrwx 1 root root 30 aug 22 13:24
/usr/lib/x86_64-linux-gnu/libGL.so.1 -> /usr/lib/nvidia-361/libGL.so.1), you can
try pre-loading the mesa version of the library on the remote machine. Try to locate the mesa libGL.so:

find /usr -iname "*libGL.so*" -exec ls -l {} \;

If we are lucky we spot the mesa libGL.so in the output. It may look something like this:

/usr/lib/x86_64-linux-gnu/mesa/libGL.so

If you found the mesa libGL.so, try to put it in LD_PRELOAD:

export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/mesa/libGL.so
glxinfo

If the system was already using the mesa libGL.so, you can try to use indirect rendering by setting the following
environment variable:

export LIBGL_ALWAYS_INDIRECT=1

Other useful environment variables can be:

export LIBGL_DEBUG=verbose
export LIBGL_ALWAYS_SOFTWARE=1

30 Chapter 7. Using the GUI on a remote machine

Installation Manual, Amsterdam Modeling Suite 2019.3

7.2.2 NVidia Graphics

There are probably two libGL implementations on LocalBox if it uses the NVidia proprietary drivers (or 4 if you
also have 32bit libraries installed): the opensource “mesa” library (libGL.so.1.2.0, most likely in a “mesa”
subdirectory) and the proprietary NVidia library that comes with the NVidia drivers. Run the following command to
find the libGL libraries on your system:

find /usr -iname "*libGL.so*" -exec ls -l {} \;

Make sure that the libGL.so and libGL.so.1 symlinks in the generic folders (/usr/lib/, /usr/lib64,
/usr/lib/x86_64_linux_gnu) eventually point towards the proprietary library. You will need to have root permissions to
change the symlinks.

Warning: Never run any commands as root (or with sudo) to change your system setup if you do not understand
them. It is not hard to break a Linux installation when making mistakes as root, so make backups before you
change something and double-check what you type when using sudo or the root account!

Another important library when running OpenGL over SSH with NVidia hardware is libGLX.so. Locate it on your
system with the following command:

find /usr -iname "*libGLX*.so*" -exec ls -l {} \;

Make sure that there are symlinks to the proprietary library in a generic location (/usr/lib on ubuntu).

You can check if the correct libGL.so is being used by checking the dynamic library dependencies of glxinfo:

ldd `which glxinfo`

The reported libGL.so dependency is most likely a symlink, so use ls -l on it to find out where it points to.

libGL.so examples

A correct setup on CentOS 6 with NVidia drivers for example should look something like this:

first 3 lines are the NVidia lib
second set of 3 lines are the mesa lib
last two lines are the generic symlinks that point towards the NVidia lib
-rwxr-xr-x 1 root root 1220472 apr 6 02:51 /usr/lib64/nvidia/libGL.so.352.93
lrwxrwxrwx 1 root root 15 aug 19 13:33 /usr/lib64/nvidia/libGL.so.1 -> libGL.so.352.93
lrwxrwxrwx 1 root root 15 aug 19 13:33 /usr/lib64/nvidia/libGL.so -> libGL.so.352.93
-rwxr-xr-x 1 root root 561640 mei 11 06:38 /usr/lib64/mesa/libGL.so.1.2.0
lrwxrwxrwx 1 root root 14 jun 6 13:40 /usr/lib64/mesa/libGL.so.1 -> libGL.so.1.2.0
lrwxrwxrwx 1 root root 14 jun 6 13:40 /usr/lib64/mesa/libGL.so -> libGL.so.1.2.0
lrwxrwxrwx 1 root root 15 aug 19 13:48 /usr/lib64/libGL.so -> nvidia/libGL.so
lrwxrwxrwx 1 root root 17 aug 19 13:48 /usr/lib64/libGL.so.1 -> nvidia/libGL.so.1

Another example of an 64bit ubuntu installation with NVidia drivers and 32bit libraries available:

-rw-r--r-- 1 root root 439972 jul 18 05:47 /usr/lib32/nvidia-361/libGL.so.1.0.0 #
→˓32bit nvidia lib
lrwxrwxrwx 1 root root 10 aug 3 06:14 /usr/lib32/nvidia-361/libGL.so -> libGL.so.1
lrwxrwxrwx 1 root root 14 aug 3 06:14 /usr/lib32/nvidia-361/libGL.so.1 -> libGL.so.1.
→˓0.0
lrwxrwxrwx 1 root root 10 jun 13 2013 /usr/lib32/libGL.so -> libGL.so.1 #generic
→˓32bit symlink, points to the next line

7.2. X11 with OpenGL over SSH (3D graphics) 31

Installation Manual, Amsterdam Modeling Suite 2019.3

lrwxrwxrwx 1 root root 21 aug 22 13:23 /usr/lib32/libGL.so.1 -> nvidia-361/libGL.so.1
→˓# generic 32bit symlink, points to nvidia
-rw-r--r-- 1 root root 448200 jul 22 09:53 /usr/lib/i386-linux-gnu/mesa/libGL.so.1.2.
→˓0 # 32bit mesa lib
lrwxrwxrwx 1 root root 14 jul 22 09:53 /usr/lib/i386-linux-gnu/mesa/libGL.so.1 ->
→˓libGL.so.1.2.0
-rw-r--r-- 1 root root 579760 jul 18 05:50 /usr/lib/nvidia-361/libGL.so.1.0.0 # 64bit
→˓nvidia lib
lrwxrwxrwx 1 root root 10 aug 3 06:14 /usr/lib/nvidia-361/libGL.so -> libGL.so.1
lrwxrwxrwx 1 root root 14 aug 3 06:14 /usr/lib/nvidia-361/libGL.so.1 -> libGL.so.1.0.
→˓0
-rw-r--r-- 1 root root 459392 jul 22 09:52 /usr/lib/x86_64-linux-gnu/mesa/libGL.so.1.
→˓2.0 # 64 bit mesa lib
lrwxrwxrwx 1 root root 14 jul 22 09:52 /usr/lib/x86_64-linux-gnu/mesa/libGL.so ->
→˓libGL.so.1.2.0
lrwxrwxrwx 1 root root 14 jul 22 09:52 /usr/lib/x86_64-linux-gnu/mesa/libGL.so.1 ->
→˓libGL.so.1.2.0
lrwxrwxrwx 1 root root 10 aug 22 13:25 /usr/lib/x86_64-linux-gnu/libGL.so -> libGL.so.
→˓1 # generic 64bit symlink, points to next line
lrwxrwxrwx 1 root root 30 aug 22 13:24 /usr/lib/x86_64-linux-gnu/libGL.so.1 -> /usr/
→˓lib/nvidia-361/libGL.so.1 # generic 64bit symlink, points to nvidia

7.2.3 AMD Graphics

AMD GPUs are reasonably well supported by the latest versions of mesa (ubuntu 16.04), and installing the proprietary
Catalyst driver is not always a good idea. If you have an older distro (CentOS 6) you can install the fglrx Catalyst
drivers. As a rule of thumb run the following command first:

glxinfo | grep -E " version| string| rendering|display"

If this reports an OpenGL core profile version string of 4.x, do not install Catalyst. If the OpenGL core profile version
string says 3.0, then check on google if fglrx is safe to install for your distribution.

libGL.so examples

An example of a CentOS 6 setup with AMD drivers should look a bit like this:

first 4 lines are the 32bit AMD lib and symlinks
next 4 lines are the 64bit AMD lib and symlinks
last line is the renamed 64bit mesa library (renamed by the AMD driver installation)
-rwxr-xr-x. 1 root root 612220 Dec 18 2015 /usr/lib/fglrx/fglrx-libGL.so.1.2
lrwxrwxrwx. 1 root root 19 Aug 30 08:53 /usr/lib/libGL.so -> /usr/lib/libGL.so.1
lrwxrwxrwx. 1 root root 21 Aug 30 08:53 /usr/lib/libGL.so.1 -> /usr/lib/libGL.so.1.2
lrwxrwxrwx. 1 root root 33 Aug 30 08:53 /usr/lib/libGL.so.1.2 -> /usr/lib/fglrx/fglrx-
→˓libGL.so.1.2
-rwxr-xr-x. 1 root root 921928 Dec 18 2015 /usr/lib64/fglrx/fglrx-libGL.so.1.2
lrwxrwxrwx. 1 root root 21 Aug 30 08:53 /usr/lib64/libGL.so -> /usr/lib64/libGL.so.1
lrwxrwxrwx. 1 root root 23 Aug 30 08:53 /usr/lib64/libGL.so.1 -> /usr/lib64/libGL.so.
→˓1.2
lrwxrwxrwx. 1 root root 35 Aug 30 08:53 /usr/lib64/libGL.so.1.2 -> /usr/lib64/fglrx/
→˓fglrx-libGL.so.1.2
-rwxr-xr-x. 1 root root 561640 May 11 06:38 /usr/lib64/FGL.renamed.libGL.so.1.2.0

32 Chapter 7. Using the GUI on a remote machine

Installation Manual, Amsterdam Modeling Suite 2019.3

7.3 OpenGL direct or indirect rendering

OpenGL with X11 can run in two different modes: direct rendering and indirect rendering. The difference between
them is that indirect rendering uses the GLX protocol to relay the OpenGL commands from the program to the
hardware, which limits OpenGL capabilities to OpenGL 1.4.

When using OpenGL over X11 with SSH, quite often direct rendering is not available and you have to use indirect
rendering. Unfortunately indirect rendering is not always secure, so it got disabled by default on many recent Linux
Distros. If you are using the mesa libGL.so, you can run the following commands to test if indirect rendering is
working on LocalBox:

glxinfo
export LIBGL_ALWAYS_INDIRECT=1
glxinfo

If glxinfo crashes with something like:

name of display: :0
X Error of failed request: GLXBadContext

Major opcode of failed request: 154 (GLX)
Minor opcode of failed request: 6 (X_GLXIsDirect)
Serial number of failed request: 34
Current serial number in output stream: 33

after setting LIBGL_ALWAYS_INDIRECT=1, then you might need to enable indirect rendering on LocalBox.

7.3.1 enabling indirect rendering on Xorg 1.17 and newer

X 1.17 disables indirect rendering by default. Enabling it can be a bit tricky, because the xorg.conf flag is only available
in 1.19 and newer, so you need to use the +iglx command line flag when starting the X server.

Warning: Be careful when making changes as root! Running these commands is at your own risk, and you should
not execute them if you do not understand what they do.

CentOS 6

The X server call is hardcoded in gdm, so we need to create a wrapper script around Xorg. Log in as root on a console
(Ctrl+Alt+F1) or via SSH and do:

cd /usr/bin/
mv Xorg Xorg.bin
echo -e '#!/bin/sh\nexec /usr/bin/Xorg.bin +iglx "$@"' > Xorg
chmod +x Xorg
init 3 # this stops the X server
init 5 # this starts the X server again

Ubuntu 16.04

sudo nano /usr/share/lightdm/lightdm.conf.d/50-xserver-command.conf

7.3. OpenGL direct or indirect rendering 33

Installation Manual, Amsterdam Modeling Suite 2019.3

change the last line from xserver-command=X -core to xserver-command=X -core +iglx restart the
machine, or restart the X server with:

sudo service lightdm restart

OSX / MacOS

Mac OS X users who update to XQuartz 2.7.9 will discover that they cannot use GLX applications remotely any more.
This includes the ADF-GUI. To solve, at this point in time: stick to the older version of XQuartz (2.7.8), or install the
2.17.10 beta version: https://www.xquartz.org/releases/XQuartz-2.7.10_beta2.html. After installing they should run
this command to enable GLX:

defaults write org.macosforge.xquartz.X11 enable_iglx -bool true

7.4 OpenGL2+ with X11 over SSH

If you need OpenGL2+ features, there are two options: use direct rendering (this usually only works if
both LocalBox and RemoteBox use a recent mesa libGL.so), or use VirtualGL. The VirtualGL tool (http:
//www.virtualgl.org/) intercepts the OpenGL calls, does the 3D rendering on RemoteBox and then trans-
ports the resulting image to LocalBox. For more details on how this is achieved see their documentation
(https://cdn.rawgit.com/VirtualGL/virtualgl/2.5/doc/index.html).

Install VirtualGL on LocalBox and RemoteBox, and configure (run vglserver_config as root, see the VirtualGL
documentation (https://cdn.rawgit.com/VirtualGL/virtualgl/2.5/doc/index.html#hd006%20to%20setup%20RemoteBox))
RemoteBox to operate as a VirtualGL server. RemoteBox should of course also have proper 3D hardware and drivers
(intel integrated graphics with recent mesa drivers, or a dedicated AMD/NVidia GPU), and be capable of indirect
rendering (see above).

Once virtualGL is installed and set up on RemoteBox and installed on LocalBox, open a terminal window on LocalBox
and connect to RemoteBox with:

vglconnect -s username@RemoteBox

This will start a VirtualGL client on LocalBox and set up two encrypted tunnels to RemoteBox. On RemoteBox you
can now run OpenGL programs by starting them through vglrun:

vglrun glxinfo
vglrun glxgears

If you look at the output of the glxinfo command when running through vglrun, you will see that both the server
and client glx vendor string changed into “VirtualGL”, and the OpenGL renderer & version string should now say
something about the hardware of RemoteBox.

7.5 ADF2017 and VTK7

ADF2017 uses VTK7 and newer OpenGL features to dramatically speed up the visualization of large systems. This
comes with a higher requirement for the OpenGL version supported by the system: OpenGL 3.2. If your machine
does not support this, you might get the following error message when starting the GUI:

Warning: In /home/builder/jenkins/workspace/trunk/label/centos6_impi_lxc/VTK/
→˓Rendering/OpenGL2/vtkOpenGLRenderWindow.cxx, line 647
vtkXOpenGLRenderWindow (0x7b93c40): VTK is designed to work with OpenGL version 3.2
→˓but it appears it has been given a context that does not support 3.2. VTK will run
→˓in a compatibility mode designed to work with earlier versions of OpenGL but some
→˓features may not work.34 Chapter 7. Using the GUI on a remote machine

https://www.xquartz.org/releases/XQuartz-2.7.10_beta2.html
http://www.virtualgl.org/
http://www.virtualgl.org/
https://cdn.rawgit.com/VirtualGL/virtualgl/2.5/doc/index.html
https://cdn.rawgit.com/VirtualGL/virtualgl/2.5/doc/index.html#hd006%20to%20setup%20RemoteBox
https://cdn.rawgit.com/VirtualGL/virtualgl/2.5/doc/index.html#hd006%20to%20setup%20RemoteBox

Installation Manual, Amsterdam Modeling Suite 2019.3

In such cases, a fallback mode is available that lowers the OpenGL requirement to version 1.4, but this fallback mode
of course does not have the performance benefits of the newer OpenGL features. To enable the fallback mode, set the
SCM_OPENGL1_FALLBACK environment variable to something non-zero:

export SCM_OPENGL1_FALLBACK=1
adfinput &

The OpenGL 3.2 requirement should not present any problems, unless your hardware or OS is really old. Known
problematic cases are:

• CentOS 6 with intel graphics has OpenGL 2.1 (possible solutions: get an NVidia or AMD GPU with closed-
source drivers, or use the fallback mode)

• OpenGL with X11 over SSH (possible solutions: use VirtualGL (see OpenGL2+ with X11 over SSH (page 34))
or the fallback mode)

• Remote Desktop on Windows: The 32bit Windows version of ADF2017.107+ has been made OpenGL 1.4
compatible to deal with older hardware and Remote Desktop problems. You can try to install the 32bit version
of ADF2017 on your Windows machine if you have problems with starting the GUI on Windows.

7.6 AMS2019/AMS2018 and VTK7

AMS2019 uses the same VTK7 as AMS2018 and ADF2017, and thus also requires OpenGL 3.2 or newer. However,
the OpenGL 1.4 fallback mode is now available on 64bit Windows and Linux, and should trigger automatically when
it detects an OpenGL version on the system that is too old for the normal mode. The SCM_OPENGL1_FALLBACK
environment variable can also still be used, for example when the detection is not working. Setting this on Windows
can be done with the following steps: Winkey+R, sysdm.cpl, Advanced, Environment Variables... Here you can
either add the SCM_OPENGL1_FALLBACK key with value 1 to the current user, or as admin for everyone on the
system.

7.7 Sources

The information on this page is a mashup of local knowledge, a lot of testing and reading on the web. The following
pages contained some useful information:

• https://www.phoronix.com/scan.php?page=news_item&px=Xorg-IGLX-Potential-Bye-Bye

• https://wiki.archlinux.org/index.php/VirtualGL

• https://cdn.rawgit.com/VirtualGL/virtualgl/2.5/doc/index.html

• https://en.wikipedia.org/wiki/Direct_Rendering_Infrastructure

• https://unix.stackexchange.com/a/1441

7.6. AMS2019/AMS2018 and VTK7 35

https://www.phoronix.com/scan.php?page=news_item&px=Xorg-IGLX-Potential-Bye-Bye
https://wiki.archlinux.org/index.php/VirtualGL
https://cdn.rawgit.com/VirtualGL/virtualgl/2.5/doc/index.html
https://en.wikipedia.org/wiki/Direct_Rendering_Infrastructure
https://unix.stackexchange.com/a/1441

Installation Manual, Amsterdam Modeling Suite 2019.3

36 Chapter 7. Using the GUI on a remote machine

CHAPTER

EIGHT

APPENDIX A. ENVIRONMENT VARIABLES

If you start the MacOSX ADF-GUI application the environment defined by your shell startup scripts is ignored. Instead
the bundled ADF is used, and environment variables may be defined in a file $HOME/.scmenv .

The following environment varables must always be set for all ADF versions.

ADFHOME: full path of the ADF installation directory, for example, $HOME/adf2019.101 .

ADFBIN: full path ADF directory with binaries, typically set to $ADFHOME/bin .

ADFRESOURCES: full path of the directory with the ADF database (basis sets and so on), typically set to
$ADFHOME/atomicdata

SCMLICENSE: full path-name of the license file, for example $ADFHOME/license.txt.

SCM_DOMAINCHECK: set to yes if you have a license based on your domain info (DNS). If it is defined but no
proper DNS sever is available, delays will often occur.

SCM_TMPDIR: full path of the directory where all processes will create their temporary files. See also the Installa-
tion manual and the special section on SCM_TMPDIR below.

The following environment variable may be required at run-time by a parallel version.

NSCM: The number of processes to be used in a particular calculation. This variable should only be set per job. Do
not add any NSCM definitions to your shell resource files. Please note that the NSCM value is typically ignored in job
submitted through a batch system because then the number of processors is determined by the batch job’s properties.

SCM_MACHINEFILE full path-name of the file containing a list nodes to use for a job; Important: this variable
should only be set if multiple computers are used without any batch system and then it should be set on the per-job
basis. The file pointed to by the variable must already exist and it must contain a list of nodes on which a particular
job is about to be executed, possibly with their processor count.

SCM_USE_LOCAL_IMPI this applies only to IntelMPI distributions. Setting this environment variable to not be
empty will disable the IntelMPI runtime environment shipped with the adf distribution, allowing the use of a local
IntelMPI installation, or any other ABI-compatible local MPI installation (MPICH v3.1 or newer for example). The
environment must be properly set up on the machine, meaning I_MPI_ROOT must be set, and mpirun should be in
the PATH, and the libraries must be in LD_LIBRARY_PATH.

SCM_USE_LOCAL_OMPI this applies only to OpenMPI distributions. Setting this environment variable to not be
empty will disable the OpenMPI runtime environment shipped with the adf distribution, allowing the use of a local
OpenMPI 2.0 installation. The environment must be properly set up on the machine, meaning OPAL_PREFIX must
be set, and mpirun should be in the PATH, and the libraries must be in LD_LIBRARY_PATH.

SCM_PYTHONPATH: The contents of this environment variable gets prepended to the PYTHONPATH variable
when using the ADF python distribution. You can add the paths to other python modules that you wish to use in
combination with the shipped python distribution to this variable to make them available.

The following environment variables are relevant for the GUI modules. For a full list, see the GUI Environment
Variables page.

37

Installation Manual, Amsterdam Modeling Suite 2019.3

SCM_ERROR_MAIL: e-mail address for error reports

SCM_GUIRC: location of the preferences file, by default $HOME/.scm_guirc

SCM_GUIPREFSDIR: location of the preferences folder, by default $HOME/.scm_gui/ (available since
ADF2013.01b)

SCM_TPLDIR: location of the templates directory, by default no extra templates are loaded

SCM_STRUCTURES: location of the structures directory, by default no extra structures are loaded

SCM_RESULTDIR: location of the results directory, by default the current directory used

DISPLAY: specifies the X-window display to use and is required for all X11 programs on Linux/Unix and Mac OS
X. On MaC OS X you should typically not set it as it will be set automatically. Setting it will break this.

SCM_QUEUES: path to the dynamic queues directory, by default ADFjobs will search the remote $HOME/.scmgui
file

SCM_OPENGL1_FALLBACK: Linux only (available since ADF2017). If set to be non-empty, the GUI will start in
OpenGL 1.4 compatibility mode. See Using the GUI on a remote machine for more information.

The AMS driver environment variables can be found in the AMS Documentation

The following environment variables are relevant for source distributions only, and only at the configure time.

MPIDIR and MATHDIR: see Compiling ADF from Sources

The following environment variables may be set to modify other aspects of ADF execution. All of them are
optional and some are used for debugging only.

SCM_GPUENABLED Envrionment flag to turn GPU acceleration on or off. Only works for the CUDA-enabled
binaries. Setting this variable to TRUE turns GPU acceleration on, setting it to FALSE turns it off. If the input
contains the keyblock GPUENABLED, a FALSE in the environment variable will be ignored.

SCM_IOBUFFERSIZE Most programs within the ADF package use the KF I/O library. This library has a built-in
caching mechanism that keeps parts of the files in memory. This allows to reduce the amount of the disk I/O signifi-
cantly. The default buffer size depends on the platform and is typically set to 64 megabytes, which should be sufficient
for running small jobs without much disk I/O. In some cases you can have a major performance improvement by
making this buffer much larger, for example 512MB. You can do this by setting the SCM_IOBUFFERSIZE environ-
ment variable to a number corresponding to the buffer size in megabytes. Please try for yourself, with your typical
calculation on your production machine to find out the optimal value for your situation.

SCM_MAXCOMMLENGTH When performing collective MPI communications ADF breaks them into pieces
of at most SCM_MAXCOMMLENGTH elements, each element being 4 or 8 bytes long. So in practice the
largest collective MPI operation should not exceed SCM_MAXCOMMLENGTH*8 bytes in size. By default,
SCM_MAXCOMMLENGTH is set to 268435455 on Linux and 4194304 on Windows and macOS. When the
SCM_MAXCOMMLENGTH environment variable is set its value is used instead.

SCM_VECTORLENGTH Almost all programs within the ADF package use numerical integration, and this is nor-
mally the most time-consuming part of the code. Numerical integration involves summing together results for each
‘integration point’. The best performance is achieved when handling a number of points at the same time. The number
of integration points handled together is called the block length or the vector length. If the block length is too small,
you will have a significant overhead and the programs may become very slow. If the block length is too large, lots
of data will not fit in the processor cache and again the program will not run at the maximum speed. The optimal
block length is somewhere in between, ranging from 32 to 4096 depending on your hardware. Sometimes it pays off
to set the block length explicitly NOT to a power of 2 to avoid memory bank conflicts. Again, try it yourself with your
typical calculation on your production machine to find out the optimal value for your situation. On most machines, the
default 128 is a good value.

SCM_SHAR_EXCEPTIONS: setting this variable to “*” disables the use of shared arrays.

38 Chapter 8. Appendix A. Environment Variables

Installation Manual, Amsterdam Modeling Suite 2019.3

SCM_SHAR_LIMIT: sets the limit on the total size of shared arrays in megabytes. The default is a bit less than
half of the node’s total RAM. If a new shared array would cause the total amount of shared memory to go over the
limit, then instead of placing the array into shared memory it is created as a shared file in scratch directory of the
node-master. It then gets memory-mapped into the address space of all processes on the node. The effect will be the
same as when the array is placed into shared memory except that there will be a delay due to disk I/O when the array
is destroyed.

SCM_DEBUG: setting this to a non-empty string will cause each MPI rank to print values of relevant environment
variables and some messages about copying files to/from SCM_TMPDIR.

SCM_NOMEMCHECK: setting this to a non-empty string disables checks on memory allocation failures. The
usefulness of this variable is questionable.

SCM_NODOMAINCHECK: setting this to a non-empty string disables DNS requests when verifying the license.
Use this variable if you experience long delays at the start of each calculation.

SCM_TRACETIMER: setting this to a non-empty string will produce additional output on entry/exit to/from internal
timers.

SCM_DEBUG_ALL: setting this to yes is equivalent to specifying DEBUG $ALL in the input

8.1 More on the SCM_TMPDIR variable

Below we will explain in more detail how does the SCM_TMPDIR environment work. Every parallel job consists
of one master and one or more slave tasks. Master and slaves behave a bit differently with respect to their scratch
directories.

Slave processes

Slave processes will always create a directory for their scratch files in $SCM_TMPDIR and chdir to it to avoid any risk
that shared files are updated by more that one process at the same time. For efficiency reasons, that directory should
reside on a local disk unless you are using very, very fast shared file system for large files. You need write access to
that directory, and the file system should have enough free space. Please note that the SCM_TMPDIR environment
variable will be passed from the master to slaves. After the job is finished, slave processes will delete their scratch
directories. This can disabled by setting the SCM_DEBUG environment variable to any text, for example, to “yes”.
In this case the scratch directory and all its contents will be left intact. This directory will also be left behind when
a job has crashed or has been killed. Each slave writes its text output to a file called KidOutput located in its scratch
directory. In case of an error this file will likely contain some sensible error message. If an error occurs and a slave
process exits in a controllable way then in order to avoid losing the file ADF will copy the file to the directory, from
which the job was started, as KidOutput__#, where # is the process’ rank.

Master process or serial runs

The master process (which is the only process in a serial run) will also create its temporary files in its own sub-
directory of $SCM_TMPDIR. There are some exceptions. Some files, such as logfile and TAPE13, will be created
in the directory where ADF was started because they are not performance-critical but are convenient to have in the
current directory for different reasons. For example, logfile is nice to have in the current directory in order to follow
the calculation progress and the TAPE13 is an emergency restart file that can be used if ADF crashes or is killed. At
the end of a calculation, the master will copy all result files from its scratch directory to the directory where it was
started.

Using multiple scratch disks

It is possible to use multiple physical scratch disks in a parallel calculation. See the Installation manual for more
information about this.

8.1. More on the SCM_TMPDIR variable 39

Installation Manual, Amsterdam Modeling Suite 2019.3

40 Chapter 8. Appendix A. Environment Variables

CHAPTER

NINE

APPENDIX B. DIRECTORY STRUCTURE OF THE ADF PACKAGE

Below is the list of major parts of the ADF package.

9.1 The bin directory

When the package is installed, the executable files are placed in $ADFHOME/bin. The binary executable file is usually
called ‘adf.exe’, ‘band.exe’, and so on. On Windows it is adf.3.exe, band.3.exe, etc. There will also be files called just
‘adf’ or ‘band’. The latter are shell scripts that execute the corresponding binaries.

You should use the script files, rather than the executables directly. The script files take care of several convenient
features (like the BASIS key described in the ADF User’s Guide) and provide a correct environment for running in
parallel. See also the sample run scripts and the Examples document.

The $ADFBIN/setenv.sh and $ADFBIN/start scripts take care of setting up the environment and starting the binaries.
If necessary, it parses the information provided by a batch system and sets up a machinefile (or an appfile) and runs
tasks in parallel. Edit the file if you need to customize the way MPI programs are started.

9.2 The atomicdata directory

The directory atomicdata/ contains a large amount of data needed by programs from the ADF package at run time. For
example, it contains basis sets for all atoms. Generally you should not modify any of the files in this directory.

The basis sets are described in detail in the ADF manual and BAND manual

9.3 The examples directory

The directory examples/ contains sample script and output files. The files with extension .run are shell scripts that also
contain embedded input. Thus, these files should be executed, and not given as input to ADF.

The example calculations are documented in the ADF Examples documentation, and BAND Examples documentation.

9.4 The source code (adf, band, libtc, Install, ...)

The source files are only visible if you have a copy of the source code distribution. The source code files found in the
program and library directories and subdirectories thereof have extensions .f, .f90, .c or .cu and contain FORTAN or
C/CUDA code. Other source files are include files (files with extension .fh or .h). When compiling, the object files are
generated in the folder $ADFHOME/build, and archived into libraries.

41

Installation Manual, Amsterdam Modeling Suite 2019.3

Compilation is done by $ADFBIN/foray, and the configure options are located in $ADFHOME/Install/-machinetype-
/Forayflags.

The Install directory contains a configure script, some data files which provide generic input for configure (start,
starttcl, and some more), a portable preprocessor cpp (based on Mouse cpp) and machine-specific files that are un-
packed into the bin folder (precompiled packages), or the build folder (precompiled libraries). The machine-specific
folders start with x86 or x86_64.

9.5 The Doc directory

All the user documentation for ADF is present in html format in $ADFBIN/Doc. Documentation is also available on
the SCM website (http://www.scm.com/support)

9.6 The scripting directory

This directory contains some useful scripts that are part of the ADF package.

42 Chapter 9. Appendix B. Directory Structure of the ADF Package

http://www.scm.com/support

CHAPTER

TEN

COMPILING AMS FROM SOURCES

THIS INFO IS ONLY RELEVANT FOR PEOPLE WITH A SOURCE CODE LICENSE! If you are unsure
what this means, you can most likely skip reading this page!

Compiling AMS from sources by end users is not supported on Windows. The following instructions apply to
Linux/Unix and Mac OS X only. Compiling AMS2019 from sources is supported for ifort version 18.0.2 with MKL
and IntelMPI on linux.

10.1 Unpacking the distribution

Installing AMS with recompilation in mind is somewhat different from the binary-only installation. The downloaded
source and binary tarballs must be unpacked in the following order (using IntelMPI on x86_64-linux in this example):

First sources
tar xzf adf2019.101.src.tgz
Then binaries
tar xzf adf2019.101.pc64_linux.intelmpi.bin.tgz

The result will be a adf2019.101 directory containing both binaries (for your platform) and sources.

Note that for Mac OS X, the downloading of the binaries is different. Follow the instructions for downloading and
installation of the binaries. Copy the binaries from the downladed disk image to the directory adf2019.101 that was
created from the source code. Depending oin where you have put the binaries it could be something like:

cp -r /Applications/ADF2019.101.app/Contents/MacOS/ADF.app/Contents/Resources/adfhome/
→˓* adf2019.101

10.2 Setting up environment

In addition to the standard environment variables discussed in the Installation manual, you may need to set additional
ones depending on your platform:

• I_MPI_ROOT: this variable must be set if compiling with IntelMPI on linux (the default)

• MPIDIR: may be needed in the case of compiling AMS with non-default MPI, for example OpenMPI on linux.

• MATHDIR: this should be set to the the MKL root folder. If MKLROOT is defined and MATHDIR is not, then
MKLROOT will be used.

43

Installation Manual, Amsterdam Modeling Suite 2019.3

10.3 Running Install/configure

After unpacking everything and setting up your environment properly, you need to run the configure script. This script
is located in the $ADFHOME/Install directory, and it must be executed from the $ADFHOME directory. The script
replaces some files in the bin directory with versions specifically targeted for your system. Further, configure creates
the buildinfo file that you will need to compile AMS.

To see what options the configure script supports, use configure -h:

Example:

cd $ADFHOME
Install/configure -h

Configure can set up multiple build targets with different configuration options using the -b flag. The options regarding
your build target should be wrapped in quotes following a -b flag, starting with the build name. The -b flag can be used
multiple times to create different build targets. For example, to create a target with all current release build options:

cd $ADFHOME
Install/configure -b "release -p intelmpi -meadshared -dynamicmkl -plumed"

If a different MPI version is needed (for example OpenMPI) as well as a defaults target, simply run:

cd $ADFHOME
Install/configure -b "mydefaulttarget" -b "myompitarget -p openmpi"

10.4 Compiling AMS

Next, you need to compile the sources by executing foray located in $ADFBIN. Foray supports parallel compilation
to make things faster, use -j N to tell foray you want it to use N processes (for example: -j 4 on a quadcore machine):

cd $ADFHOME
bin/foray -j 4

After a while, depending on the speed of your computer, everything should be ready to use, just as if you had installed
the precompiled executables but now with your modifications included. Use bin/foray -h to get a list of all foray
options.

44 Chapter 10. Compiling AMS from Sources

	Windows Quickstart Guide
	Linux Quickstart Guide
	MacOS Quickstart Guide
	Introduction
	Requirements
	Summary
	Detailed Hardware requirements
	Software requirements

	Important changes since AMS2018
	Important changes since ADF2017

	Installation
	Decide which version to install
	Download and install the software
	Set up the environment
	Set up the license
	Floating license

	Set up the scratch space
	Test your installation
	Check the license file
	Run some basic tests
	Test the GUI
	Test parallel execution
	Test parallel performance

	Configure ADFjobs queues and 3rd party software (optional)
	ADFjobs queues
	Managing remote jobs

	Additional Information and Known Issues
	Shared memory and batch systems (SLURM)
	GPFS file system
	Running MPI jobs
	Technical explanation

	More on running MPI jobs
	IntelMPI and core-binding
	IntelMPI and SLURM
	IntelMPI and SGE
	IntelMPI and ABI compatibility
	OpenMPI on Linux
	Corrupted License File
	Windows: running jobs from the command line

	Using the GUI on a remote machine
	X11 over SSH
	X11 with OpenGL over SSH (3D graphics)
	Intel Graphics (mesa)
	NVidia Graphics
	libGL.so examples

	AMD Graphics
	libGL.so examples

	OpenGL direct or indirect rendering
	enabling indirect rendering on Xorg 1.17 and newer
	CentOS 6
	Ubuntu 16.04
	OSX / MacOS

	OpenGL2+ with X11 over SSH
	ADF2017 and VTK7
	AMS2019/AMS2018 and VTK7
	Sources

	Appendix A. Environment Variables
	More on the SCM_TMPDIR variable

	Appendix B. Directory Structure of the ADF Package
	The bin directory
	The atomicdata directory
	The examples directory
	The source code (adf, band, libtc, Install, ...)
	The Doc directory
	The scripting directory

	Compiling AMS from Sources
	Unpacking the distribution
	Setting up environment
	Running Install/configure
	Compiling AMS

