
AMS Manual
ADF Modeling Suite 2018

www.scm.com

Sep 18, 2018

CONTENTS

1 General 1
1.1 Overview . 1
1.2 Motivation and progress . 1
1.3 Input, execution and output . 2

2 System definition 5
2.1 System geometry . 5
2.2 Additional system properties . 8
2.3 Restoring a system from disk . 8

3 Exploring the PES: Tasks 11
3.1 Single point calculations . 11
3.2 Geometry optimization . 11

3.2.1 Constrained optimization . 14
3.2.2 Optimization methods . 15

Quasi-Newton . 16
SCMGO . 18
FIRE . 19
Conjugate gradients . 21

3.2.3 Troubleshooting . 22
3.3 Transition state search . 22
3.4 PES scan . 23

3.4.1 Troubleshooting . 25
3.5 Molecular dynamics . 27

3.5.1 General . 28
3.5.2 (Re-)Starting a simulation . 29
3.5.3 Thermostats and barostats . 31

Temperature and pressure regimes . 34
3.5.4 Trajectory sampling and output . 34

4 PES point properties 37
4.1 Nuclear gradients and stress tensor . 37
4.2 Hessian and normal modes of vibration . 38
4.3 Elastic tensor . 39
4.4 Phonons . 41

5 Engines 45
5.1 Available engines . 45
5.2 External programs as engines . 46
5.3 Toy engines . 49

i

6 Technical topics 51
6.1 Input syntax . 51

6.1.1 General remarks on input structure and parsing . 51
6.1.2 Keys . 52
6.1.3 Blocks . 53
6.1.4 Units . 54

6.2 Double parallelism . 54
6.3 Running AMS on compute clusters . 57
6.4 Python interface . 58

7 Examples 61
7.1 Geometry optimization . 61

7.1.1 Example: Simple geometry optimization . 61
7.1.2 Example: Two-stage geometry optimization with initial Hessian 61
7.1.3 Example: Periodic lattice optimization under pressure . 63
7.1.4 Example: Constrained optimizations . 64

7.2 Transition state search . 71
7.2.1 Example: TS search starting from initial Hessian . 71
7.2.2 Example: PES scan and TS search for H2 on graphene . 72

7.3 PES scan . 75
7.3.1 Example: Linear transit . 75
7.3.2 Example: 2D PES scan . 79

7.4 Molecular dynamics . 82
7.4.1 Example: Simple MD for H2 . 82
7.4.2 Example: MD for a box of water . 83

7.5 PES point properties . 83
7.5.1 Example: Phonons for graphene . 83
7.5.2 Example: Phonons with isotopes . 84
7.5.3 Example: Elastic tensor . 86

8 Appendices 91
8.1 Environment variables . 91
8.2 Extended XYZ file format . 91
8.3 Developer options . 92

9 Required citations 93

10 References 95

11 Keywords 97
11.1 Links to manual entries . 97
11.2 Summary of all keywords . 97

Index 117

ii

CHAPTER

ONE

GENERAL

1.1 Overview

AMS is the new driver program in the 2018 release of the Amsterdam Modeling Suite. The job of AMS is to handle all
changes in the simulated system’s geometry, e.g. during a geometry optimization or molecular dynamics calculation,
using the so-called “engines” like BAND or DFTB for the calculation of energies and forces. In summary, one might
say that the AMS driver steers the engines across the potential energy surface.

Prior to the 2018 release of the Amsterdam Modeling Suite, what we now call engines used to be separate programs,
each with their own input and output files and formats. Starting with the 2018 release, the engines are only accessible
through the AMS driver program, that provides a unified interface to all of them.

1.2 Motivation and progress

The Amsterdam Modeling Suite has grown substantially over the last decade, and in the 2017 release includes pro-
grams implementing methods all the way from accurate density functional theory, through semi-empirical methods,
to fast reactive force fields. Many of these programs have originally been developed by academic groups and are now
maintained and expanded by SCM in collaboration with the original authors.

This rapid growth of the Amsterdam Modeling Suite has, however, led to a certain degree of unnecessary inhomogenity
within the suite: The input for the same task, e.g. a geometry optimization, can differ quite a lot between the different
progams in the suite. While this problem was mostly hidden for users of the graphical interface, it constituted a barrier
for users of the new scripting frameworks such as PLAMS. Furthermore, the different programs produced rather
different output files for the same task, making the automated extraction of results unnecessarily difficult. Finally, and
most importantly, the rapid growth of the AMS suite has also led to a certain level of feature fragmentation, where some
features are available in one program but not the other: ADF, for example, was able to do a linear transit calculation,
while BAND was not. Constrained geometry optimization was supported in DFTB, but not in UFF. ReaxFF could be
used for Grand Canonical Monte Carlo simulations, but DFTB could not.

In order to overcome these issues and make the Amsterdam Modeling Suite more powerful and user friendly, we are
introducing the AMS driver program with the 2018 release of the suite. The idea of this reorganization is to have only
a single program called AMS that under the hood uses the so-called “engines” like BAND or DFTB for the calculation
of energies and gradients, where the engines are technically no longer separate programs but just libraries used by the
AMS driver. In this way much of the input and output of AMS is the same, no matter which particular engine is used
for a calculation. It also avoids the feature fragmentation, since any new feature in the AMS driver can immediately be
used with all engines in the suite. Furthermore, AMS also allows running external programs as an engine (page 45)
providing energies and gradients, allowing end-users to perform all calculations supported by AMS with virtually
any atomistic modeling program they have access to and to visualize the results in the graphical user interface of the
Amsterdam Modeling Suite.

1

AMS Manual, ADF Modeling Suite 2018

Converting all the programs of the Amsterdam Modeling Suite into engine libraries that are used by the AMS driver
is a big reorganization of the entire suite, which is not complete yet. The long-term goal is to integrate all programs
in the suite fully into the AMS driver, but as of the 2018 release, only BAND, DFTB, MOPAC and UFF have been
fully integrated and removed as separate programs. ReaxFF is fully usable from within AMS, but not all features of
the standalone ReaxFF program (e.g. GCMC) have been ported to AMS yet. Therefore, ReaxFF is in the 2018 release
both available as an AMS engine and as the familiar standalone program. ADF can be used both through AMS and
as the standalone program known from previous releases. QuantumEspresso has not yet been integrated into AMS.
External programs can be hooked into the AMS driver through a thin scripting layer (page 45). While the transition
to AMS is not complete yet, we believe that AMS in its current state already offers significant benefits over the 2017
release.

As with any large reorganization, it is unavoidable that some things change. For GUI users this should not create
any issues, but users familiar with the existing command line and scripting interfaces will notice these changes and
their existing workflows might need to be adjusted to the new setup. We know that these kind of changes can be
disrupting for existing users, and where possible we try to keep backwards compatibility with previous versions, but
unfortunately this is not always possible. However, overall AMS provides a much more consistent and convenient
interface to command line and scripting users, and we believe that the new simplicity and expanded feature set of
AMS make transitioning to the new framework well worth the effort.

1.3 Input, execution and output

With the introduction of AMS in the 2018 release of the Amsterdam Modeling Suite, there are some changes in the
input and output files and formats used by our software. Users of the graphical interface should not notice these
changes, but people using the software from the command line or through the scripting frameworks need to be aware
of them.

Generally the input for AMS has the block and keyword structure that most programs in the Amsterdam Modeling
Suite have already been using. See the Input syntax (page 51) section for more details. The only new construct in the
AMS input is a special Engine block, that selects which engine is used for the simulation and also contains all the
details of its configuration. This is probably best illustrated by an example. Let us look at the following AMS input,
which optimizes the geometry of the methane molecule and calculates its normal modes of vibration at the optimized
geometry:

$ADFBIN/ams << EOF

Task GeometryOptimization

GeometryOptimization
Convergence

Gradients 1.0e-4
End

End

Properties
NormalModes true

End

System
Atoms

C 0.00000000 0.00000000 0.00000000
H 0.63294000 -0.63294000 -0.63294000
H -0.63294000 0.63294000 -0.63294000
H 0.63294000 0.63294000 0.63294000
H -0.63294000 -0.63294000 0.63294000

End

2 Chapter 1. General

AMS Manual, ADF Modeling Suite 2018

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1

EndEngine

EOF

Note how DFTB is selected as the engine in the Engine DFTB line that opens the Engine block. All DFTB specific
configuration is contained within this engine block, which is terminated by EndEngine. The fact that we want to run
a geometry optimization with normal modes for methane and things like convergence criteria for the optimization are
of course completely independent from which engine is actually used to perform this calculation. Therefore they are
all found outside of the Engine block. In this sense, the AMS input is split up into the driver level input (everything
outside of the engine block) and the engine input, which is just a single Engine block. This separation makes it easy
to perform the same calculation at a different level of theory, by simply switching out the Engine block in the input.
We could, for example, repeat the same calculation at the DFT-GGA level using the Band engine:

Engine BAND
XC

GGA PBE
End

EndEngine

Engines like BAND that have many options and can calculate many properties, consequently also have a large number
of possible keywords in their input. In order to have a better structured documentation we have split off the descrption
of the engine inputs into separate engine specific manuals (page 43), while this AMS manual only documents the
driver level keywords outside of the Engine block. All the engine specific options are found in the respective engine’s
manual, which documents the keywords in its Engine block. In general all engines can be used with all tasks in AMS.
There are only a few rather obvious restrictions, for example that only engines which can handle periodic systems can
be used for the calculation of phonons.

The introduction of the Engine block is the only real change AMS brings to the input side of things. On the output
side there are a few more changes.

The first change to the output is that AMS does not put any of its output files into the present working directory,
as virtually all of the standalone programs in the suite did. Instead AMS creates a *.results directory, which
collects all result file associated with a job. Here * is replaced by the jobname, which is set with the AMS_JOBNAME
environment variable:

AMS_JOBNAME=methane $ADFBIN/ams << EOF

... see above ...

EOF

This would put all results related to our geometry optimization of methane into the newly created folder methane.
results. (The default name of the results folder is ams.results if AMS_JOBNAME is not set, see the environment
variables (page 91) section of this manual for documentation of all environment variables used by AMS.) In this way
users can easily run multiple jobs in the same directory without danger of clashing output files, which was a common
problem before the introduction of AMS. This new setup is also more consistent with the graphical user interface,
which already collected all files associated with a specific job into a dedicated results directory. Note that AMS will
by default not overwrite results directories if a job is rerun or another job is run with the same jobname.

Inside of the results directory users will always find the logfile ams.log, which is written during a running calculation
and can be used to monitor its progress. Furthermore the results directory contains binary result files in the KF format,

1.3. Input, execution and output 3

AMS Manual, ADF Modeling Suite 2018

which can be opened and inspected with the KFBrowser GUI component. Conceptually there are two different kinds
of these binary files in the result folder:

• The main ams.rkf written by the AMS driver. It contains high level information about the trajectory that
the AMS driver took over the potential energy surface. For a geometry optimization it would for example
contains the history of how the systems geometry changed during the optimization as well as the final optimized
geometry. For a molecular dynamics simulation it would contain the full trajectory. The format in which this
information is written is independent from which engine was used for a calculation.

• Additionally there might be a binary output file for every point on the potential energy surface that was visited
during the calculation. They contain all information tied to a specific point on the potential energy surface. We
call these files the engine output files, because they are not written by the AMS driver, but by the specific engine
used for the calculation. As such they contain engine specific information (e.g. orbitals for quantum mechanical
engines), which might be written in an engine specific format. The engine files are basically the same as the
main output file the standalone programs produced for single point calculations prior to the 2018 release of
the suite: The BAND engine writes engine output files that are basically the same as the RUNKF file that the
BAND program wrote. The engine output files of the DFTB engine correspond to the dftb.rkf file that the
DFTB program used to write. The engine output files all have the extension .rkf, but their filename is usually
somehow descriptive of the point on the PES that they correspond to. Note that one does not always get an
engine output file for every PES point that was visited during the calculation. For most applications this would
just be too much data, so by default the engine results are only kept for special points, e.g. the final geometry in
a geometry optimization.

Having multiple different binary output files could be confusing for people that are used to the single result file that
was written by the standalone programs in ADF<=2017. After all, it brings up the question in which file the desired
property is stored. The general rule is: If the property is tied to a particular point on the potential energy surface, it is
stored in the engine output file belonging to that particular point. This includes all properties documented in the PES
point properties section (page 36) of this manual. If the information depends on the entire trajectory over the PES, it
is found in the main ams.rkf written by the AMS driver.

4 Chapter 1. General

CHAPTER

TWO

SYSTEM DEFINITION

The definition of the system to simulate, i.e. the positions and types of the nuclei, the total charge, and potentially
lattice vectors, is enclosed in the System block:

System
Atoms header # Non-standard block. See details.

...
End
Lattice header # Non-standard block. See details.

...
End
FractionalCoords [True | False]
GeometryFile string
LatticeStrain float_list
SuperCell integer_list
AtomMasses # Non-standard block. See details.

...
End
Charge float
BondOrders # Non-standard block. See details.

...
End

End

2.1 System geometry

The geometry of the system is specified with the Atoms and Lattice blocks.

System

Type Block

Description Specification of the chemical system.

Atoms

Type Non-standard block

Description The atom types and coordinates. Unit can be specified in the header. Default unit
is Angstrom.

Lattice

Type Non-standard block

5

AMS Manual, ADF Modeling Suite 2018

Description Up to three lattice vectors. Unit can be specified in the header. Default unit is
Angstrom.

FractionalCoords

Type Bool

Default value False

Description Whether the atomic coordinates in the Atoms block are given in fractional coordi-
nates of the lattice vectors. Requires the presence of the Lattice block.

The Atoms block contains one line per atoms, similar to the lines found in an .xyz file: First the name of the element,
then three real numbers representing the coordinates of that atom in Angstrom. The following Atoms block shows
how one would define a water molecule:

System
Atoms

O 0.0 0.0 0.59372
H 0.0 0.76544 -0.00836
H 0.0 -0.76544 -0.00836

End
End

Note that it is possible to specify a different unit of length in the header of the block (that is in the line after the
keyword opening the block) by putting the name of the unit in [and] brackets. So the same water molecule could
also be specified as follows:

System
Atoms [Bohr]

O 0.0 0.0 1.12197
H 0.0 1.44647 -0.01580
H 0.0 -1.44647 -0.01580

End
End

Periodic systems require the specification of 1 (for chains), 2 (for slabs) or 3 (for bulk) lattice vectors in addition to
the nuclear coordinates. Every lattice vector is specified on a separate line of three numbers, representing the vectors
x,y and z-component. Note that for chain systems, the single lattice vector must point along the x-axis, while for slab
systems the two lattice vectors must be in the xy-plane. Consider the following input for graphene:

System
Atoms

C 0.0 0.0 0.0
C 1.23 0.71014 0.0

End
Lattice

2.46 0.0 0.0
1.23 2.13042 0.0

End
End

As with the Atoms block, the length unit in which the lattice vectors are given can be changed by specifying the
desired unit in the header of the block (enclosed in [and]). It is also possible to define a system given the fractional
coordinates of the atoms using the FractionalCoordinates keyword. The numbers in the Atoms block are then
interpreted as fractional coordinates according to the lattice vectors in the Lattice block. Note that for chain and
slab systems, the coordinates perpendicular to the periodic direction (z and y for chains, z for slabs) are of course still
in Angstrom (or alternatively the unit set in the header of the Atoms block). Using the FractionalCoordinates
keyword we could specify the geometry of table salt (NaCl) as follows:

6 Chapter 2. System definition

AMS Manual, ADF Modeling Suite 2018

System
Lattice

0.0 2.75 2.75
2.75 0.0 2.75
2.75 2.75 0.0

End
FractionalCoordinates True
Atoms

Na 0.0 0.0 0.0
Cl 0.5 0.5 0.5

End
End

Instead of specifying the geometry of the system directly in the input file it can also be read from an external file.

System

GeometryFile

Type String

Description Read geometry from an file instead of Atoms and Lattice and blocks. Supported
formats: .xyz

Note that the GeometryFile key replaces both the Atoms and the Lattice blocks in the input. So if you specify
the GeometryFile keyword in the input, the Atoms and Lattice blocks must not appear there. At the moment
only the extended XYZ file format (page 91) is supported.

Finally there are a number of keywords that modify the system geometry:

System

LatticeStrain

Type Float List

Description Deform the input system by the specified strain. The strain elements are in Voigt
notation, so one should specify 6 numbers for 3D periodic system (order: xx,yy,zz,yz,xz,xy),
3 numbers for 2D periodic systems (order: xx,yy,xy) or 1 number for 1D periodic systems.

SuperCell

Type Integer List

Description Create a supercell of the input system (only possible for periodic systems). The
integer numbers represent the diagonal elements of the supercell transformation; you should
specify as many numbers as lattice vectors (i.e. 1 number for 1D, 2 numbers for 2D and 3
numbers for 3D periodic systems).

RandomizeCoordinates

Type Float

Default value 0.0

Unit Angstrom

Description Apply a random noise to the atomic coordinates. This can be useful if you want to
deviate from an ideal symmetric geometry.

RandomizeStrain

Type Float

Default value 0.0

2.1. System geometry 7

AMS Manual, ADF Modeling Suite 2018

Description Apply a random strain to the system. This can be useful if you want to deviate
from an ideal symmetric geometry, for example if you look for a phase change due to high
pressure.

These modifications are applied immediately after the system block is read. To the rest of AMS (and the input) it
looks exactly as if the modified system was specified explicitly in the System block input. That means that the
SuperCell keyword is not easily usable with input options that require the specification of atom indices, e.g. the
constraints (page 14) block. Note that the randomization of the coordinates is applied after a potential supercell
creation.

2.2 Additional system properties

AMS allows to set user-defined masses for particular atoms. This can be used to simulate isotopes of different atoms.
Masses are specified by tagging the specific atoms in the Atoms block and then assigning them a custom mass (in
unified atomic mass units) within the AtomMasses block. The following input shows the system specification for a
heavy water molecule:

System
Atoms

O 0.0 0.0 0.59372
H.d 0.0 0.76544 -0.00836
H.d 0.0 -0.76544 -0.00836

End
AtomMasses

H.d 2.014
End

End

Finally the System block also contains the specification of the system’s total charge as well as optionally defined
bond orders, which might be needed by engines implementing force fields.

System

Charge

Type Float

Default value 0.0

Description The system’s total charge in atomic units (only for non-periodic systems).

BondOrders

Type Non-standard block

Description Defined bond orders. May by used by MM engines.

Note that the specified bond orders are currently only used by the UFF engine.

2.3 Restoring a system from disk

Instead of specifying the system to simulate in the System block of the input, it is also possible to restore the system
used in a previous calculation from the binary .rkf result files of AMS. This is done with the LoadSystem block
in the input:

8 Chapter 2. System definition

AMS Manual, ADF Modeling Suite 2018

LoadSystem
File string
Section string

End

LoadSystem

Type Block

Description Block that controls reading the chemical system from a KF file instead of the [System]
block.

File

Type String

Description The path of the KF file from which to load the system.

Section

Type String

Default value Molecule

Description The section on the KF file from which to load the system.

Note that the LoadSystem block is mutually exclusive with the System block: The system either needs to be
specified in the input, or loaded from a previous results file.

Any .rkf file written by AMS should be suitable to load a system from. For engine output files (page 4) the loaded
geometry is just the one for which the engine was invoked when it wrote this file. For the main result file (page 4) ams.
rkf written by the AMS driver, which geometry is loaded depends on the task (page 11) that AMS was performing
when this file was written. Generally the ams.rkf file contains two systems:

• The input system corresponding just to the System block that was read in by AMS. This system is written to the
InputMolecule section on the ams.rkf, and can be loaded from there using the LoadSystem%Section
keyword. This can be useful in order to repeat a previous AMS calculation for the same system, but with different
settings, e.g. a different engine.

• The system which was the result of a previous AMS calculation, e.g. a geometry optimization or transition state
search. This system is written to the Molecule section on the ams.rkf. What exactly is considered the
resulting geometry of a calculation depends in the task (page 11) of the previous calculation. (For tasks that do
not change the geometry (like a single point calculation) or where no configuration is particularly special (e.g.
a PES scan), the result system is normally just the same as the input system.)

2.3. Restoring a system from disk 9

AMS Manual, ADF Modeling Suite 2018

10 Chapter 2. System definition

CHAPTER

THREE

EXPLORING THE PES: TASKS

3.1 Single point calculations

A single point calculation is the simplest task available in th AMS driver. It simply runs the engine (page 43) once for
the given geometry. In other words, the AMS driver does not explore the potential energy surface (PES), but simply
samples a “single point” of it.

A single point calculation is performed by selecting it with the Task keyword:

Task SinglePoint

Note that a single point calculation in AMS includes the calculation of PES point properties (page 36). Many of these,
such as the nuclear gradients and the Hessian, are derivatives at this PES point with respect to nuclear displacements.
These derivatives might be done numerically by the AMS driver, in which case it would technically run the engine
multiple times and sample PES points around the initial point. However, in AMS this is still considered a single point
calculation. Take for example the calculation of the normal modes of vibration of a molecule. This used to be a
separate task in the 2017 release of the DFTB program, but in AMS is just a single point calculation with a request for
normal modes:

Task SinglePoint

Properties
NormalModes True

End

See the manual section on PES point properties (page 36) for an overview of which properties can be calculated with
the SinglePoint task in AMS.

3.2 Geometry optimization

A geometry optimization is the process of changing the system’s geometry (the nuclear coordinates and potentially the
lattice vectors) to minimize the total energy of the systems. This is typically a local optimization, i.e. the optimization
converges to the next local minimum on the potential energy surface (PES), given the initial system geometry specified
in the System block. In other words: The geometry optimizer moves “downhill” on the PES into the local minimum.

See also:

Examples (page 61) and diamond lattice optimization and phonons tutorial

Geometry optimizations are performed by selecting them as the Task. The details of the optimization can be config-
ured in the corresponding block:

11

AMS Manual, ADF Modeling Suite 2018

Task GeometryOptimization

GeometryOptimization
Convergence

Energy float
Gradients float
Step float

End
MaxIterations integer
CalcPropertiesOnlyIfConverged [True | False]
OptimizeLattice [True | False]
Pressure float
KeepIntermediateResults [True | False]

End

GeometryOptimization

Type Block

Description Configures details of the geometry optimization and transition state searches.

Convergence

Type Block

Description Convergence is monitored for two items: the energy and the Cartesian gradients.
Convergence criteria can be specified separately for each of these items.

Energy

Type Float

Default value 1e-05

Unit Hartree

Description The criterion for changes in the energy.

Gradients

Type Float

Default value 0.001

Unit Hartree/Angstrom

Description The criterion for changes in the gradients.

Step

Type Float

Default value 0.001

Unit Angstrom

Description The maximum Cartesian step allowed for a converged geometry.

A geometry optimization is considered converged when all the following criteria are met:

1. The difference between the bond energy at the current geometry and at the previous geometry step is smaller
than Convergence%Energy.

2. The maximum Cartesian nuclear gradient is smaller than Convergence%Gradient.

12 Chapter 3. Exploring the PES: Tasks

AMS Manual, ADF Modeling Suite 2018

3. The root mean square (RMS) of the Cartesian nuclear gradients is smaller than 2/3
Convergence%Gradient.

4. The maximum Cartesian step is smaller than Convergence%Step.

5. The root mean square (RMS) of the Cartesian steps is smaller than 2/3 Convergence%Step.

Note: If the maximum and RMS gradients are 10 times smaller than the convergence criterion, then criteria 4 and 5
are ignored.

Some remarks on the choice of the convergence thresholds:

• Molecules may differ very much in the stiffness around the energy minimum. Using the standard convergence
thresholds without second thought is therefore not recommended. Strict criteria may require a large number of
steps, while a loose threshold may yield geometries that are far from the minimum (with respect to atom-atom
distances, bond-angles etc...) even when the total energy of the molecule might be very close to the value at the
minimum. It is good practice to consider first what the objectives of the calculation are. The default settings
in AMS are intended to be reasonable for most applications, but inevitably situations may arise where they are
inadequate.

• The convergence threshold for the coordinates (Convergence%Step) is not a reliable measure for the preci-
sion of the final coordinates. Usually it yields a reasonable estimate (order of magnitude), but to get accurate
results one should tighten the criterion on the gradients, rather than on the steps (coordinates). (The reason for
this is that with the Quasi-Newton based optimizers the estimated uncertainty in the coordinates is related to
the used Hessian, which is updated during the optimization. Quite often it stays rather far from an accurate
representation of the true Hessian. This does usually not prevent the program from converging nicely, but it
does imply a possibly incorrect calculation of the uncertainty in the coordinates.)

• Note that tight convergence criteria for the geometry optimization require accurate and noise-free gradients from
the engine. For some engines this might mean that their numerical accuracy has to be increased for geometry
optimization with tight convergence criteria, see e.g. the NumericalQuality keyword in the BAND manual.

The maximum number of geometry iterations allowed to locate the desired structure is specified with the
MaxIterations keyword:

GeometryOptimization

MaxIterations

Type Integer

Description The maximum number of geometry iterations allowed to converge to the desired
structure.

CalcPropertiesOnlyIfConverged

Type Bool

Default value True

Description Compute the properties requested in the ‘Properties’ block, e.g. Frequencies or
Phonons, only if the optimization (or transition state search) converged. If False, the proper-
ties will be computed even if the optimization did not converge.

If the geometry optimization does not converge within this many steps it is considered failed and the iteration aborted,
i.e. PES point properties (page 36) block will not be calculated at the last geometry. The default maximum number of
steps is chosen automatically based on the used optimizer and the number of degrees of freedom to be optimized. The
default is a fairly large number already, so if the geometry has not converged (at least to a reasonable extent) within
that many iterations you should step back and consider the underlying cause rather than simply increase the allowed
number of iterations and try again.

For periodic systems the lattice degrees of freedom can be optimized in addition to the nuclear positions.

3.2. Geometry optimization 13

AMS Manual, ADF Modeling Suite 2018

GeometryOptimization

OptimizeLattice

Type Bool

Default value False

Description Whether to also optimize the lattice for periodic structures. This is currently only
supported with the Quasi-Newton and SCMGO optimizers.

Pressure

Type Float

Default value 0.0

Description Optimize the structure under pressure (this will only have an effect if you are opti-
mizing the lattice vectors). Currently only working in combination with the Quasi-Newton
optimizer. For phase transitions you may consider disabling or breaking the symmetry.

Finally the GeometryOptimization block also contains some technical options:

GeometryOptimization

KeepIntermediateResults

Type Bool

Default value False

Description Whether the full engine result files of all intermediate steps are stored on disk. By
default only the last step is kept, and only if the geometry optimization converged. This can
easily lead to huge amounts of data being stored on disk, but it can sometimes be conve-
nient to closely monitor a tricky optimization, e.g. excited state optimizations going through
conical intersections, etc. ...

3.2.1 Constrained optimization

The AMS driver also allows to perform constrained optimizations, where a number of specified degrees of freedom
are fixed to particular values.

See also:

Example demonstrating all supported constraints (page 64)

The desired constraints are specified in the Constraints block at the root level of the AMS input file:

Constraints
Atom integer
Coordinate integer [x|y|z] float?
Distance (integer){2} float
Angle (integer){3} float
Dihedral (integer){4} float
BlockAtoms integer_list
Block string

End

Atom atomIdx Fix the atom with index atomIdx at the initial position, as given in the System%Atoms block.

Coordinate atomIdx [x|y|z] coordValue? Constrain the atom with index atomIdx (following the or-
der in the System%Atoms block) to have a cartesian coordinate (x, y or z) of coordValue (given in
Angstrom). If the coordValue is missing, the coordinate will be fixed to its initial value.

14 Chapter 3. Exploring the PES: Tasks

AMS Manual, ADF Modeling Suite 2018

Distance atomIdx1 atomIdx2 distValue Constrain the distance between the atoms with index
atomIdx1 and atomIdx2 (following the order in the System%Atoms block) to distValue, given in
Angstrom.

Angle atomIdx1 atomIdx2 atomIdx3 angleValue Constrain the angle (1)–(2)–(3) between the atoms
with indices atomIdx1-3 (as given by their order in the System%Atoms block) to angleValue, given in
degrees.

Dihedral atomIdx1 atomIdx2 atomIdx3 atomIdx4 dihedValue Constrain the dihedral angle (1)–
(2)–(3)–(4) between the atoms with indices atomIdx1-4 (as given by their order in the System%Atoms
block) to dihedValue, given in degrees.

BlockAtoms [atomIdx1 ... atomIdxN] Creates a block constraint (freezes all internal degrees of freedom)
for a set of atoms identified by the list of integers [atomIdx1 ... atomIdxN]. These atom indices refer
to the order of the atoms in the System%Atoms block.

Block blockName Creates a block constraint (freezes all internal degrees of freedom) for a set of atoms identified
by a tagging string blockName in the System%Atoms block. The tag is attached to element symbol and
separated by a dot. Example:

System
Atoms

C.myblock 0.0 0.0 0.0
C.myblock 0.0 0.0 1.0
C 0.0 1.0 0.0

End
End
Constraints

Block myblock
End

Note that the coordinate, distance, angle, and dihedral constraints do not need to be satisfied at the beginning of the
optimization.

Note that in principle an arbitrary number of constraints can be specified and thus combined. However, it is the
user’s responsibility to ensure that the specified constraints are actually compatible with each other, meaning that it is
theoretically possible to satisfy all of them at the same time. The AMS driver does not detect these kinds of problems,
but the optimization will show very unexpected results. Furthermore, for calculations involving block constraints the
following restrictions apply:

• There should be no other constrained coordinates used together with block constraints although this may work
in many situation.

• The user should absolutely avoid specifying other constraints that include atoms of a frozen block.

3.2.2 Optimization methods

The AMS driver implements a few different geometry optimization algorithms. It also allows to choose the coordinate
space in which the optimization is performed:

GeometryOptimization
Method [Auto | Quasi-Newton | SCMGO | FIRE | ConjugateGradients]
CoordinateType [Auto | Delocalized | Cartesian]

End

GeometryOptimization

Method

3.2. Geometry optimization 15

AMS Manual, ADF Modeling Suite 2018

Type Multiple Choice

Default value Auto

Options [Auto, Quasi-Newton, SCMGO, FIRE, ConjugateGradients]

Description Select the optimization algorithm employed for the geometry relaxation. Currently
supported are: the Hessian-based Quasi-Newton-type BFGS algorithm, the experimental
SCMGO optimizer, the fast inertial relaxation method (FIRE), and the conjugate gradients
method. The default is to choose an appropriate method automatically based on the engine’s
speed, the system size and the supported optimization options.

CoordinateType

Type Multiple Choice

Default value Auto

Options [Auto, Delocalized, Cartesian]

Description Select the type of coordinates in which to perform the optimization. If ‘Auto’, de-
localized coordinates will be used for molecular systems, while cartesian coordinates will be
used for periodic systems. Optimization in delocalized coordinates [Delocalized] can only
be used for geometry optimizations or transition state searches of molecular systems with the
Quasi-Newton method. The experimental SCMGO optimizer supports [Delocalized] coordi-
nates for both molecular and periodic systems.

We strongly advise leaving both the Method as well as the Coordinate type on the Auto setting. There are many
restrictions as to which optimizer and coordinate type can be used together with which kind of optimization. The
following (roughly) sketches the compatibilty of the different optimizers and options:

Optimizer Constraints Lattice opt. Coordinate types

Quasi-Newton Yes Yes All (molecules)
Cartesian (periodic)

SCMGO No Yes Delocalized
FIRE Fixed atoms and coordinates Yes Cartesian
Conjugate gradients No No Cartesian

Furthermore for optimal performance the optimizer should be chosen with the speed of the engine in mind: Faster
engine should use an optimizer with little overhead (FIRE), while slower engines should use optimizers that strictly
minimize the number of steps (Quasi-Newton, SCMGO). This is all handled automatically by default, and we recom-
mend changing Method and Coordinate only in case there are problems with the automatic choice.

The following subsections list the strengths and weaknesses of the individual optimizers in some more detail, motivat-
ing why which optimizer is chosen automatically under which circumstances.

Quasi-Newton

This optimizer implements a quasi Newton approach [1-3 (page 95)], using the Hessian for computing changes in the
geometry so as to reach a local minimum. The Hessian itself is typically approximated (page 17) in the beginning
and updated in the process of optimization. For molecules it uses delocalized coordinates by default, based mainly on
the work by Marcel Swart [4 (page 95)]. For periodic systems the optimization is performed in cartesian coordinates
instead.

The Quasi-Newton optimizer supports all types of constraints and can be used for both molecular and periodic sys-
tems, including lattice optimizations. For molecular systems, where the optimization can be performed in delocalized
coordinates, the number of steps taken to reach the local minimum is quite small. For large systems (on the order
of hundreds of atoms) and fast compute engines (page 43), the overhead of the Quasi-Newton optimizer is likely
the bottleneck of the calculation, and more light-weight optimizers like FIRE (page 19) will give an overall better
performance. We do not recommend using the Quasi-Newton optimizer for systems >1000 atoms. Because of these

16 Chapter 3. Exploring the PES: Tasks

AMS Manual, ADF Modeling Suite 2018

properties the Quasi-Newton optimizer is the default in AMS for all kinds of optimizations of small and medium sized
systems. It is also used as the optimizer backend for the PES scan task (page 23), the transition state search (page 22)
as well as the calculation of the elastic tensor (page 39).

Details of the Quasi-Newton optimizer are configured in a dedicated block:

GeometryOptimization
Quasi-Newton

MaxGDIISVectors integer
Step

TrustRadius float
End

End
End

GeometryOptimization

Quasi-Newton

Type Block

Description Configures details of the Quasi-Newton geometry optimizer.

MaxGDIISVectors

Type Integer

Default value 0

Description Sets the maximum number of GDIIS vectors. Setting this to a number >0 en-
ables the GDIIS method.

Step

Type Block

Description

TrustRadius

Type Float

Default value 0.2

Description Initial value of the trust radius.

The Quasi-Newton optimizer uses the Hessian to compute the next step of the geometry optimization. The Hessian
is typically approximated in the beginning and then updated during the optimization. A very good initial Hessian can
therefore increase the performance of the optimizer and lead to faster and more stable convergence. The choice of the
initial Hessian can be configured in a dedicated block:

GeometryOptimization
InitialHessian

File string
Type [Auto | UnitMatrix | Swart | FromFile]

End
End

GeometryOptimization

InitialHessian

Type Block

3.2. Geometry optimization 17

AMS Manual, ADF Modeling Suite 2018

Description Options for initial model Hessian when optimizing systems with either the Quasi-
Newton or the SCMGO method.

File

Type String

Description KF file containing the initial Hessian. This can be used to load a Hessian cal-
culated in a previously with the [Properties%Hessian] keyword.

Type

Type Multiple Choice

Default value Auto

Options [Auto, UnitMatrix, Swart, FromFile]

Description Selects the type of the initial model Hessian, or load the Hessian from the results
of a previous calulation.

While there are some options for the construction of approximate model Hessians, the best initial Hessians are often
those calculated explicitly at a lower level of theory, e.g. the real DFTB Hessian can be used the initial Hessian for an
optimization with the more accurate BAND engine, see this example (page 61).

SCMGO

The SCMGO optimizer is a new implementation of a Quasi-Newton style optimizer working in delocalized coordi-
nates. In the 2018 release of the Amsterdam Modeling Suite it is still considered experimental and therefore never
selected automatically. However, for molecules and fully connected periodic systems it already shows a quite good
performance, and could be a reasonable alternative to the classic Quasi-Newton (page 16) optimizer, which can not
use the more efficient delocalized coordinates for periodic systems.

GeometryOptimization
SCMGO

ContractPrimitives [True | False]
NumericalBMatrix [True | False]
Step

TrustRadius float
VariableTrustRadius [True | False]

End
logSCMGO [True | False]
testSCMGO [True | False]

End
End

GeometryOptimization

SCMGO

Type Block

Description Configures details SCMGO.

ContractPrimitives

Type Bool

Default value True

Description Form non-redundant linear combinations of primitive coordinates sharing the
same central atom

18 Chapter 3. Exploring the PES: Tasks

AMS Manual, ADF Modeling Suite 2018

NumericalBMatrix

Type Bool

Default value False

Description Calculation of the B-matrix, i.e. Jacobian of internal coordinates in terms of
numerical differentiations

Step

Type Block

Description

TrustRadius

Type Float

Default value 0.2

Description Initial value of the trust radius.

VariableTrustRadius

Type Bool

Default value True

Description Whether or not the trust radius can be updated during the optimization.

logSCMGO

Type Bool

Default value False

Description Verbose output of SCMGO internal data

testSCMGO

Type Bool

Default value False

Description Run SCMGO in test mode.

Note that SCMGO also supports different initial Hessians, and uses the same options for the initial Hessian as the
Quasi-Newton optimizer, see above (page 17).

FIRE

The Fast Inertial Relaxation Engine [5 (page 95)] based optimizer has basically no overhead per step, so that the
speed of the optimization purely depends on the performance of the used compute engine (page 43). As such it is a
good option for large systems or fast compute engines, where the overhead of the Quasi-Newton optimizer would be
significant. Note that is also supports fixed atom constraints (page 14) and coordinate constraints (page 14) (as long
as the value of the constrained coordinate is already satisfied in the input geometry), as well as lattice optimizations.

FIRE is the default optimizer for systems >1000 atoms. For smaller systems and fast compute engines it is selected if
it is compatible with all other settings of the optimization (i.e. no unsupported constraints or coordinate types).

Note: FIRE is a very robust optimizer. In case of convergence problems with the other methods, it is a good idea to
see if the optimization converges with FIRE. If it does not, it is very likely that the problem is not the optimizer but
the shape of the potential energy surface ...

3.2. Geometry optimization 19

AMS Manual, ADF Modeling Suite 2018

The details of the FIRE optimizer are configured in a dedicated block. It is quite easy to make the optimization
numerically unstable when tweaking these settings, so we strongly recommend leaving everything at the default values.

GeometryOptimization
FIRE

NMin integer
alphaStart float
dtMax float
dtStart float
fAlpha float
fDec float
fInc float
strainMass float

End
End

GeometryOptimization

FIRE

Type Block

Description This block configures the details of the FIRE optimizer. The keywords name corre-
spond the the symbols used in the article describing the method, see PRL 97, 170201 (2006).

NMin

Type Integer

Default value 5

Description Number of steps after stopping before increasing the time step again.

alphaStart

Type Float

Default value 0.1

Description Steering coefficient.

dtMax

Type Float

Default value 1.25

Unit Femtoseconds

Description Maximum time step used for the integration.

dtStart

Type Float

Default value 0.25

Unit Femtoseconds

Description Initial time step for the integration.

fAlpha

Type Float

Default value 0.99

Description Reduction factor for the steering coefficient.

20 Chapter 3. Exploring the PES: Tasks

AMS Manual, ADF Modeling Suite 2018

fDec

Type Float

Default value 0.5

Description Reduction factor for reducing the time step in case of uphill movement.

fInc

Type Float

Default value 1.1

Description Growth factor for the integration time step.

strainMass

Type Float

Default value 0.5

Description Ficticious relative mass of the lattice degrees of freedom. This controls the
stiffness of the lattice degrees of freedom relative to the atomic degrees of freedom, with
smaller values resulting in a more aggressive optimization of the lattice.

Note that neither the energy change per step, nor the step size are reliable convergence criteria for the FIRE optimizer.
Only the gradient convergence criterium (set with the Converge%Gradients key) is used by FIRE to determine
when the optimization has converged.

Conjugate gradients

AMS also offers a conjugate gradients based geometry optimizer, as it was also implemented in the pre-2018 releases
of the DFTB program. However, it is less robust, and has a larger overhead than FIRE (page 19), and supports neither
lattice nor constrained optimizations. It is therefore never selected automatically, and we do not recommend using it.

GeometryOptimization
ConjugateGradients

Step
MinRadius float
TrustRadius float

End
End

End

GeometryOptimization

ConjugateGradients

Type Block

Description Configures details of the conjugate gradients geometry optimizer.

Step

Type Block

Description

MinRadius

Type Float

Default value 0.0

3.2. Geometry optimization 21

AMS Manual, ADF Modeling Suite 2018

Description

TrustRadius

Type Float

Default value 0.2

Description Initial value of the trust radius.

3.2.3 Troubleshooting

First of all one should look how the energy changed during the latest ten or so iterations. If the energy is decreasing
more or less consistently, possibly with occasional jumps, then there is probably nothing wrong with the optimization.
This behavior is typical in the cases when the starting geometry was far away from the minimum and the optimization
has a long way to go. Just increase the allowed number of iterations, restart from the latest geometry and see if the
optimization converges.

If the energy oscillates around some value and the energy gradient hardly changes then you may need to look at the
calculation setup.

The success of geometry optimization depends on the accuracy of the calculated forces. The default accuracy settings
are sufficient in most cases. There are, however, cases when one has to increase the accuracy in order to get geometry
optimization converged. First of all, this may be necessary if you tighten the optimization convergence criteria. In
some cases it may be necessary to increase the accuracy also for the default criteria. Please refer to the engine manuals
(page 43) for instructions on how to increase the accuracy of an engine’s energies and gradients. Often this is done
with the NumericalQuality keyword in the engine input.

A geometry optimization can also fail to converge because the underlying potential energy surface is problematic, e.g.
it might be discontinuous or not have a minimum at which the gradients vanish. This often indicates real problems
in the calculation setup, e.g. an electronic structure that changes fundamentally between subsequent steps in the
optimization. In these cases it is advisable to run a single point calculation at the problematic geometries and carefully
check if the results are physically actually sensible.

Finally it can also be a technical problem with the specific optimization method (page 15) used. In these cases switch-
ing to another method could help with convergence problems. We recommend first trying the FIRE (page 19) opti-
mizer, as it is internally relatively simple, stable and has the nice property that the energy can never increase during an
optimization.

3.3 Transition state search

A transition state (TS) search is very much like a geometry optimization (page 11): the purpose is to find a stationary
point on the potential energy surface, primarily by monitoring the energy gradients, which should vanish. The dif-
ference between a transition state and a minimum is that at the transition state the Hessian has a negative eigenvalue:
We are at a saddle point, not a minimum, with the “negative” mode connecting the two basins on the potential energy
surface.

See also:

Examples (page 61) and the PES scan and transition state search tutorial

A transition state search in AMS is performed by selecting the corresponding task:

Task TransitionStateSearch

Due to the similarities between energy minimization and transition state search, the TransitionStateSearch
task in AMS is actually implemented as a special kind of geometry optimization using the quasi-Newton (page 16)

22 Chapter 3. Exploring the PES: Tasks

AMS Manual, ADF Modeling Suite 2018

optimizer. As such all the settings and keywords described on the geometry optimization manual page (page 11) also
apply to transition state searches.

In a geometry optimization with a quasi-Newton based optimizer the Hessian is used to make a reasonably sized step
in the “downhill” direction on the potential energy surface, as the goal is simply to minimize the energy. A transition
state search is a bit different: In the first step a normal mode is picked along which the energy is to be maximized,
while it is minimized along all other directions. Normally the mode with the lowest eigenvalue is picked, since we
know that there should be exactly one negative eigenvalue at the TS geometry. If the initial geometry is sufficiently
close to the transition state, i.e. we are close to the saddle, the lowest mode is normally the correct one to follow in
order to get to the ridge of the saddle. Alternatively a different mode can also be selected manually.

TransitionStateSearch
ModeToFollow integer

End

TransitionStateSearch

Type Block

Description Configures some details of the transition state search.

ModeToFollow

Type Integer

Default value 1

Description In case of Transition State Search, here you can specify the index of the normal
mode to follow (1 is the mode with the lowest frequency).

This selection happens only in the first step. Subsequent steps will attempt to maximize along the mode that resembles
most (by overlap) the previous maximization direction.

Practice shows that transition states are much harder to find than a minimum. For a large part this is due to the much
stronger anharmonicities that usually occur near the TS, which threaten to invalidate the quasi-Newton methods to
find the stationary point. For this reason it is good advice to be more cautious in the optimization strategy when
approaching a transition state:

• We recommend starting the transition state search with an intial geometry that is already close to the transition
state. One can use a potential energy surface scan (page 23) along something resembling the reaction coordinate
to get a rough idea where the transition state is. This geometry can then be used as an initial geometry for the
transitions state search.

• It is strongly recommended to manually supply a good initial Hessian for the transition state search. Otherwise
the first step of the search might not be taken in the correct direction and subsequent steps will attempt to keep
steering in the wrong direction. In AMS this is easily possible by loading a Hessian from a previous calculation,
see the initial Hessian section (page 17) of this manual. A good way to obtain a reasonable Hessian is to
compute it explicitly with one of the fast engines (i.e. at a lower lever of theory) and read that Hessian as the
initial Hessian for the transition state search at a higher level of theory. This approach is demonstrated in the
Examples (page 61) and the PES scan and transition state search tutorial.

3.4 PES scan

The PES scan task in AMS allows users to scan the potential energy surface of a system along one or multiple degrees
of freedom, while relaxing all other degrees of freedom. If only one coordinate is scanned, this kind of calculation is
usually just called a linear transit. However, since AMS allows scanning of multiple coordinates, and linear transit is
just a special case of such a calculation, the task is always called a PES scan in AMS.

See also:

3.4. PES scan 23

AMS Manual, ADF Modeling Suite 2018

Examples (page 61) and the PES scan and transition state search tutorial

The PES scan task is enabled by selecting it with the Task keyword:

Task PESScan

The PESScan block configures all details of the scan:

PESScan
CalcPropertiesAtPESPoints [True | False]
FillUnconvergedGaps [True | False]
ScanCoordinate

nPoints integer
Coordinate integer [x|y|z] (float){2}
Distance (integer){2} (float){2}
Angle (integer){3} (float){2}
Dihedral (integer){4} (float){2}

End
End

The PESScan block needs to contain at least one ScanCoordinate block specifying which coordinate to scan,
and how many points (keyword nPoints) to sample along this coordinate. By default, 10 points are sampled along
each scanned coordinate (including the start and end point of the scan). The coordinate descriptors are very similar
to the constraint descriptors (page 14) in the Constraints block used by the geometry optimization task, but are
followed by two values delimiting the start and end of the coordinates, instead of just a single value:

Coordinate atomIdx [x|y|z] startValue endValue Moves the atom with index atomIdx (follow-
ing the order in the System block) along the a cartesian coordinate (x, y or z), starting at startValue and
ending at endValue (given in Angstrom).

Distance atomIdx1 atomIdx2 startDist endDist Scans the distance between the atoms with index
atomIdx1 and atomIdx2, starting from startDist and ending at endDist, both given in Angstrom.

Angle atomIdx1 atomIdx2 atomIdx3 startAngle endAngle Scans the angle (1)–(2)–(3) between
the atoms with indices atomIdx1-3, as given by their order in the System%Atoms block. The scanned
angle starts at startAngle and ends at endAngle, given in degrees.

Dihedral atomIdx1 atomIdx2 atomIdx3 atomIdx4 startAngle endAngle Scans the dihedral
angle (1)–(2)–(3)–(4) between the atoms with indices atomIdx1-4, as given by their order in the
System%Atoms block. The scanned dihedral starts at startAngle and ends at endAngle, given in de-
grees.

Note that multiple of these coordinate descriptors can be combined within a single ScanCoordinate block. This
combines the individual coordinates into one compound coordinate, i.e. all coordinates will transit together through
their respective ranges. In this way the symmetric stretch in water could be scanned by specifying the following single
ScanCoordinate block (assuming that the oxygen atom is the first in the System%Atoms block):

ScanCoordinate
Distance 1 2 0.8 1.1
Distance 1 3 0.8 1.1

End

A multidimensional PES scan can be performed by specifying multiple ScanCoordinate blocks in the input. To
scan the space spanned by the bending and symmetric stretch modes in water, one would use the following scan
coordinates:

ScanCoordinate
Distance 1 2 0.8 1.1
Distance 1 3 0.8 1.1

24 Chapter 3. Exploring the PES: Tasks

AMS Manual, ADF Modeling Suite 2018

End
ScanCoordinate

Angle 2 1 3 90 130
End

In principle an arbitrary number of ScanCoordinate blocks can be combined to specify the scanned configuration
space. However, the total number of sample points is the product of the number of points along all coordinates, and
hence grows quickly with the number of dimensions. Furthermore, only 1D (linear transit) and 2D PES scans can
be visualized in the GUI. We therefore suggest sticking with <=2 dimensional PES scans. (Note that it is possible to
constrain additional degrees of freedom through the Constraints block. This could be used to sample a few points
along a third dimension “manually”, while still being able to see the surfaces in the GUI.)

By default the engine result files for the individual PES points are not saved on disk, as this
can easily lead to huge amounts of data to be stored. This behaviour can be changed with the
PESScan%CalcPropertiesAtPESPoints keyword:

PESScan

CalcPropertiesAtPESPoints

Type Bool

Default value False

Description Whether to perform an additional calculation with properties on all the sampled
points of the PES. If this option is enabled AMS will produce a separate engine output file
for every sampled PES point.

Note that this performs a full single point calculation on every sampled PES point, including the calculation of any
PES point properties (page 36) selected in Properties block.

3.4.1 Troubleshooting

Technically all PES scan calculations are conducted as a series of geometry optimizations with constraints for the
scanned coordinates, where the value of the constraint varies slowly through the scanned range. In this way every
sampled point on the potential energy surface corresponds to a particular set of constraints. As with any geometry
optimization, it can happen that an optimization towards a particular point on the potential energy surface does not
converge. This is the most common problem encountered during PES scan calculations.

Since PES scans are implemented as a series of geometry optimizations, they are influenced by the settings used for
the geometry optimizer, e.g. its convergence thresholds and the maximum number of steps before an optimization
is considered to have failed. The optimizer is configured in the GeometryOptimization block, see the page on
geometry optimization (page 11) in the AMS manual. Note that PES scans always use the Quasi-Newton (page 16)
optimizer.

While tweaking the geometry optimizer’s settings can sometimes help with convergence problems, these problems can
also be easily caused by errors in the user input.

A very common problem is that the geometry in the input, i.e. the System block, is incompatible with the starting
values of the scanned coordinates. This would for example be the case if one wants to scan a dihedral angle from 0
to 90 degrees, but the actual angle on the input geometry is close to 90 degrees. In this case it would be better to flip
the scanned range from 90 to 0 degrees, so that the input geometry already close to the first sampled point on the PES.
Otherwise the optimization for the first point has to cross a very long distance on the PES, making convergence much
harder. AMS automatically detects this and prints a warning. We generally advise preparing the input geometry for
a PES scan by first running a geometry optimization with constraints set to lower bound of the scanned coordinate
intervals.

3.4. PES scan 25

AMS Manual, ADF Modeling Suite 2018

For multidimensional PES scans the order in which the PES points are visited depends on the order in which the
scanned coordinates are specified, i.e. the order of the ScanCoordinate blocks in the input. Generally, the order
in which the PES points are visited is such that the coordinate which was specified in the first ScanCoordinate
block varies slowest. This is illustrated in the following figure:

Here the scan starts at point 1(1,1) at the bottom left corner of the PES and first moves along the entire range of the
2nd scan coordinate, before taking a step along the 1st coordinate to point 6(2,1). The same PES points could be
visited in a different order (and under different names) if the order of the two ScanCoordinate blocks is reversed
in the AMS input:

Depending on the shape of the scanned potential energy surface a particular order of visiting the PES points might be

26 Chapter 3. Exploring the PES: Tasks

AMS Manual, ADF Modeling Suite 2018

easier or harder for the optimizer, and convergence problems can sometimes be fixed by simply changing the order
of the scanned coordinates. In the example above, it might be that scanning along the “vertical” direction is “harder”
than scanning along the “horizontal” direction. In this case one should use the scan order from the first picture, which
has only three “vertical” steps (whereas the other scan order has 15).

Note that AMS has a little safe-guard built in to help with PES scan convergence issues: If the optimization towards
a particular PES point did not succeed in the initial attempt, AMS will later try again, but starting from a different
(converged) point close to unconverged one. This “PES gap filling” happens at the very end of the calculation, af-
ter the initial scan has been completed. This gap filling step is enabled by default, but can be controlled with the
PESScan%FillUnconvergedGaps keyword:

PESScan

FillUnconvergedGaps

Type Bool

Default value True

Description After the initial pass over the PES, restart the unconverged points from converged
neighbouring points.

3.5 Molecular dynamics

Molecular dynamics (MD) can be used to simulate the evolution of a system in time.

See also:

Examples (page 61)

To perform a MD simulation, first select the corresponding Task:

Task MolecularDynamics

All aspects of the simulation can then be configured using the MolecularDynamics block.

MolecularDynamics
Barostat

BulkModulus float
Duration integer_list
Equal [None | XYZ | XY | YZ | XZ]
Pressure float_list
Scale [XYZ | Shape | X | Y | Z | XY | YZ | XZ]
Tau float
Type [None | Berendsen | MTK]

End
CalcPressure [True | False]
Checkpoint

Frequency integer
End
InitialVelocities

File string
Temperature float
Type [Zero | Random | FromFile | Input]
Values # Non-standard block. See details.

...
End

End
NSteps integer

3.5. Molecular dynamics 27

AMS Manual, ADF Modeling Suite 2018

Preserve
AngularMomentum [True | False]
CenterOfMass [True | False]
Momentum [True | False]

End
Print

System [True | False]
Velocities [True | False]

End
Restart string
Thermostat

BerendsenApply [Local | Global]
ChainLength integer
Duration integer_list
FirstAtom integer
LastAtom integer
Tau float
Temperature float_list
Type [None | Berendsen | NHC]

End
TimeStep float
Trajectory

SamplingFreq integer
End

End

3.5.1 General

The time evolution of the system is simulated by numerically integrating the equations of motion. A velocity Verlet
integrator is used with a time step set by the TimeStep key. The MD driver will perform NSteps timesteps in total.

Because the overall computational cost depends on NSteps but not on TimeStep, it is desirable to set the timestep
as large as possible to maximize the sampled timescale with a given computational budget. However, numerical
integration errors grow rapidly as the timestep increases. These errors will cause a loss of energy conservation,
crashes, and other artifacts. It is thus important to set the TimeStep value carefully, as its optimal value strongly
depends on the studied system and simulated conditions.

As a rule of thumb, reasonable timesteps for systems not undergoing chemical reactions are 10-20 times lower than
the period of the fastest vibration mode. Systems containing hydrogen atoms at room temperature can thus be ac-
curately simulated using a 1 fs timestep. Longer timesteps can be safely used for systems containing only heavy
atoms (vibration periods scale with the square root of the atomic mass). Conversely, the timestep needs to be made
shorter for high-temperature simulations. The same also applies to simulations of chemical reactions, which are usu-
ally accompanied by significant transient local heating. The default timestep of 0.25 fs should work for most of these
cases.

MolecularDynamics

NSteps

Type Integer

Default value 1000

Description The number of steps to be taken in the MD simulation.

TimeStep

Type Float

28 Chapter 3. Exploring the PES: Tasks

AMS Manual, ADF Modeling Suite 2018

Default value 0.25

Unit Femtoseconds

Description The time difference per step.

During a long simulation, numerical integration errors will cause some system-wide quantities to drift from their exact
values. For example, the system may develop a nonzero net linear velocity, causing an overall translation or flow. Non-
periodic (molecular) systems may also develop nonzero angular momentum (overall rotation) and a Brownian motion
of their center of mass through space. These problems are corrected by periodically removing any accumulated drift.
This feature can be controlled using the Preserve key.

MolecularDynamics

Preserve

Type Block

Description Periodically remove numerical drift accumulated during the simulation to preserve
different whole-system parameters.

AngularMomentum

Type Bool

Default value True

Description Remove overall angular momentum of the system. This option is ignored for
3D-periodic systems.

CenterOfMass

Type Bool

Default value False

Description Translate the system to keep its center of mass at the coordinate origin. This
option is not very useful for 3D-periodic systems.

Momentum

Type Bool

Default value True

Description Remove overall (linear) momentum of the system.

3.5.2 (Re-)Starting a simulation

The state of a system at the beginning of a simulation is defined by the positions and momenta of all atoms. The
positions can be set in the input or loaded from a file as described under System definition (page 5). Initial velocities
are then supplied using the InitialVelocities block.

Probably the most common way to start up a simulation is to draw the initial velocities from a Maxwell-Boltzmann dis-
tribution by setting Type=Random and Temperature to a suitable value. Alternatively, velocities can be loaded
from an ams.rkf file produced by an earlier simulation using Type=FromFile and File. This is the recom-
mended way to start a production simulation from the results of a short preparation/equilibration run.

Velocities of all atoms in units of Å/fs can also be explicitly defined in the Values block after setting Type=Input.
This is mainly useful to repeat or extend simulations done by other programs. For example, velocities can be extracted
from the vels or moldyn.vel files used by the standalone ReaxFF program. A simple AWK script is supplied in
scripting/standalone/reaxff-ams/vels2ams.awk to help with the conversion.

MolecularDynamics

3.5. Molecular dynamics 29

AMS Manual, ADF Modeling Suite 2018

InitialVelocities

Type Block

Description Sets the frequency for printing to stdout and storing the molecular configuration on
the .rkf file.

File

Type String

Description AMS RKF file containing the initial velocities.

Temperature

Type Float

Unit Kelvin

Description Sets the temperature for the Maxwell-Boltzmann distribution when the type
of the initial velocities is set to random, in which case specifying this key is mandatory.
ADFinput will use the thermostat temperature as default.

Type

Type Multiple Choice

Default value Zero

Options [Zero, Random, FromFile, Input]

Description Specifies the initial velocities to assign to the atoms. Three methods to assign
velocities are available. Zero: All atom are at rest at the beginning of the calculation. Ran-
dom: Initial atom velocities follow a Maxwell-Boltzmann distribution for the temperature
given by the [MolecularDynamics%InitialVelocities%Temperature] keyword. FromFile:
Load the velocities from a previous ams result file. Input: Atom’s velocities are set to the
values specified in the key [MolecularDynamics%InitialVelocities%Values].

Values

Type Non-standard block

Description This block specifies the velocity of each atom when [MolecularDynam-
ics%InitialVelocities%Type] is set to Input. Each row must contain three floating point
values (corresponding to the x,y,z component of the velocity vector) and a number of
rows equal to the number of atoms must be present, given in the same order as the [Sys-
tem%Atoms] block.

The MD module also supports exact restarts of interrupted simulations by pointing the Restart key to an ams.rkf
file. This will restore the entire state of the MD module from the last available checkpoint (if the previous simulation
was interrupted) or from the final state (if the previous simulation ended after NSteps). An earlier trajectory can thus
be seamlessly extended by increasing NSteps and using Restart.

Note: Restart should be combined with LoadSystem from the same ams.rkf to restore the atomic positions.

Warning: The Restart feature is only intended for exact restarts, so the rest of the MolecularDynamics
settings should be the same as in the original run. Only NSteps and engine settings (contents of the Engine
block) can always be changed safely across restarts.

30 Chapter 3. Exploring the PES: Tasks

AMS Manual, ADF Modeling Suite 2018

Although some MD settings (such as the trajectory sampling options) can in practice be changed without problems,
changing others (such as thermostat or barostat settings) will cause the restart to fail or produce physically incorrect
results. It is thus strongly recommended to only use Restart for exact continuation and InitialVelocities
Type=FromFile together with LoadSystem otherwise.

MolecularDynamics

Restart

Type String

Description The path to the ams.rkf file from which to restart the simulation.

3.5.3 Thermostats and barostats

By default, the MD simulation samples the microcanonical (NVE) ensemble. Although this is useful to check energy
conservation and other basic physical properties, it does not directly map to common experimental conditions. The
canonical (NVT) ensemble can be sampled instead by applying a Thermostat, which serves as a simulated heat
bath around the system, keeping its average temperature at a set value.

AMS offers two thermostats with drastically different properties, mode of operation, and applicability, selected using
the Type key:

Berendsen The Berendsen friction thermostat drives the system to a particular target temperature by rescaling the
velocities of all atoms in each step. This ensures rapid (exponential) convergence of the temperature with a time
constant Tau. However, this thermostat produces an incorrect velocity distribution and should thus be avoided
in all situations where correct energy fluctuations are important. Additionally, using a too short time constant
Tau tends to cause incorrect equipartition of energy between different degrees of freedom in the system, leading
to the “flying ice cube” phenomenon. The time constant Tau should thus be set as large as possible to limit
these artifacts while still providing sufficient temperature control. Common values of Tau for condensed-
phase systems lie between 100 fs (strong damping, rapid convergence) and 10 ps (weak coupling with minimal
artifacts).

This thermostat is mainly useful for systems far from equilibrium, for example during the initial preparation and
equilibration phase of a simulation. The NHC thermostat should be preferred where possible.

NHC This enables a chain of coupled Nosé-Hoover thermostats. This method introduces artificial degrees of freedom
representing the heat bath and ensures correct sampling of the canonical ensemble. The combined total energy
of the system and the heat bath is conserved and shown in the GUI as Conserved Energy. Checking this
quantity for drift and artifacts thus offers a valuable test of the correctness of the simulation. This thermostat
exhibits oscillatory relaxation with a period of Tau. It is thus not well suited for systems starting far from equi-
librium, because the oscillations may take long to settle. The time constant Tau should be at least comparable
to the period of some natural oscillation of the system to ensure efficient energy transfer. It is commonly on the
order of hundreds of femtoseconds, although higher values may be used if weak coupling is desired.

Multiple independent thermostats can be used to separately control different regions of the system at the same time.
This is done by specifying the Thermostat block multiple times and setting the FirstAtom and/or LastAtom
keys to the desired range of atoms. Care needs to be taken to avoid defining thermostats with overlapping atom ranges.

MolecularDynamics

Thermostat

Type Block

Recurring True

Description This block allows to specify the use of a thermostat during the simulation. Depend-
ing on the selected thermostat type, different additional options may be needed to character-
ize the specific thermostat’ behavior.

3.5. Molecular dynamics 31

AMS Manual, ADF Modeling Suite 2018

BerendsenApply

Type Multiple Choice

Default value Global

Options [Local, Global]

Description Select how to apply the scaling correction for the Berendsen thermostat: - per-
atom-velocity (Local) - on the molecular system as a whole (Global).

ChainLength

Type Integer

Default value 10

Description Number of individual thermostats forming the NHC thermostat

Duration

Type Integer List

Description Specifies how many steps should a transition from a particular temperature to
the next one in sequence take.

FirstAtom

Type Integer

Default value 1

Description Index of the first atom to be thermostatted

LastAtom

Type Integer

Default value 0

Description Index of the last atom to be thermostatted. A value of zero means the last atom
in the system.

Tau

Type Float

Unit Femtoseconds

Description The time constant of the thermostat.

Temperature

Type Float List

Unit Kelvin

Description The target temperature of the thermostat.

Type

Type Multiple Choice

Default value None

Options [None, Berendsen, NHC]

Description Selects the type of the thermostat.

32 Chapter 3. Exploring the PES: Tasks

AMS Manual, ADF Modeling Suite 2018

Just like using a Thermostat to control the temperature of the system, a Barostat can be applied to keep the pres-
sure constant by adjusting the volume. This enables sampling the isenthalpic-isobaric (NpH) ensemble by using only
a barostat or the isothermal-isobaric (NpT) ensemble by combining a barostat and a thermostat. Unlike thermostats, a
barostat always applies to the entire system and there can thus be at most one barostat defined.

AMS offers two barostats with similar properties to the related thermostats:

Berendsen The Berendsen friction-like isobaric ensemble method rescales the system in each step to drive the pres-
sure towards a target value. Similarly to the Berendsen thermostat, the relaxation is exponential with a time
constant Tau. Similar considerations for the choice of Tau apply as in the case of the thermostat, but the
value of Tau for the barostat is usually at least several times higher than the corresponding Tau used for the
thermostat. This barostat does not have any conserved quantity.

MTK This enables the Martyna-Tobias-Klein extended Lagrangian barostat, which generates a true isobaric ensemble
by integrating the cell parameters as additional degrees of freedom. This barostat is derived from the Andersen-
Hoover isotropic barostat and the Parrinello-Rahman-Hoover anisotropic barostat. Like the NHC thermostat,
it exhibits oscillatory relaxation unsuitable for systems far from equilibrium. This barostat must always be
combined with a NHC thermostat. One instance of such thermostat coupled to the atoms as usual, while a
second instance is created internally and coupled to the cell degrees of freedom.

MolecularDynamics

Barostat

Type Block

Description This block allows to specify the use of a barostat during the simulation.

BulkModulus

Type Float

Default value 2200000000.0

Unit Pascal

Description An estimate of the bulk modulus (inverse compressibility) of the system for
the Berendsen barostat. This is only used to make Tau correspond to the true observed
relaxation time constant. Values are commonly on the order of 10-100 GPa (1e10 to 1e11)
for solids and 1 GPa (1e9) for liquids (2.2e9 for water). Use 1e9 to match the behavior of
standalone ReaxFF.

Duration

Type Integer List

Description Specifies how many steps should a transition from a particular pressure to the
next one in sequence take.

Equal

Type Multiple Choice

Default value None

Options [None, XYZ, XY, YZ, XZ]

Description Enforce equal scaling of the selected set of dimensions. They will be barostatted
as one dimension according to the average pressure over the components.

Pressure

Type Float List

Unit Pascal

3.5. Molecular dynamics 33

AMS Manual, ADF Modeling Suite 2018

Description Specifies the target pressure.

Scale

Type Multiple Choice

Default value XYZ

Options [XYZ, Shape, X, Y, Z, XY, YZ, XZ]

Description Dimensions that should be scaled by the barostat to maintain pressure. Selecting
Shape means that all three dimensions and also all the cell angles are allowed to change.

Tau

Type Float

Unit Femtoseconds

Description Specifies the time constant of the barostat.

Type

Type Multiple Choice

Default value None

Options [None, Berendsen, MTK]

Description Selects the type of the barostat.

Temperature and pressure regimes

Arbitrary temperature and pressure regimes can be generated by setting Temperature or Pressure to a list of
values, corresponding to the successive set points. This needs to be accompanied by a Duration key specifying the
length of each regime segment in steps:

Thermostat
Temperature 0 300 300 500 500 300
Duration 100 200 100 200 100

End

Note that there is always N-1 Duration values for N Temperature values. The target temperature of the thermo-
stat in this example will evolve as follows:

1. Increase linearly from 0 to 300 K over 100 steps.

2. Stay constant at 300 K for 200 steps.

3. Increase linearly from 300 to 500 K over 100 steps.

4. Stay constant at 500 K for 200 steps.

5. Decrease linearly from 500 to 300 K over 100 steps.

6. Stay constant at 300 K for the rest of the simulation.

3.5.4 Trajectory sampling and output

A basic principle of the numerical integration of motion in MD is that the changes in the state of the system between
successive time steps are small. This means that storing the results of every step is not useful, because all the data is
strongly correlated. Instead, a snapshot of the system is taken every N steps, where N is set low enough to still capture

34 Chapter 3. Exploring the PES: Tasks

AMS Manual, ADF Modeling Suite 2018

the fastest motion of interest but high enough to avoid wasting space due to correlations. The resulting sequence of
snapshots is then commonly called the trajectory.

AMS writes the trajectory to the History and MDHistory sections of ams.rkf, according to the settings in the
Trajectory block. A snapshot of the system and various MD variables is stored every SamplingFreq timesteps.

The trajectory itself contains only the data needed for subsequent analysis of the dynamics of the system. However,
much more data is usually generated on every integration step. This includes, for example, the internal data used by
an engine when evaluating the energies and forces. This information is normally discarded after each step, because it
is often very large. However, a Checkpoint containing the complete internal state of the MD driver together with a
result file generated by the engine is stored every Frequency steps. An interrupted simulation can then be restarted
from this checkpoint using the Restart keyword. Additionally, the engine result files called MDStep*.rkf can
also be used to extract various engine-specific details about the system, such as the orbitals for QM engines.

MolecularDynamics

Trajectory

Type Block

Description Sets the frequency for printing to stdout and storing the molecular configuration on
the .rkf file.

SamplingFreq

Type Integer

Default value 100

Description Write the the molecular geometry (and possibly other properties) to the .rkf file
once every N steps.

Checkpoint

Type Block

Description Sets the frequency for storing the entire MD state necessary for restarting the cal-
culation.

Frequency

Type Integer

Default value 1000

Description Write the MD state and engine-specific data to the respective .rkf files once
every N steps.

CalcPressure

Type Bool

Default value False

Description Calculate the pressure in periodic systems. This may be computationally expensive
for some engines that require numerical differentiation. Some other engines can calculate the
pressure for negligible additional cost and will always do so, even if this option is disabled.

Print

Type Block

Description This block controls the printing of additional information to stdout.

System

Type Bool

3.5. Molecular dynamics 35

AMS Manual, ADF Modeling Suite 2018

Default value False

Description Print the chemical system before and after the simulation.

Velocities

Type Bool

Default value False

Description Print the atomic velocities before and after the simulation.

36 Chapter 3. Exploring the PES: Tasks

CHAPTER

FOUR

PES POINT PROPERTIES

No matter what application the AMS driver is used for, in one way or another it always explores the potential energy
surface (PES) of the system. One can furthermore ask AMS to calculate additional properties of the PES in the points
that are visited. These are mostly derivatives of the energy, e.g. we can ask AMS to calculate the gradients or the
Hessian in the visited points. In general all these PES point properties are requested through the Properties block
in the AMS input:

Properties
Gradients [True | False]
StressTensor [True | False]
Hessian [True | False]
SelectedAtomsForHessian integer_list
NormalModes [True | False]
ElasticTensor [True | False]
Phonons [True | False]

End

This page in the AMS manual describes all the supported properties.

Note that because these properties are tied to a particular point on the potential energy surface, they are found on the
engine output files (page 4). Note also that the properties are not always calculated in every PES point that the AMS
driver visits during a calculation. By default they are only calculated in special PES points, where the definition of
special depends on the task (page 11) AMS is performing: For a geometry optimization (page 11) properties would
for example only be calculated at the final, converged geometry. This behaviour can often be modified by keywords
special to the particular running task.

4.1 Nuclear gradients and stress tensor

The first derivative with respect to the nuclear coordinates can be requested as follows:

Properties
Gradients [True | False]

End

Properties

Gradients

Type Bool

Default value False

Description Whether or not to calculate the gradients.

37

AMS Manual, ADF Modeling Suite 2018

Note that these are gradients, not forces, the difference being the sign. The gradients are printed in the output and writ-
ten to the engine result file (page 4) belonging to the particular point on the PES in the AMSResults%Gradients
variable as a 3× 𝑛atoms array in atomic units (Hartree/Bohr). For periodic systems (chains, slabs, bulk) one can also
request the clamped-ion stress tensor (note: the clamped-ion stress is only part of the true stress tensor):

Properties
StressTensor [True | False]

End

Properties

StressTensor

Type Bool

Default value False

Description Whether or not to calculate the stress tensor.

The clamped-ion stress tensor 𝜎𝛼 (Voigt notation) is computed via numerical differentiation of the energy 𝐸 WRT a
strain deformations 𝜖𝛼 keeping the atomic fractional coordinates constant:

𝜎𝛼 =
1

𝑉0

𝜕𝐸

𝜕𝜖𝛼

⃒⃒⃒⃒
constant atomic fractional coordinates

where 𝑉0 is the volume of the unit cell (for 2D periodic system 𝑉0 is the area of the unit cell, and for 1D periodic
system 𝑉0 is the lenght of the unit cell).

The clamped-ion stress tensor (in Cartesian notation) is written to the engine result file in
AMSResults%StressTensor.

4.2 Hessian and normal modes of vibration

The calculation of the second derivative of the total energy with respect to the nuclear coordinates is enabled by:

Properties
Hessian [True | False]

End

Properties

Hessian

Type Bool

Default value False

Description Whether or not to calculate the Hessian.

The Hessian is not printed to the text output, but is saved in the engine result file as variable AMSResults%Hessian.
Note that this ist just the plain second derivative (no mass-weighting) of the total energy and that for the order of its
3 × 𝑛atoms columns/rows, the component index increases the quickest: The first column refers to changes in the 𝑥-
component of atom 1, the second to the 𝑦-component, the fourth to the 𝑥-component of the second atoms, and so
on.

It is also possible to request the calculation of the normal modes of vibration:

38 Chapter 4. PES point properties

AMS Manual, ADF Modeling Suite 2018

Properties
NormalModes [True | False]

End

Properties

NormalModes

Type Bool

Default value False

Description Whether or not to calculate the normal modes of vibration (and of molecules the
corresponding Ir intensities.)

This implies the calculation of the Hessian, which is required for calculating normal modes. For engines that are
capable of calculating dipole moments, this also enables the calculation of the infrared intensities, so that the IR
spectrum can be visualized by opening the engine result file with ADFSpectra. The normal modes of vibration and the
IR intensities are saved to the engine result file (page 4) in the Vibrations section.

Note: The calculation of the normal modes of vibration needs to be done the system’s equilibrium geometry. So one
should either run the normal modes calculation using an already optimized geometry, or combine both steps into one
job by using the geometry optimization task (page 11) together with the Properties%NormalModes keyword.

4.3 Elastic tensor

The elastic tensor 𝑐𝛼,𝛽 (Voigt notation) is computed via second order numerical differentiation of the energy 𝐸 WRT
strain deformations 𝜖𝛼 and 𝜖𝛽 :

𝑐𝛼,𝛽 =
1

𝑉0

𝜕2𝐸

𝜕𝜖𝛼𝜕𝜖𝛽

where 𝑉0 is the volume of the unit cell (for 2D periodic system 𝑉0 is the area of the unit cell, and for 1D periodic
system 𝑉0 is the lenght of the unit cell).

For each strain deformation 𝜖𝛼𝜖𝛽 , the atomic positions will be optimized. The elastic tensor can be computed for any
periodicity, i.e. 1D, 2D and 3D.

See also:

Example: Elastic tensor (page 86)

To compute the elastic tensor, request it in the Properties input block of AMS:

Properties
ElasticTensor [True | False]

End

Note: The elastic tensor should be computed at the fully optimized geometry. One should therefore perform a
geometry optimization of all degrees of freedom, including the lattice vectors. It is recommended to use a tight
gradient convergence threshold for the geometry optimization (e.g. 1.0E-4). Note that all this can be done in one job
by combining the geometry optimization task (page 11) with the elastic tensor calculation.

4.3. Elastic tensor 39

AMS Manual, ADF Modeling Suite 2018

The elastic tensor (in Voigt notation) is printed to the output file and stored in the engine result file (page 4) in the
AMSResults section (for 3D system, the elastic tensor in Voigt notation is a 6x6 matrix; for 2D systems is a 3x3
matrix; for 1D systems is just one number).

Options for the numerical differentiation procedure can be specified in the ElasticTensor input block:

ElasticTensor
MaxGradientForGeoOpt float
Parallel

nCoresPerGroup integer
nGroups integer
nNodesPerGroup integer

End
StrainStepSize float

End

ElasticTensor

Type Block

Description Options for numerical evaluation of the elastic tensor.

MaxGradientForGeoOpt

Type Float

Default value 0.0001

Unit Hartree/Angstrom

Description Maximum nuclear gradient for the relaxation of the internal degrees of freedom of
strained systems.

Parallel

Type Block

Description The evaluation of the elastic tensor via numerical differentiation is an embarrass-
ingly parallel problem. Double parallelization allows to split the available processor cores
into groups working through all the available tasks in parallel, resulting in a better parallel
performance. The keys in this block determine how to split the available processor cores into
parallelly working groups.

nCoresPerGroup

Type Integer

Description Number of cores in each parallelly working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

StrainStepSize

40 Chapter 4. PES point properties

AMS Manual, ADF Modeling Suite 2018

Type Float

Default value 0.001

Description Step size (relative) of strain deformations used for computing the elastic tensor
numerically.

4.4 Phonons

Collective oscillations of atoms around theirs equilibrium positions, giving rise to lattice vibrations, are called phonons.
AMS can calculate phonon dispersion curves within standard harmonic theory, implemented with a finite difference
method. Within the harmonic approximation we can calculate the partition function and therefore thermodynamic
properties, such as the specific heat and the free energy.

See also:

Example: Phonons for graphene (page 83), Example: Phonons with isotopes (page 84) and diamond lattice optimiza-
tion and phonons tutorial

The calculation of phonons is enabled in the Properties block.

Properties
Phonons [True | False]

End

Note: Phonon calculations should be performed on optimized geometries, including the lattice vectors. This can be
done by either reading an already optimized system as input, or combining the phonon calculation with the geometry
optimization task (page 11).

The details of the phonon calculations are configured in the NumericalPhonons block:

NumericalPhonons
SuperCell # Non-standard block. See details.

...
End
StepSize float
DoubleSided [True | False]
UseSymmetry [True | False]
Interpolation integer
NDosEnergies integer
Parallel

nCoresPerGroup integer
nGroups integer
nNodesPerGroup integer

End
End

NumericalPhonons

SuperCell

Type Non-standard block

Description Used for the phonon run. The super lattice is expressed in the lattice vectors. Most
people will find a diagonal matrix easiest to understand.

4.4. Phonons 41

AMS Manual, ADF Modeling Suite 2018

The most important setting here is the super cell transformation. In principle this should be as large as possible, as the
phonon bandstructure converges with the size of the super cell. In practice one may want to start with a 2x2x2 cell and
increase the size of the super cell until the phonon band structure converges:

NumericalPhonons
SuperCell

2 0 0
0 2 0
0 0 2

End
End

Other keywords in the NumericalPhonons block modify the details of the numerical differentiation procedure and
the accuracy of the results:

NumericalPhonons

StepSize

Type Float

Default value 0.04

Unit Angstrom

Description Step size to be taken to obtain the force constants (second derivative) from the
analytical gradients numerically.

DoubleSided

Type Bool

Default value True

Description By default a two-sided (or quadratic) numerical differentiation of the nuclear gra-
dients is used. Using a single-sided (or linear) numerical differentiation is computationally
faster but much less accurate. Note: In older versions of the program only the single-sided
option was available.

UseSymmetry

Type Bool

Default value True

Description Whether or not to exploit the symmetry of the system in the phonon calculation.

Interpolation

Type Integer

Default value 100

Description Use interpolation to generate smooth phonon plots.

NDosEnergies

Type Integer

Default value 1000

Description Nr. of energies used to calculate the phonon DOS used to integrate thermodynamic
properties. For fast compute engines this may become time limiting and smaller values can
be tried.

42 Chapter 4. PES point properties

AMS Manual, ADF Modeling Suite 2018

Note that the numerical phonon calculation supports AMS’ double parallelism (page 54), which can perform the
calculations for the individual displacements in parallel. This is disabled by default but can be enabled using the keys
in the NumericalPhonons%Parallel block:

NumericalPhonons

Parallel

Type Block

Description Computing the phonons via numerical differentiation is an embarrassingly parallel
problem. Double parallelization allows to split the available processor cores into groups
working through all the available tasks in parallel, resulting in a better parallel performance.
The keys in this block determine how to split the available processor cores into parallelly
working groups. Keep in mind that the displacements for a phonon calculation are done on a
super-cell system, so that every task requires more memory than the central point calculated
using the primitive cell.

nCoresPerGroup

Type Integer

Description Number of cores in each parallelly working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

4.4. Phonons 43

AMS Manual, ADF Modeling Suite 2018

44 Chapter 4. PES point properties

CHAPTER

FIVE

ENGINES

The engines are core of the Amsterdam Modeling Suite: While the AMS driver steers the calculation over the potential
energy surface in e.g. a geometry optimization (page 11) or molecular dynamics (page 27) calculation, the engines
calculate energies and gradients and in this way define the PES on which the driver works.

The engine used for an AMS calculation is selected and configured with the special Engine block in the AMS input:

Engine DFTB
... input for the DFTB engine ...

EndEngine

Here the type of engine, e.g. DFTB as in the example above, is specified on the line that opens the block. Note that the
Engine block ends with EndEngine, and is in this way different from all the other blocks in the AMS input, which
close just with End. The content of the engine block is what we call the “engine input”. Generally the engine input
consists of a series of blocks and keywords, and looks just like the AMS driver input. However, many engines have
a lot of options and keywords, which are documented in a separate engine manual. In other words: This AMS driver
manual documents all the keywords outside of the Engine block, while the individual engine manuals document the
contents of the engine block.

5.1 Available engines

The following engines are available in the 2018 release of the Amsterdam Modeling Suite:

• BAND An atomic-orbital based DFT engine aimed at periodic systems (crystals, slabs, chains) but supporting
also molecular systems.

• DFTB An engine implementing Density Functional based Tight-Binding, a fast approximation to DFT.

• ReaxFF An engine for modeling chemical reactions with atomistic potentials based on the reactive force field
approach.

• UFF An implementation of the Universal Force Field, a simple non-reactive force field covering the entire
periodic table.

• MOPAC An engine wrapping the MOPAC code, a general-purpose semiempirical molecular orbital package
for the study of solid state and molecular structures and reactions.

• ADF A wrapper around the standalone ADF program, allowing it to be used as an engine from within the AMS
driver.

• External (page 45) A flexible scripting interface that allows advanced users to use external atomistic modeling
programs as engines in AMS.

• LennardJones (page 49) A simple toy engine implementing a Lennard-Jones potential.

45

AMS Manual, ADF Modeling Suite 2018

5.2 External programs as engines

The AMS driver allows running external programs as an engine. In this way users can combine the functionality in
the AMS driver (tasks and PES point properties) with the energies and gradients of any molecular modeling program
they have access to. Furthermore the graphical interface of the Amsterdam Modeling Suite can be used to analyze the
results of these calculations. The interfacing between the AMS driver and the external program has to be done by the
user in form of a small script, which allows users to hook up any external program without access to the source code
of AMS.

The Engine block for the external engine has just one important keyword, which is the command that is run to
execute the external program:

Engine External
Execute /path/to/my_interface_script.sh

EndEngine

The command can in principle be anything, as it will just be executed as is by the system shell. However, it should not
use relative paths (e.g. to files in the directory where the input file is). We recommend writing the interfacing script in
Python and using the Python interpreter that ships with AMS:

Engine External
Execute $ADFBIN/startpython /path/to/my_python_interface_script.py

EndEngine

AMS then starts running and for every geometry prepares a folder in which the external engine is supposed to run.
This is the folder in which the interface script specified with the Execute key is executed (so any relative paths are
relative to that folder). AMS puts two files into this folder:

system.xyz
request.json

The system.xyz just contains the geometry AMS wants the external engine to calculate. It is an extended format
XYZ file (page 91) with the VEC1, VEC2, VEC3 extension at the end for periodic systems, e.g. diamond would look
like this:

2

C -0.51292147 -0.51292147 -0.51292147
C 0.51292147 0.51292147 0.51292147
VEC1 0.00000000 2.05168587 2.05168587
VEC2 2.05168587 -0.00000000 2.05168587
VEC3 2.05168587 2.05168587 0.00000000

The request.json file is just a small JSON file that specifies what exactly AMS wants the external engine to
calculate:

{
"title": "GOStep28",
"quiet": false,
"gradients": true,
"stressTensor": false,
"hessian": true,
"dipoleMoment": false,
"properties": true,
"prevResults": "GOStep27"

}

46 Chapter 5. Engines

AMS Manual, ADF Modeling Suite 2018

The job of the interfacing script is now to read these files, run the external program and convert its output into a format
understood by AMS. Generally these are simple text files with the name of the property and the extension .txt. The
bare minimum the interfacing script needs to produce is the file energy.txt containing a single number, i.e. the total
energy in atomic units (Hartree). Other properties are optional, and it is easiest to go through the request.json
entries one by one to see what AMS might request and what the interfacing script could produce in response.

title Just a title for this particular engine run. It can be passed on to the external program if desired, or can just be
ignored.

quiet Whether AMS wants the external engine to write to standard output. This can be ignored in principle, but
that might lead to really incomprehensible text output files of AMS if the external engine has to be called many
times, e.g. for numerical derivatives.

gradients Whether or not to calculate nuclear gradients. The interface script should put the gradients in a file
called gradients.txt with nAtoms lines of 3 real numbers each, in atomic units, i.e. Hartree/Bohr. Note
that AMS wants the gradients, not forces (beware the - sign!).

stressTensor Whether to calculate the stressTensor for periodic systems. Should be written to
stresstensor.txt in atomic units.

hessian Whether to calculate the Hessian, that is just the second derivative of the energy with respect to the nuclear
coordinates, without applying any mass weighing to it. If the Hessian has been calculated, it should be put in
hessian.txt as a 3 nAtoms x 3 nAtoms matrix in atomic units.

dipoleMoment If true, calculate the dipole moment and put it in dipolemoment.txt in atomic units, in one
line with three numbers.

properties This is set to true if AMS considers this “geometry” important and wants the engine to calculate
further properties that the user might be interested in. In practice this is set to “true” for e.g. the final converged
step in a geometry optimization, so that the user can then let the engine calculate e.g. the band structure, which
one would not want to do at all the steps during the optimization. AMS can’t do anything with the properties
that the engine might calculate, but the files will remain on disk for people to inspect them.

prevResults This is the title of a previous similar calculation that the engine has already performed. These results
can be accessed in ../$prevResults/, so for the example above GOStep28 can access the results from
the previous step in the geometry optimization in ../GOStep27/. This is just the directory in which the
interfacing script was run when the title field was set to GOStep27, so files that were written back then are
still accessible. They can in principle be used to restart for example the SCF of the engine from step to step. Of
course all of that has to be done by the interfacing script. The AMS driver does not know anything about how
to restart the external program and can only point the interfacing script to the right location.

That is really all there is to the external engine: AMS prepares a folder with system.xyz and request.json and
runs the user’s interfacing script in there, which has to take care of preparing the input for the external engine, running
it, and putting the results in the text files that AMS expects, e.g. gradients.txt.

Note for properties that are in one way or another derivatives of the energy, it is generally ok if the external engine does
not calculate what was requested by the AMS driver in request.json. If AMS requests, for example, the gradients
from the external engine, but then does not find the gradients.txt in the directory after the interfacing script has
run, it will just assume that the engine was not capable of calculating the gradient analytically. AMS will then just
do the gradient numerically by rerunning the external engine for displaced geometries, reading only the energy from
energy.txt. In this sense it is only absolutely required for the external engine to produce the energy, the rest can
be done numerically by AMS if required. It is of course best to let the engine do as much as possible, especially if
it implements analytical derivatives. Note that currently AMS can not calculate the Hessian numerically for engines
that do not provide gradients. This is just a technical limitation, as it is of course possible to do a second derivative
numerically, but it is just not implemented in AMS yet. (And it would also be a very slow way to calculate a Hessian.)

In addition to the Execute keyword that specifies the interfacing script, the Engine External block also needs
to contain some information about the capabilities of the external engines:

5.2. External programs as engines 47

AMS Manual, ADF Modeling Suite 2018

Engine External
Execute {...}
Supports

DipoleMoment {true|false}
PeriodicityNone {true|false}
PeriodicityChain {true|false}
PeriodicitySlab {true|false}
PeriodicityBulk {true|false}

End
EndEngine

The normal engines that come with AMS (e.g. DFTB and BAND) produce the engine output files with extension
.rkf in the results directory, see here (page 4). These files are also produced when an external engine is used and
the information on them (anything related to the shape of the PES at that point, e.g. normal modes, phonons, ...) can
be visualized normally with the graphical interface. In addition to each engine output .rkf file, external engines will
also produce a correspondingly named folder per engine file, which is just the working directory of the interfacing
script for that particular invocation of the external program. These folders just contain the full output of the external
program and anything that the interfacing script might have produced. In this way users still have access to all results
from the external program, even if these results were not communicated back to the AMS driver.

This last point is probably best illustrated with a simple example. Consider the following job that uses an external
engine to do a linear transit calculation of ethane, going from the staggered to the eclipsed configuration, calculating
normal modes at all converged points along the path:

AMS_JOBNAME=ethane_torsion $ADFBIN/ams << EOF

Task PESScan

System
Atoms

C 0.00000000 0.00000000 0.76576000
C 0.00000000 0.00000000 -0.76576000
H -0.88668938 0.51193036 1.16677000
H 0.88668938 0.51193036 1.16677000
H 0.00000000 -1.02386071 1.16677000
H 0.00000000 1.02386071 -1.16677000
H -0.88668938 -0.51193036 -1.16677000
H 0.88668938 -0.51193036 -1.16677000

End
End

PESScan
CalcPropertiesAtPESPoints True
ScanCoordinate

nPoints 5
Dihedral 3 1 2 6 60.0 0.0

End
End

Properties
NormalModes True

End

Engine External
...

EndEngine

48 Chapter 5. Engines

AMS Manual, ADF Modeling Suite 2018

EOF

If we run this job and look into the results folder, we will find the standard ams.log and ams.rkf as well as the
usual engine result files PESPoint(1).rkf to PESPoint(5).rkf. Just as if we had used one of the native AMS
engines, like DFTB. Each of these files can be opened in ADFSpectra to visualize the normal modes for this particular
point. For an external engine we additionally have one folder per engine file, so for this example we would have
PESPoint(1)/ to PESPoint(5)/. These are the folders in which the interfacing script ran for these particular
points, so they contain all the native output files of the external program.

5.3 Toy engines

The AMS driver comes with a simple built-in toy engine that implements a Lennard-Jones potential. This can some-
times be useful for testing, as many properties of the Lennard-Jones gas/liquid/solid can be calculated analytically and
compared to the results from AMS. Note that the potential is exactly the same for all elements, i.e. the N-N bond has
exactly the same strength as the He-He bond.

The Lennard-Jones engine only has three keywords, which define the shape of the potential:

Engine LennardJones
RMin float
Eps float
Cutoff float

EndEngine

Cutoff

Type Float

Default value 15.0

Unit Angstrom

Description The distance at which the interaction is truncated.

Eps

Type Float

Default value 1.0

Unit Hartree

Description The depth of the potential well.

RMin

Type Float

Default value 1.0

Unit Angstrom

Description The distance of the potential minimum.

5.3. Toy engines 49

AMS Manual, ADF Modeling Suite 2018

50 Chapter 5. Engines

CHAPTER

SIX

TECHNICAL TOPICS

6.1 Input syntax

The AMS driver reads its input from standard input, i.e. what is called STDIN on Unix-like systems. Technically it is
possible to run AMS and type the input file in interactively. This is however highly impractical and most people run
AMS from a small shell script that contains the AMS text input and sends it directly to the AMS executable:

#!/bin/sh

$ADFBIN/ams << EOF

... AMS text input goes here:

Block
Keywork value
OtherKeyword value

End

EOF

This section of the AMS manual documents the syntax of the text input.

6.1.1 General remarks on input structure and parsing

• Most keys are optionals. Defaults values will be used for keys that are not specified in the input

• Keys/blocks can either be unique (i.e. they can appear in the input only once) or non-unique. (i.e. they can
appear multiple times in the input)

• The order in which keys or blocks are specified in the input does not matter. Possible exceptions to this rule are
a) the content of non-standard blocks b) some non-unique keys/blocks)

• Comments in the input file start with one of the following characters: #, !, :::

this is a comment
! this is also a comment
:: yet another comment

• Empty lines are ignored

• The input parsing is case insensitive (except for string values):

51

AMS Manual, ADF Modeling Suite 2018

this:
UseSymmetry false
is equivalent to this:
USESYMMETRY FALSE

• Indentation does not matter and multiple spaces are treaded as a single space (except for string values):

this:
UseSymmetry false

is equivalent to this:
UseSymmetry false

6.1.2 Keys

Key-value pairs have the following structure:

KeyName Value

Possible types of keys:

bool key The value is a single Boolean (logical) value. The value can be True (equivalently Yes) or False (equiv-
alently No.). Not specifying any value is equivalent to specifying True. Example:

KeyName Yes

integer key The value is a single integer number. Example:

KeyName 3

float key The value is a single float number. For scientific notation, the E-notation is used (e.g. −2.5× 10−3 can be
expressed as -2.5E-3). The decimal separator should be a dot (.), and not a comma (,). Example:

KeyName -2.5E-3

string key The value is a string, which can include white spaces. Only ASCII characters are allowed. Example:

KeyName Lorem ipsum dolor sit amet

multiple_choice key The value should be a single word among the list options for that key (the options are listed in
the documentation of the key). Example:

KeyName SomeOption

integer_list key The value is list of integer numbers. Example:

KeyName 1 6 0 9 -10

float_list key The value is list of float numbers. The convention for float numbers is the same as for Float keys.
Example:

KeywordName 0.1 1.0E-2 1.3

52 Chapter 6. Technical topics

AMS Manual, ADF Modeling Suite 2018

6.1.3 Blocks

Blocks give a hierarchical structure to the input, grouping together related keys (and possibly sub-blocks). In the input,
blocks generally span multiple lines, and have the following structure:

BlockName
KeyName1 value1
KeyName2 value2
...

End

Headers

For some blocks it is possible (or necessary) to specify a header next to the block name:

BlockName someHeader
KeyName1 value1
KeyName2 value2
...

End

Compact notation

It is possible to specify multiple key-value pairs of a block on a single line using the following notation:

This:
BlockName KeyName1=value1 KeyName2=value2

is equivalent to this:
BlockName

KeyName1 value1
KeyName2 value2

End

Notes on compact notation:

• Spaces (blanks) between the key, the equal sign and the value are not allowed:

This is OK:
BlockName KeyName1=value1 KeyName2=value2

This is NOT OK:
BlockName KeyName1 = value1 KeyName2= value2

• The compact notation can be used only for following types of keys: bool, integer, float and multiple_choice. It
should not be used for sting, integer_list and float_list keys

• The compact notation cannot be used for blocks with headers

• input units cannot be defined in compact notation

Non-standard Blocks

A special type of block is the non-standard block. These blocks are used for parts of the input that do not follow the
usual key-value paradigm.

A notable example of a non-standard block is the Atoms block (in which the atomic coordinates and atom types are
defined).

6.1. Input syntax 53

AMS Manual, ADF Modeling Suite 2018

6.1.4 Units

Some keys have a default unit associated (not all keys have units). For such keys, the default unit is mention in the key
documentation. One can specify a different unit within square brackets at the end of the line:

KeyName value [unit]

For example, assuming the key EnergyThreshold has as default unit Hartree, then the following definitions are
equivalent:

Use defaults unit:
EnergyThreshold 1.0

use eV as unit:
EnergyThreshold 27.211 [eV]

use kcal/mol as unit:
EnergyThreshold 627.5 [kcal/mol]

Hartree is the atomic unit of energy:
EnergyThreshold 1.0 [a.u.]

Available units:

• Energy: Hartree (a.u.), eV, kJ/mol, kcal/mol, cm^-1

• Length: Bohr (a.u.), Angstrom (A), nm, pm

6.2 Double parallelism

AMS is a parallel program using MPI for efficient execution on distributed memory machines, aka compute clusters.
For most jobs, the AMS driver part of a calculation is computationally not particularly costly and most of the execution
time is spent inside of the compute engines (page 43). Therefore the main parallelization of AMS is inside of the
engines, making sure that a good performance is obtained for tasks (page 11) such as molecular dynamics (page 27)
or geometry optimizations (page 11), which consist of a series of interdependent engine invocations: We need to have
completed step 𝑛 before we can continue with step 𝑛+ 1.

However, not all workloads are of this sequentially dependent type. Some jobs have a lot of independent work, that
can be done in parallel. This kind of trivial parallelizability can be exploited at the AMS driver level: Instead of having
all cores collaborate on a single PES point and then doing all needed PES points sequentially, we can just distribute
the available PES points over the all the available cores. Normally this leads to a better parallel scaling than the default
parallelization inside of the engines: Parallelizing the engines is relatively complicated and often requires a lot of
communication between cores. Parallelizing on the driver level on the other hand is very easy, and often the only
communication required is at the very end of the calculation, when results are collected.

Note that it is perfectly possible to combine both the in-engine parallelization and the driver level parallelism: At the
driver level we could split our e.g. in total 32 cores into 4 groups of 8 cores, and then have each group of 8 use the
in-engine parallelization to collaborate on a specific calculation. This is especially useful if the total number of cores is
larger than then number of independent calculations we have to do. It might also be that we have a very large number
of calculations to do, but not enough memory to let every core work alone on its own calculation, as would be ideal
from a parallel scaling point of view.

Because of the two levels of parallelism – both at the driver and the engine level – we call this setup double paral-
lelization. In the 2018 release of AMS, double parallelization is used for the calculation of the PES point properties
(page 36) which are derivatives, if these need to be done numerically:

54 Chapter 6. Technical topics

AMS Manual, ADF Modeling Suite 2018

• Numerical calculation of forces / nuclear gradients (page 37). With a double sided derivative this requires
6× 𝑛atoms independent calculations on geometries with one atom displaced along a cartesian coordinate.

• Numerical calculation of the stress tensor (page 38) for periodic systems. This requires up to 12 calculations
for a double sided derivative along the 6 strain directions, but might require less in case some of the strains are
symmetry equivalent.

• Numerical calculation of the Hessian (page 38) and normal modes of vibration. This is currently only supported
for engines that calculate nuclear gradients analytically and done by numerically differentiating this first (ana-
lytic) derivative. As such it requires 6× 𝑛atoms independent calculations on geometries with one atom displaced
along a cartesian coordinate.

• Numerical calculation of the elastic tensor (page 39). This requires 84 independent geometry optimizations on
systems with differently strained lattices, with each optimization having a variable number of steps.

• Numerical calculation of phonons (page 41). This requires at most 6× 𝑛atoms displacements, but might require
less in case some of the displacements are symmetry equivalent. Note that the displacements are done in a super
cell system, which for many engines will increase the memory requirements, but also improve the in-engine
parallel scalability.

In order to use double parallelization it has to be enabled explicitly in the input. This is done for the above mentioned
properties individually, as one might want a different grouping strategy for each property. For each property there is
a separate Parallel block somewhere in the input (e.g. ElasticTensor%Parallel for the calculation of the
elastic tensor), which has the following keywords:

Parallel
nGroups integer
nCoresPerGroup integer
nNodesPerGroup integer

End

Note that only one of them should be specified in the input, depending of course on what is the desired strategy for
parallelization.

nGroups n Splits all cores evenly into n groups. We recommend choosing n such that it divides the total number
of cores without a remainder.

nCoresPerGroup n Each group consists of n cores. As such nCoresPerGroup 1 results in the maximum
possible parallelism at the driver level. We recommend choosing n such that it divides the total number of cores
without a remainder.

nNodesPerGroup n Makes groups from all cores within n nodes, e.g. nNodesPerGroup 1 would make every
cluster node into a separate group. Note that this option should only be used on homogeneous compute clusters,
where all used nodes have the same number of cores. Otherwise cores from different nodes will be grouped
together in very surprising and unintended ways, probably resulting in suboptimal performance.

The optimal grouping strategy and number of groups depends on the total number of cores used in the calculation, the
amount of independent tasks to be done in parallel, as well as the parallel scalability of the engine itself. In practice it
can be a bit tricky. Suppose, as an example, that we want to calculate the elastic properties of a bulk material on a 32
core machine. The calculation of the elastic tensor (page 39) should be done on a relaxed geometry, including relaxed
lattice degrees of freedom. We therefore first perform a geometry optimization, before calculating the elastic tensor.
In AMS this can easily be done with the following input:

Task GeometryOptimization

GeometryOptimization
OptimizeLattice True

End

Properties

6.2. Double parallelism 55

AMS Manual, ADF Modeling Suite 2018

ElasticTensor True
End

But what is the most optimal parallel setup for this calculation? First we recognize that performing a lattice opti-
mization requires the calculation of the stress tensor (page 38) at every step of the optimization. Assuming that our
bulk system does not have any symmetries AMS can exploit, the numerical calculation of the stress tensor (which
most engines can not calculate analytically) would require 12 independent strained calculations for every step in the
geometry optimization. Once the geometry optimization is converged, we have to perform 84 independent geometry
optimizations to determine the elements of the elastic tensor. In summary, the graph of dependencies between all these
tasks looks like this:

56 Chapter 6. Technical topics

AMS Manual, ADF Modeling Suite 2018

How do we best parallelize this? For the main steps, e.g. GOStep1 there is no question: We have nothing to do
in parallel and all 32 cores work on it together to finish it as quickly as possible. For the numerical calculation of
the stress tensor we have 12 tasks that can be done in parallel by the 32 cores in our machine. Now 12 obviously
does not divide 32 without a remainder, so there is no way to split into equally sized groups and do all 12 strains in
parallel. The greatest common divisor of 12 and 32 is 4, so it’s probably best to split into 4 groups of 8 cores each.
This is done with nGroups 4. Each group would then do 3 of the 12 strained calculations sequentially, using the in-
engine parallelization to speed up the individual calculations. Once the stress tensor is computed in this way all groups
merge and all 32 cores work together on GOStep2. This splitting and merging now continues until the geometry
optimization is converged. For the elastic tensor we now have 84 tasks to perform in parallel, where each task is a
completely separate geometry optimization (without optimizing the lattice) of a strained system. 84 tasks is more than
double the number of cores we have. In this case it is probably best to just run as parallel as possible at the driver level
and make 32 “groups” of just one core to throw the 84 tasks at. This is easily done by setting nCoresPerGroup 1
in the ElasticTensor block. Putting everything together we should add the following to our input file in order to
optimally utilize our machine for this example calculation:

NumericalDifferentiation
Parallel

nGroups 4
End

End

ElasticTensor
Parallel

nCoresPerGroup 1
End

End

6.3 Running AMS on compute clusters

AMS is parallelized with MPI and can therefore be run in parallel on distributed memory machines, aka compute
clusters. See the installation manual for general documentation on how to set up and run all the programs from the
Amsterdam Modeling Suite on compute clusters. In this section we give some more advice that is specific to the AMS
driver and its engines.

Normally users use the login node to prepare their jobs and input files somewhere in their home directory, and also
want the results of their jobs to end up there. Quite often, compute clusters are set up such that the user’s home
directory is also mounted on the compute nodes, usually via NFS (Network File System). Before the introduction of
the AMS driver it was not recommended to cd to the home directory in the submission script and have the compute
nodes execute the job directly there. This was simply due to the fact that a lot of file I/O was done on temporary files
in the present working directory, which in this case would be on a slow network-mounted file system.

On the other hand, with AMS, switching to the home directory is the preferred way of running on a cluster where the
home directory is mounted on the compute nodes. Running in the home directory mounted over NFS does not come
with a performance penalty for AMS, but has many advantages. This is because AMS and its engines are already built
under the assumption that access to this directory is slow. Basically there are three directories that are used by the
AMS driver and its engines:

1. The starting directory, i.e. the present working directory at the time the AMS driver is started. This folder is
generally read-only for AMS, except for creating the results directory there at the beginning of a calculation.
Note that all relative paths in the AMS input, e.g. for loading results from previous calculations, are relative to
the starting directory. The starting directory is assumed to be on a slow filesystem, but since data is normally
only read once from there in the beginning of a calculation, this is in practice not a problem.

2. The results directory, where the results of a calculation as well as important intermediate steps (e.g. restart
files) are collected. It also contains the log file which can be used to monitor a running calculations. The results

6.3. Running AMS on compute clusters 57

AMS Manual, ADF Modeling Suite 2018

directory is assumed to be on a slow filesystem, so AMS and its engines will be very careful not to do much disk
I/O there. Generally something is only written to the results directory when AMS is sure that it should remain
on disk when the calculation finishes. The results directory can also contain some intermediate restart files, so
the contents of the result directory should be all that is needed in case the calculation crashes or is killed before
it finishes normally.

3. The scratch directory, the location of which is set with the $SCM_TMPDIR environment variable, see also the
installation manual. This directory should be put on a fast disk, e.g. an SSD in the compute node, as it will
be used to store temporary results on disk. Users do not really need to care or know about the temporary files
in the scratch directory. Normally, any files and directories created in the scratch directory are cleaned up at
the end of the calculation. In case of errors, AMS tries to copy anything useful (e.g. the text output of all the
different ranks) to the results directory in order to make finding the problem easier. However, for some kinds of
crashes (or if the SIGKILL signal is sent to AMS), the cleanup of the scratch directory might not be performed,
in which case users might want to manually check or remove the amstmp_* folders in the scratch directory.

With this setup there is no performance penalty for running directly on a network mounted home directory: Results
will just be put there immediately, instead of being copied there at the end of a calculation.

Normally all batch systems provide an environment variable that is set to the directory from which the job was sub-
mitted, which is then where one should cd in the run script:

#!/bin/sh

if [-z "$PBS_O_WORKDIR"]; then
PBS batch system
cd "$PBS_O_WORKDIR"

elif [-z "$SLURM_SUBMIT_DIR"]; then
Slurm batch system
cd "$SLURM_SUBMIT_DIR"

elif [-z "..."]; then
add other batch systems as necessary ...
cd "..."

fi

export AMS_JOBNAME=myJob

$ADFBIN/ams << EOF

Normal AMS text input, but with all paths
relative to where the job was submitted from, e.g.:
LoadSystem previousJob.results/ams.rkf

EOF

With this runscript the AMS driver would make a myJob.results folder in the directory where the job was sub-
mitted from, and there is no need to copy results around manually in the run script. Furthermore this runscript always
produces exactly the same files in the same locations, no matter if it is run interactively or submitted to a compute
node through the batch system. Furthermore all paths in the input file can be specified relative to the location from
where the runscript is submitted (normally the folder in which the runscript is located). This removes the need to copy
or specify absolute paths to previous results, e.g. when restarting calculations. Finally, files useful for monitoring the
running calculation are also conveniently there and not hidden somewhere on the compute node.

6.4 Python interface

There is a complete Python interface to AMS, which allows users to set up and run arbitrary AMS jobs, and to
conveniently analyze the calculation results directly from Python. In this way AMS jobs can be automatized and

58 Chapter 6. Technical topics

AMS Manual, ADF Modeling Suite 2018

complex multi-stage workflows implemented.

The scripting framework is called PLAMS as in “Python Library for Automating Molecular Simulation”, which con-
veniently can also be read as “Python Layer for AMS”. It is documented in a separate manual:

• PLAMS introduction

• Running AMS through PLAMS

6.4. Python interface 59

AMS Manual, ADF Modeling Suite 2018

60 Chapter 6. Technical topics

CHAPTER

SEVEN

EXAMPLES

7.1 Geometry optimization

7.1.1 Example: Simple geometry optimization

Download GO_formaldehyde_noSCC.run

#!/bin/sh

$ADFBIN/ams << EOF

Task GeometryOptimization

System
Atoms [Bohr]

C 0.0 0.0 -1.0
O 0.0 0.0 1.247
H 0.0 -1.738 -2.097
H 0.0 1.738 -2.097

End
End

Engine DFTB
ResourcesDir Dresden
Model DFTB0
DispersionCorrection Auto

EndEngine

EOF

7.1.2 Example: Two-stage geometry optimization with initial Hessian

Download 2StepGO.run

#!/bin/sh

Preoptimization with DFTB and calculation of the Hessian
==
#
We will reuse the geometry optimized at the DFTB level as a starting point for
the DFT geometry optimization. We will also calculate the real Hessian with
DFTB and use that as the initial Hessian for the Quasi-Newton based

61

AMS Manual, ADF Modeling Suite 2018

optimization at the DFT level. DFTB is so fast compared to DFT, that all of
this is basically instantaneous. Our goal here is really just to reduce the
number of steps in the DFT geometry optimization. If we save just a single
step there, the initial DFTB calculation will already have paid for itself ...

AMS_JOBNAME=dftb_preopt $ADFBIN/ams << EOF

Specify the system geometry: Aspirin
System

Atoms
C 0.000000 0.000000 0.000000
C 1.402231 0.000000 0.000000
C 2.091015 1.220378 0.000000
C 1.373539 2.425321 0.004387
C -0.034554 2.451759 0.016301
C -0.711248 1.213529 0.005497
O -0.709522 3.637718 0.019949
C -2.141910 1.166077 -0.004384
O -2.727881 2.161939 -0.690916
C -0.730162 4.530447 1.037168
C -0.066705 4.031914 2.307663
H -0.531323 -0.967191 -0.007490
H 1.959047 -0.952181 -0.004252
H 3.194073 1.231720 -0.005862
H 1.933090 3.376356 -0.002746
O -2.795018 0.309504 0.548870
H -2.174822 2.832497 -1.125018
O -1.263773 5.613383 0.944221
H -0.337334 4.693941 3.161150
H 1.041646 4.053111 2.214199
H -0.405932 3.005321 2.572927

End
End

Do a geometry optimization.
Task GeometryOptimization

Also compute the Hessian at the optimized geometry.
Properties

Hessian True
End

Parallelize the calculation of the displacements used for the numerical
calculation of the Hessian. Aspirin is much too small for the DFTB engine
to parallelize efficiently internally, so parallelization at the driver
level will give better performance.
NumericalDifferentiation

Parallel nCoresPerGroup=1
End

Settings for the DFTB engine:
Engine DFTB

Model DFTB3
ResourcesDir DFTB.org/3ob-3-1

EndEngine

EOF

62 Chapter 7. Examples

AMS Manual, ADF Modeling Suite 2018

Geometry optimization with DFT
==============================

AMS_JOBNAME=dft_opt $ADFBIN/ams << EOF

Start from the geometry that is already optimized at the DFTB level.
LoadSystem File=dftb_preopt.results/dftb.rkf
(equivalent to loading the system from dftb_preopt.results/ams.rkf)

Task GeometryOptimization

GeometryOptimization
InitialHessian

Load the DFTB Hessian as the initial Hessian for the
Quasi-Newton based optimizer.
Type FromFile
File dftb_preopt.results/dftb.rkf

End
End

Settings for the BAND engine:
Engine BAND

Basis Type=TZP
XC GGA=PBE

EndEngine

EOF

7.1.3 Example: Periodic lattice optimization under pressure

Download Diamond_under_pressure.run

#! /bin/sh

Calculate the phonon dispersion curves for diamond under pressure.

Loop over pressure values (in GPa):
for P in -40 0 40 160 ; do
AMS_JOBNAME=pressure_$P $ADFBIN/ams << EOF

Task GeometryOptimization

System
Atoms

C -0.44625 -0.44625 -0.44625
C 0.44625 0.44625 0.44625

End
Lattice

0.0 1.785 1.785
1.785 0.0 1.785
1.785 1.785 0.0

End
End

GeometryOptimization

7.1. Geometry optimization 63

AMS Manual, ADF Modeling Suite 2018

OptimizeLattice Yes
Pressure $P
Convergence Gradients=1.0e-5

End

NumericalDifferentiation
Parallelize the calculation of the strain displacements, necessary for
numerically calculating the stress tensor during the lattice optimization.
Parallel nGroups=2

End

Properties
Request the calculation of phonons at the optimized geometry.
Phonons Yes

End

NumericalPhonons
Parallel nGroups=2
SuperCell

2 0 0
0 2 0
0 0 2

End
End

Engine DFTB
ResourcesDir DFTB.org/mio-1-1
Periodic KSpace=5

EndEngine

EOF
done

7.1.4 Example: Constrained optimizations

Download constraints.run

#!/bin/sh

This example demonstrates the setup of all different types of constraints.
Note that all constraints types can be combined with each other, as long as
the resulting set of constraints actually makes sense. (It must of course be
possible to satisfy all of them at the same time. AMS is not able to check
that and you might get really surprising results if that is not the case ...)

1. Angle constraints
====================

AMS_JOBNAME=angle $ADFBIN/ams << EOF

Task GeometryOptimization

System
Atoms

O 0.001356 0.000999 0.000000

64 Chapter 7. Examples

AMS Manual, ADF Modeling Suite 2018

H 0.994442 -0.037855 0.000000
H -0.298554 0.948531 0.000000

End
End

Constraints
Fix the H--O--H angle to 125 degrees.
Angle 3 1 2 125.0

End

Engine DFTB
ResourcesDir Dresden
DispersionCorrection Auto

EndEngine

EOF

2. Distance constraints
=======================

AMS_JOBNAME=dist $ADFBIN/ams << EOF

Task GeometryOptimization

System
Atoms

O 0.001356 0.000999 0.000000
H 0.994442 -0.037855 0.000000
H -0.298554 0.948531 0.000000

End
End

Constraints
Fix the O--H bond distances to 1.03 Angstrom.
Distance 1 2 1.03
Distance 1 3 1.03

End

Engine DFTB
ResourcesDir Dresden
DispersionCorrection Auto

EndEngine

EOF

3. Dihedral angle constraint
============================

AMS_JOBNAME=dihed $ADFBIN/ams << EOF

Task GeometryOptimization

System
Atoms

C -0.004115 -0.000021 0.000023
C 1.535711 0.000022 0.000008

7.1. Geometry optimization 65

AMS Manual, ADF Modeling Suite 2018

H -0.399693 1.027812 -0.000082
H -0.399745 -0.513934 0.890139
H -0.399612 -0.513952 -0.890156
H 1.931188 0.514066 0.890140
H 1.931432 0.513819 -0.890121
H 1.931281 -1.027824 0.000244

End
End

Constraints
Fix the dihedral angle H(6)--C(2)--C(1)--H(3) to 20 degrees.
Dihedral 6 2 1 3 20.00

End

Engine DFTB
ResourcesDir Dresden
DispersionCorrection Auto

EndEngine

EOF

4. Fixed atom constraint
========================

AMS_JOBNAME=atom $ADFBIN/ams << EOF

Task GeometryOptimization

GeometryOptimization
Convergence Energy=1.0e-6 Gradients=1.0e-4 Step=1.0e-3
CoordinateType Cartesian

End

System
Atoms

C -0.2460249052 -1.70363153 0.0005128649944
O 1.152833576 -1.81594932 -0.0004409224206
C 1.489235475 0.61782051 10.0004771689226
O 0.5700116914 0.627761615 10.0005491194077

End
End

Constraints
Fix atom 1 and 2 at their initial positions.
Atom 1
Atom 2

End

Engine DFTB
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

5. Fixed coordinate constraint
==============================

66 Chapter 7. Examples

AMS Manual, ADF Modeling Suite 2018

AMS_JOBNAME=coord $ADFBIN/ams << EOF

Task GeometryOptimization

GeometryOptimization
Convergence Energy=1.0e-6 Gradients=1.0e-4 Step=1.0e-3
CoordinateType Cartesian

End

System
Atoms

C -0.2460249052 -1.70363153 0.0005128649944
O 1.152833576 -1.81594932 -0.0004409224206
C 1.489235475 0.61782051 10.0004771689226
O 0.5700116914 0.627761615 10.0005491194077

End
End

Constraints
Fix the x-coordinate of all atoms.
Coordinate 1 x
Coordinate 2 x
Coordinate 3 x
Coordinate 4 x

End

Engine DFTB
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

6. Fixed atom constraint (in periodic system)
===

AMS_JOBNAME=pbcatom $ADFBIN/ams << EOF

Task GeometryOptimization

System
Atoms

C -1.23 -0.710140830 0.0
C -1.23 -0.710140830 3.8
C 0.0 0.0 0.4
C 0.0 -1.42028166 3.355

End

Lattice
1.23 -2.130422493309719 0.0
1.23 2.130422493309719 0.0

End
End

Constraints
Fix atom 1 and 3 at their initial positions.
Atom 1

7.1. Geometry optimization 67

AMS Manual, ADF Modeling Suite 2018

Atom 3
End

Engine DFTB
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

7. Block constraints (with listing the atoms in a block)
==

AMS_JOBNAME=block_list $ADFBIN/ams << EOF

Task GeometryOptimization

System
Atoms

C 0.5584839616765542 0.5023705181144142 -0.4625483159356394
C 1.07173137896726 0.2125484528111251 -1.892767990599312
C 1.699248504588085 -1.006061067555322 -2.191856791501442
C 2.242484629452111 -1.236470028363516 -3.455616615521399
C 2.18874580207099 -0.2444337131062739 -4.435483595049287
C 1.604409798904145 0.9866950282217637 -4.135465239465763
C 1.061086793296828 1.217355116664161 -2.871773146851866
H 1.763625603740592 -1.780903563899969 -1.431707209662057
H 2.716038261390732 -2.190869049673275 -3.672115451399807
H 2.611833078693977 -0.4241619800888815 -5.420308290235123
H 1.578029796368043 1.774138556616255 -4.884624561698751
H 0.6247213391616491 2.187200330357715 -2.64521108544713
C 1.303528070245188 -0.1416812092038768 0.7303699949711653
C 0.8164830922475474 -1.314631142230651 1.326337082260565
C 1.531799364672407 -1.947399963062604 2.342825210379356
C 2.757684862125068 -1.432061688813837 2.765634667957531
C 3.271640455523863 -0.2897364031184506 2.150731553729188
C 2.556535912403799 0.3432056352653093 1.134221563049466
H -0.128925843064934 -1.7366201913903 0.9939642396630857
H 1.133600273086767 -2.849990046242235 2.799740694330775
H 3.31486005979636 -1.925049398411132 3.557912279830031
H 4.236604921323707 0.1064455961800578 2.457138367063388
H 2.976510069814392 1.222131876866508 0.6510413538003352
C -0.930165749820548 0.9153412637395284 -0.5420710991631585
C -1.791729737216814 0.6892660986048864 0.5418285200469819
C -3.111373625199894 1.139542032267652 0.5090625363459357
C -3.586568528476239 1.843983986018719 -0.5977864609101087
C -2.726152821786783 2.111108432452229 -1.663369105880468
C -1.406454626777386 1.660929752085611 -1.63085383469072
H -1.428888457076976 0.1571120160719108 1.417905619994904
H -3.76723983501283 0.9462006794587581 1.35432032282366
H -4.614972346570283 2.194578435055282 -0.6233521468909432
H -3.080200905921361 2.678981846821393 -2.520207901691867
H -0.7413545301831963 1.891248563160919 -2.459672151335554
C 1.235557647765805 1.735720249011045 0.1803884343948648
C 1.377191890012647 1.826646222422494 1.573181692925026
C 1.905898822116255 2.975086608901246 2.16214311213053
C 2.280792642899383 4.061906342938987 1.371311861877147
C 2.105006642447361 3.998471351380415 -0.0115253875199488

68 Chapter 7. Examples

AMS Manual, ADF Modeling Suite 2018

C 1.576317094651283 2.850163227898022 -0.6007264381779673
H 1.072424817958776 0.9937816064904853 2.202306496283991
H 2.017471491684088 3.023369029562452 3.242524256706377
H 2.693031233132915 4.956641734238467 1.830324484771476
H 2.372569859099136 4.8485771293401 -0.6342066225733602
H 1.427765851939196 2.820397327218896 -1.677480576376967

End
End

GeometryOptimization
Convergence

Energy 1.0e-6
Gradients 1.0e-4
Step 1.0e-4

End
End

Constraints
Create blocks from the 4 phenyl groups by specifying the atom indices
explicitly. (The indices follow the order in the System%Atoms block,
where we happen to have the atoms belonging to the different phenyl
groups consecutive.)
BlockAtoms 2 3 4 5 6 7 8 9 10 11 12
BlockAtoms 13 14 15 16 17 18 19 20 21 22 23
BlockAtoms 24 25 26 27 28 29 30 31 32 33 34
BlockAtoms 35 36 37 38 39 40 41 42 43 44 45

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ

EndEngine

EOF

8. Block constraints (with named blocks)
==

AMS_JOBNAME=block_names $ADFBIN/ams << EOF

Task GeometryOptimization

System
Atoms

C 0.5584839616765542 0.5023705181144142 -0.4625483159356394
C.phenyl1 1.07173137896726 0.2125484528111251 -1.892767990599312
C.phenyl1 1.699248504588085 -1.006061067555322 -2.191856791501442
C.phenyl1 2.242484629452111 -1.236470028363516 -3.455616615521399
C.phenyl1 2.18874580207099 -0.2444337131062739 -4.435483595049287
C.phenyl1 1.604409798904145 0.9866950282217637 -4.135465239465763
C.phenyl1 1.061086793296828 1.217355116664161 -2.871773146851866
H.phenyl1 1.763625603740592 -1.780903563899969 -1.431707209662057
H.phenyl1 2.716038261390732 -2.190869049673275 -3.672115451399807
H.phenyl1 2.611833078693977 -0.4241619800888815 -5.420308290235123
H.phenyl1 1.578029796368043 1.774138556616255 -4.884624561698751
H.phenyl1 0.6247213391616491 2.187200330357715 -2.64521108544713

7.1. Geometry optimization 69

AMS Manual, ADF Modeling Suite 2018

C.phenyl2 1.303528070245188 -0.1416812092038768 0.7303699949711653
C.phenyl2 0.8164830922475474 -1.314631142230651 1.326337082260565
C.phenyl2 1.531799364672407 -1.947399963062604 2.342825210379356
C.phenyl2 2.757684862125068 -1.432061688813837 2.765634667957531
C.phenyl2 3.271640455523863 -0.2897364031184506 2.150731553729188
C.phenyl2 2.556535912403799 0.3432056352653093 1.134221563049466
H.phenyl2 -0.128925843064934 -1.7366201913903 0.9939642396630857
H.phenyl2 1.133600273086767 -2.849990046242235 2.799740694330775
H.phenyl2 3.31486005979636 -1.925049398411132 3.557912279830031
H.phenyl2 4.236604921323707 0.1064455961800578 2.457138367063388
H.phenyl2 2.976510069814392 1.222131876866508 0.6510413538003352
C.phenyl3 -0.930165749820548 0.9153412637395284 -0.5420710991631585
C.phenyl3 -1.791729737216814 0.6892660986048864 0.5418285200469819
C.phenyl3 -3.111373625199894 1.139542032267652 0.5090625363459357
C.phenyl3 -3.586568528476239 1.843983986018719 -0.5977864609101087
C.phenyl3 -2.726152821786783 2.111108432452229 -1.663369105880468
C.phenyl3 -1.406454626777386 1.660929752085611 -1.63085383469072
H.phenyl3 -1.428888457076976 0.1571120160719108 1.417905619994904
H.phenyl3 -3.76723983501283 0.9462006794587581 1.35432032282366
H.phenyl3 -4.614972346570283 2.194578435055282 -0.6233521468909432
H.phenyl3 -3.080200905921361 2.678981846821393 -2.520207901691867
H.phenyl3 -0.7413545301831963 1.891248563160919 -2.459672151335554
C.phenyl4 1.235557647765805 1.735720249011045 0.1803884343948648
C.phenyl4 1.377191890012647 1.826646222422494 1.573181692925026
C.phenyl4 1.905898822116255 2.975086608901246 2.16214311213053
C.phenyl4 2.280792642899383 4.061906342938987 1.371311861877147
C.phenyl4 2.105006642447361 3.998471351380415 -0.0115253875199488
C.phenyl4 1.576317094651283 2.850163227898022 -0.6007264381779673
H.phenyl4 1.072424817958776 0.9937816064904853 2.202306496283991
H.phenyl4 2.017471491684088 3.023369029562452 3.242524256706377
H.phenyl4 2.693031233132915 4.956641734238467 1.830324484771476
H.phenyl4 2.372569859099136 4.8485771293401 -0.6342066225733602
H.phenyl4 1.427765851939196 2.820397327218896 -1.677480576376967
^---- Element symbols augmented with a tag that we will use in the

→˓Constraints block
End

End

GeometryOptimization
Convergence

Energy 1.0e-6
Gradients 1.0e-4
Step 1.0e-4

End
End

Constraints
Use the tag from System%Atoms to set up the block constraints.
Block phenyl1
Block phenyl2
Block phenyl3
Block phenyl4

End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ

70 Chapter 7. Examples

AMS Manual, ADF Modeling Suite 2018

EndEngine

EOF

7.2 Transition state search

7.2.1 Example: TS search starting from initial Hessian

Download COChainFreqTS.run

#! /bin/sh

This example demonstrates in the first step how to calculate the Hessian.
The second run uses the pre-calculated Hessian and performs a transition
state search along the frequency mode with the smallest frequency.

First run: Calculate Hessian
============================

AMS_JOBNAME=hessian $ADFBIN/ams << EOF

Task SinglePoint

Properties
Hessian True

End

System
Atoms

C 0.0 0.0 0.0
O 1.5 0.0 0.0

End
Lattice

3.2 0.0 0.0
End

End

Engine Band
Basis Type=DZP
KSpace Quality=Good

EndEngine

EOF

Second run: TS search with initial Hessian
==

AMS_JOBNAME=TS $ADFBIN/ams << EOF

Task TransitionStateSearch

System
Atoms

7.2. Transition state search 71

AMS Manual, ADF Modeling Suite 2018

C 0.0 0.0 0.0
O 1.5 0.0 0.0

End
Lattice

3.2 0.0 0.0
End

End

GeometryOptimization
Convergence Gradients=1.0e-4
InitialHessian

Load the pre-calculated Hessian as the initial Hessian for the
transition state search using the Quasi-Newton based optimizer.
Type FromFile
File hessian.results/band.rkf

End
End

Properties
Also calculate normal modes in the end, so we can see if we actually
found a transition state.
NormalModes True

End

Engine Band
Basis Type=DZP
KSpace Quality=Good

EndEngine

EOF

7.2.2 Example: PES scan and TS search for H2 on graphene

Download PESScan_and_TS_H2_on_Graphene.run

#! /bin/sh

First we do a 2D PES scan varying the z-coordinate of the two hydrogen atoms
In this example we will keep the graphene slab fixed. From a physical/chemical
standpoint this is not a good approximation. The graphene slab is
intentionally not perfectly symmetric.

AMS_JOBNAME=PESScan $ADFBIN/ams << EOF

Task PESScan

System
Atoms

H 0.0 1.53633037 1.1
H 0.0 -0.11341359 1.1
C 0.001 1.42028166 0.0
C 1.230 2.13042249 0.0
C 1.230 -0.71014083 0.0
C 2.460 0.00000000 0.0
C 2.460 1.42028167 0.0
C 0.000 0.00000000 0.0

72 Chapter 7. Examples

AMS Manual, ADF Modeling Suite 2018

End
Lattice

3.69 -2.13042249 0.0
0.00 4.26084499 0.0

End
End

PESScan
ScanCoordinate

nPoints 10
Coordinate 1 Z 1.1 2.0

End
ScanCoordinate

nPoints 10
Coordinate 2 Z 1.1 2.0

End
End

Constraints
Fix the entire graphene slab.
Atom 3
Atom 4
Atom 5
Atom 6
Atom 7
Atom 8

End

Engine DFTB
Model DFTB
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ
Periodic KSpace=3

EndEngine

EOF

A human looks at the PES scan and picks a reasonable starting point for the
TS search. (Normally you would do that in ADFMovie by looking at the PES and
then exporting the geometry into an xyz file.)

_ ____
___)) [| \
) //o | |]
_ (_ > | |]
(O) __< | |]
[/] / \) [__|/_
[\]| (\ __/________
[/]| \ __ ___| |
[\]| ___E/%%/|____________|_
[/]|=====__ (_________________)

cat << EOF > initial_geometry_for_TS.xyz
8

H 0.4145668856457391 1.72927656037925 1.100000023839768
H -0.05533871972549955 -0.06805093626643093 1.500000013242627

7.2. Transition state search 73

AMS Manual, ADF Modeling Suite 2018

C 0.001 1.42028166 0.0
C 1.230 2.13042249 0.0
C 1.230 -0.71014083 0.0
C 2.460 0.00000000 0.0
C 2.460 1.42028167 0.0
C 0.000 0.00000000 0.0
VEC1 3.69 -2.13042249 0.0
VEC2 0.0 4.26084499 0.0
EOF

Compute the partial initial Hessian to be used in the transition state
search. (The Hessian will be computed only for the hydrogen atoms.)

AMS_JOBNAME=Hessian $ADFBIN/ams << EOF

Task SinglePoint

System
Load the geometry we just saved.
GeometryFile initial_geometry_for_TS.xyz

End

Properties
Calculate the Hessian (implied then calculating normal modes) ...
NormalModes True
... but only the part related to the hydrogen atoms.
SelectedAtomsForHessian 1 2

End

Engine DFTB
Model DFTB
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ
Periodic KSpace=3

EndEngine

EOF

echo "Extract the frequencies from the kf file using adfreport:"
$ADFBIN/adfreport Hessian.results/dftb.rkf -r "Vibrations%Frequencies[cm-1]##1"

Do a transition state search using the initial Hessian just computed (the
Graphene slab is constrained). Also compute the final Hessian for the
hydrogen atoms to validate the TS.

AMS_JOBNAME=TS $ADFBIN/ams << EOF

Task TransitionStateSearch

System
Load the geometry we just saved.
GeometryFile initial_geometry_for_TS.xyz

End

GeometryOptimization
Quasi-Newton

74 Chapter 7. Examples

AMS Manual, ADF Modeling Suite 2018

Step TrustRadius=0.05
End
Convergence Gradients=1.0e-4
InitialHessian

Load previously calculated Hessian as initial Hessian for a
transition state search with the Quasi-Newton optimizer.
Type FromFile
File Hessian.results/dftb.rkf

End
End

TransitionStateSearch
Follow the mode with the smallest frequency.
ModeToFollow 1
(This is also the default, we wouldn't need to specify this.)

End

Constraints
Fix the entire graphene slab.
Atom 3
Atom 4
Atom 5
Atom 6
Atom 7
Atom 8

End

Properties
NormalModes Yes
SelectedAtomsForHessian 1 2

End

Engine DFTB
Model DFTB
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ
Periodic KSpace=3

EndEngine

EOF

echo "Extract energy from the rkf file using adfreport:"
$ADFBIN/adfreport TS.results/dftb.rkf -r "AMSResults%Energy"

7.3 PES scan

7.3.1 Example: Linear transit

Download LinearTransit.run

#!/bin/sh

echo "================="

7.3. PES scan 75

AMS Manual, ADF Modeling Suite 2018

echo "HCN isomerization"
echo "================="
echo

AMS_JOBNAME=HCN_isomerization $ADFBIN/ams << EOF

Task PESScan
(Linear transit is just a PES scan with 1 scan coordinate.)

System
Atoms

C 0.00000000 0.00000000 1.04219000
H 0.00000000 0.00000000 -0.03324000
N 0.00000000 0.00000000 2.20064000

End
End

PESScan
ScanCoordinate

nPoints 25
Angle 2 1 3 180.0 0.0

End
End

Engine DFTB
Model DFTB0
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

echo
echo "==================="
echo "Water angle transit"
echo "==================="
echo

AMS_JOBNAME=water_angle $ADFBIN/ams << EOF

Task PESScan

System
Atoms

O 0.00000000 0.00000000 0.59372000
H 0.00000000 0.76544000 -0.00836000
H 0.00000000 -0.76544000 -0.00836000

End
End

PESScan
ScanCoordinate

nPoints 25
Angle 2 1 3 80.0 180.0

End
End

76 Chapter 7. Examples

AMS Manual, ADF Modeling Suite 2018

GeometryOptimization
! Delocalized coordinates currently have a problem with linear systems.
! So we will use cartesian coordinates here.
CoordinateType Cartesian

End

Engine DFTB
Model DFTB0
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

echo
echo "===================="
echo "Hydrocarbon reaction"
echo "===================="
echo

AMS_JOBNAME=hydcarb $ADFBIN/ams << EOF

Task PESScan

System
Atoms

C 0.14667300 -0.21503500 0.40053800
C 1.45297400 -0.07836900 0.12424400
C 2.23119700 1.15868100 0.12912100
C 1.78331500 2.39701500 0.38779700
H -0.48348000 0.63110600 0.67664100
H -0.33261900 -1.19332100 0.35411600
H 2.01546300 -0.97840100 -0.14506700
H 3.29046200 1.03872500 -0.12139700
H 2.45728900 3.25301000 0.35150400
H 0.74193400 2.60120700 0.64028800
C -0.75086900 1.37782400 -2.43303700
C -0.05392100 2.51281000 -2.41769100
H -1.78964800 1.33942600 -2.09651100
H -0.30849400 0.43896500 -2.76734700
H -0.49177100 3.45043100 -2.06789100
H 0.98633900 2.54913500 -2.74329400

End
End

PESScan
ScanCoordinate

nPoints 25
Distance 1 11 3.36 1.538
Distance 4 12 3.36 1.538

End
End

Engine DFTB
Model DFTB0
ResourcesDir DFTB.org/mio-1-1

EndEngine

7.3. PES scan 77

AMS Manual, ADF Modeling Suite 2018

EOF

echo
echo "====================================="
echo "Retinal trans -> 11-cis isomerization"
echo "====================================="
echo

AMS_JOBNAME=retinal_transcis $ADFBIN/ams << EOF

Task PESScan

System
Atoms

H -2.10968473 -1.58238733 0.78224517
C -2.10306857 -0.54058322 0.46363503
C -0.89436995 0.04807217 0.25528247
H -0.85555481 1.05432693 -0.15803658
C 0.38987539 -0.58661182 0.49038464
C 1.53213446 0.09657801 0.14394773
H 1.40518949 1.08783970 -0.29205231
H 3.05232192 -1.34477492 0.72115301
C 2.88311454 -0.36358433 0.28105432
C 3.96024700 0.37378345 -0.12385974
H 3.77965758 1.35231793 -0.56821856
C 5.34627719 -0.04025647 -0.02249097
C 6.32191717 0.80135945 -0.49190463
H 6.00090638 1.74979100 -0.92101391
C -4.46825064 -0.90426552 -0.39585925
C -5.87277429 -0.25303564 -0.45007491
C -3.41139545 0.06493448 0.19516310
C -3.67932839 1.38221399 0.41656971
C -5.81598497 1.19032366 -0.92660753
C -5.00049358 2.01922634 0.05561242
C -4.58391145 -2.18782901 0.46346394
C -4.01729542 -1.30039402 -1.82272212
C -2.72429960 2.32303313 1.10290124
C 0.40919453 -1.96244629 1.09501374
C 5.64155973 -1.38034133 0.59419110
C 7.76996060 0.56699126 -0.48750226
O 8.57693167 1.36615612 -0.92976322
H -6.51997817 -0.84904979 -1.10100203
H -6.32039371 -0.28079023 0.54871092
H -5.36159995 1.23817633 -1.92112092
H -6.82595442 1.60207678 -1.01946858
H -5.58216571 2.18390764 0.97424181
H -4.81292271 3.01993001 -0.35246294
H -4.74166770 -1.94289144 1.51126095
H -5.43008715 -2.78247632 0.12572479
H -3.69644845 -2.81116549 0.38705593
H -3.02900804 -1.75403268 -1.79820003
H -4.71056940 -2.01489741 -2.26202914
H -3.97070839 -0.42860260 -2.47090348
H -2.16469005 2.92261100 0.38111736
H -3.27791517 3.02297911 1.72885233

78 Chapter 7. Examples

AMS Manual, ADF Modeling Suite 2018

H -2.00470188 1.79865198 1.72726573
H -0.13689001 -1.97717074 2.03825359
H -0.07664772 -2.68134154 0.43362393
H 1.41837401 -2.31391556 1.28591185
H 5.15278730 -2.17622743 0.03222328
H 6.70436647 -1.59729505 0.62729622
H 5.25700064 -1.42489613 1.61313095
H 8.12614442 -0.41441814 -0.04549414

End
End

PESScan
ScanCoordinate

nPoints 25
Dihedral 6 9 10 12 180 0
Dihedral 8 9 10 11 180 0

End
End

Engine DFTB
Model DFTB0
ResourcesDir DFTB.org/mio-1-1

EndEngine

EOF

7.3.2 Example: 2D PES scan

Download PESScan.run

#!/bin/sh

echo "=============="
echo "Ethane torsion"
echo "=============="
echo

AMS_JOBNAME=ethane_torsion $ADFBIN/ams << EOF

Task PESScan

System
Atoms

C 0.0 0.0 0.76576
C 0.0 0.0 -0.76576
H -0.88668938 0.51193036 1.16677
H 0.88668938 0.51193036 1.16677
H 0.0 -1.02386071 1.16677
H 0.0 1.02386071 -1.16677
H -0.88668938 -0.51193036 -1.16677
H 0.88668938 -0.51193036 -1.16677

End
End

PESScan

7.3. PES scan 79

AMS Manual, ADF Modeling Suite 2018

First scan coordinate: C--C bond distance
ScanCoordinate

nPoints 5
Distance 1 2 1.3 1.7

End
Second scan coordinate: One of the H--C--C--H dihedral angles (others will

→˓follow naturally)
ScanCoordinate

nPoints 21
Dihedral 3 1 2 6 60.0 0.0

End
End

Engine DFTB
Model DFTB3
ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ

EndEngine

EOF

echo "=============="
echo "Ethene torsion"
echo "=============="
echo

AMS_JOBNAME=ethene_torsion $ADFBIN/ams << EOF

Task PESScan

System
Atoms

C 0.0 0.0 0.66687
C 0.0 0.0 -0.66687
H 0.0 0.92974 -1.23912
H 0.0 0.92974 1.23912
H 0.0 -0.92974 1.23912
H 0.0 -0.92974 -1.23912

End
End

PESScan
First scan coordinate: C--C bond distance
ScanCoordinate

nPoints 5
Distance 1 2 1.1 1.8

End
Second scan coordinate: Two of the H--C--C--H dihedrals
ScanCoordinate

nPoints 21
Dihedral 4 1 2 3 0.0 60.0
Dihedral 5 1 2 6 0.0 60.0

End
End

Engine DFTB
Model DFTB3

80 Chapter 7. Examples

AMS Manual, ADF Modeling Suite 2018

ResourcesDir DFTB.org/3ob-3-1
DispersionCorrection D3-BJ

EndEngine

EOF

Below are more technical examples, demonstrating the PES scan gap filling.

echo "============================="
echo "Ethane gap filling test (1/2)"
echo "============================="
echo

AMS_JOBNAME=ethane_nofillgaps $ADFBIN/ams << EOF

Task PESScan

System
Atoms

C -2.333834610464788 -2.268837915270455 -0.2417723425321957
C -0.8081611038872945 -2.334371994724881 -0.04271045326758349
H -0.2505615773096904 -1.473443563856088 -0.38077110593546
H -0.3249814761083244 -3.235478579439597 -0.3904810245975267
H -0.583247370537557 -2.349691649662279 1.013499336841977
H -2.817014238243758 -1.367731330555738 0.1059982287977475
H -2.891434137042391 -3.129766346139247 0.09628831013568076
H -2.558748343814525 -2.253518260333056 -1.297982132641757

End
End

GeometryOptimization
CoordinateType Cartesian

End

PESScan
FillUnconvergedGaps False
CalcPropertiesAtPESPoints True
ScanCoordinate

nPoints 10
Distance 1 2 1.4 1.7

End
ScanCoordinate

nPoints 10
Distance 7 1 1.0 1.2
Dihedral 7 1 2 3 60.0 180.0

End
End

Engine DFTB
ResourcesDir QUASINANO2015

EndEngine

EOF

echo "============================="

7.3. PES scan 81

AMS Manual, ADF Modeling Suite 2018

echo "Ethane gap filling test (2/2)"
echo "============================="
echo

AMS_JOBNAME=ethane_fillgaps $ADFBIN/ams << EOF

Task PESScan

System
Atoms

C -2.333834610464788 -2.268837915270455 -0.2417723425321957
C -0.8081611038872945 -2.334371994724881 -0.04271045326758349
H -0.2505615773096904 -1.473443563856088 -0.38077110593546
H -0.3249814761083244 -3.235478579439597 -0.3904810245975267
H -0.583247370537557 -2.349691649662279 1.013499336841977
H -2.817014238243758 -1.367731330555738 0.1059982287977475
H -2.891434137042391 -3.129766346139247 0.09628831013568076
H -2.558748343814525 -2.253518260333056 -1.297982132641757

End
End

GeometryOptimization
CoordinateType Cartesian

End

PESScan
FillUnconvergedGaps True
CalcPropertiesAtPESPoints True
ScanCoordinate

nPoints 10
Distance 1 2 1.4 1.7

End
ScanCoordinate

nPoints 10
Distance 7 1 1.0 1.2
Dihedral 7 1 2 3 60.0 180.0

End
End

Engine DFTB
ResourcesDir QUASINANO2015

EndEngine

EOF

7.4 Molecular dynamics

7.4.1 Example: Simple MD for H2

Download MD_hydrogen_longrun.run

#!/bin/sh

$ADFBIN/ams << eor

82 Chapter 7. Examples

AMS Manual, ADF Modeling Suite 2018

Task MolecularDynamics

MolecularDynamics
nSteps 1000
TimeStep 0.1
InitialVelocities Type=zero
Thermostat Type=none
Trajectory SamplingFreq=100

End

System
Atoms [Bohr]

H -2.0 0.0 0.0
H 2.0 0.0 0.0

End
End

Engine DFTB
ResourcesDir Dresden
Repulsion

forcePolynomial true
End
DispersionCorrection Auto

EndEngine

eor

7.4.2 Example: MD for a box of water

Download H2O_nreac.run

7.5 PES point properties

7.5.1 Example: Phonons for graphene

Download Phonons_Graphene.run

#!/bin/sh

AMS_JOBNAME=graphene $ADFBIN/ams << EOF

Task GeometryOptimization

GeometryOptimization
OptimizeLattice True
Convergence Gradients=1.0e-5

End

NumericalDifferentiation
Parallel nGroups=2

End

Properties
Phonons True

7.5. PES point properties 83

AMS Manual, ADF Modeling Suite 2018

End

NumericalPhonons
SuperCell

2 0
0 2

End
Parallel nGroups=4

End

System
Atoms

C 0.0 0.0 0.0
C 0.5 0.28867513459481 0.0

End

Lattice
1.0 0.0 0.0
0.5 0.86602540378443 0.0

End
End

Engine DFTB
ResourcesDir Dresden
Model DFTB0
Periodic kSpace=9

EndEngine

EOF

echo ""
echo "Begin TOC of result file"

$ADFBIN/dmpkf -n 1 graphene.results/dftb.rkf --toc

echo "End TOC of result file"

7.5.2 Example: Phonons with isotopes

Download Phonons_Isotopes.run

#! /bin/sh

====================================
Phonons with default nuclear masses:
====================================

AMS_JOBNAME=defmasses $ADFBIN/ams << EOF

Task SinglePoint

Properties
Phonons True

End

84 Chapter 7. Examples

AMS Manual, ADF Modeling Suite 2018

NumericalPhonons
StepSize 0.01
SuperCell

4
End
Parallel nCoresPerGroup=1

End

System
Atoms

C -2.42906152 -0.3445528299 -0.1353492062
C -1.146891508 -1.134644249 0.1353492061
H -2.429062041 0.004468895147 -1.185797304
H -2.429062011 0.5753101439 0.4803683017
H -1.146891017 -2.054507222 -0.4803683019
H -1.146890987 -1.483665974 1.185797304

End

Lattice
2.564338467 0.0 0.0

End
End

Engine DFTB
ResourcesDir QUASINANO2015
Model DFTB0
Periodic kSpace=9

EndEngine

EOF

echo ""
echo "Begin TOC of result file"
$ADFBIN/dmpkf -n 1 defmasses.results/dftb.rkf --toc
echo "End TOC of result file"

===
Phonons with two deuterium atoms (via the AtomMasses key)
===

AMS_JOBNAME=usermasses $ADFBIN/ams << EOF

Task SinglePoint

Properties
Phonons true

End

NumericalPhonons
StepSize 0.01
SuperCell

4
End
Parallel nCoresPerGroup=1

End

System

7.5. PES point properties 85

AMS Manual, ADF Modeling Suite 2018

Atoms
C -2.42906152 -0.3445528299 -0.1353492062
C -1.146891508 -1.134644249 0.1353492061
H -2.429062041 0.004468895147 -1.185797304
H -2.429062011 0.5753101439 0.4803683017
H.d -1.146891017 -2.054507222 -0.4803683019
H.d -1.146890987 -1.483665974 1.185797304

End

AtomMasses
H.d 2.014

End

Lattice
2.564338467 0.0 0.0

End
End

Engine DFTB
ResourcesDir QUASINANO2015
Model DFTB0
Periodic KSpace=9

EndEngine

EOF

echo ""
echo "Begin TOC of result file"
$ADFBIN/dmpkf -n 1 usermasses.results/dftb.rkf --toc
echo "End TOC of result file"

7.5.3 Example: Elastic tensor

Download ElasticTensor.run

#! /bin/sh

=== Diamond ===

AMS_JOBNAME=Diamond $ADFBIN/ams << EOF

Task GeometryOptimization

Properties
ElasticTensor Yes

End

Maximum possible parallelism at the driver level
NumericalDifferentiation

Parallel nCoresPerGroup=1
End
ElasticTensor

Parallel nCoresPerGroup=1
End

86 Chapter 7. Examples

AMS Manual, ADF Modeling Suite 2018

System
Atoms

C 0.44625 0.44625 2.23125
C 2.23125 2.23125 2.23125
C -2.23125 -2.23125 -2.23125
C -0.44625 -0.44625 -2.23125
C -0.44625 -2.23125 -0.44625
C 1.33875 -0.44625 -0.44625
C -2.23125 -0.44625 -0.44625
C -0.44625 1.33875 -0.44625
C -0.44625 -0.44625 1.33875
C 1.33875 1.33875 1.33875
C -1.33875 -1.33875 -1.33875
C 0.44625 0.44625 -1.33875
C 0.44625 -1.33875 0.44625
C 2.23125 0.44625 0.44625
C -1.33875 0.44625 0.44625
C 0.44625 2.23125 0.44625

End
Lattice

0.0 3.57 3.57
3.57 0.0 3.57
3.57 3.57 0.0

End
End

GeometryOptimization
OptimizeLattice Yes
Convergence Gradients=1.0e-4

End

Engine DFTB
Model DFTB
ResourcesDir DFTB.org/mio-1-1
Periodic kSpace=3

EndEngine

EOF

=== Boron-Nitride sheet ===

3x3 super-cell, no k-space sampling

AMS_JOBNAME=BN_sheet $ADFBIN/ams << EOF

Task GeometryOptimization

Properties
ElasticTensor Yes

End

Maximum possible parallelism at the driver level
NumericalDifferentiation

Parallel nCoresPerGroup=1
End
ElasticTensor

Parallel nCoresPerGroup=1

7.5. PES point properties 87

AMS Manual, ADF Modeling Suite 2018

End

System
Atoms

N 3.76095075 0.723795 0.0
N 5.01460112 2.89518114 0.0
B -3.76095112 -2.17138614 0.0
B -2.50730075 0.0 0.0
B -1.25365038 2.17138614 0.0
B -1.25365037 -2.17138614 0.0
B 0.0 0.0 0.0
B 1.25365037 2.17138614 0.0
B 1.25365038 -2.17138614 0.0
B 2.50730075 0.0 0.0
B 3.76095112 2.17138614 0.0
N -2.50730112 -1.44759114 0.0
N -1.25365075 0.723795 0.0
N -3.8e-07 2.89518114 0.0
N -3.7e-07 -1.44759114 0.0
N 1.25365 0.723795 0.0
N 2.50730037 2.89518114 0.0
N 2.50730038 -1.44759114 0.0

End
Lattice

7.52190225 0.0
3.76095111 6.51415842

End
End

GeometryOptimization
OptimizeLattice Yes
Convergence Gradients=1.0e-4

End

Engine DFTB
ResourcesDir DFTB.org/matsci-0-3

EndEngine

EOF

=== Polyoxyethylene ===

primitive cell with k-space sampling

AMS_JOBNAME=Polyoxyethylene $ADFBIN/ams << EOF

Task GeometryOptimization

Properties
ElasticTensor Yes

End

ElasticTensor
StrainStepSize 0.002
MaxGradientForGeoOpt 2.0e-4
Parallel nCoresPerGroup=1

End

88 Chapter 7. Examples

AMS Manual, ADF Modeling Suite 2018

System
Atoms

C -0.279368361 -0.125344097 -0.026221791
O 0.840592835 -0.919621431 -0.193214154
H -0.279527057 0.337014408 0.997733792
H -0.281697417 0.707951120 -0.778297849

End
Lattice

2.240292981
End

End

GeometryOptimization
OptimizeLattice Yes
Convergence Gradients=1.0e-4

End

Engine DFTB
ResourcesDir DFTB.org/3ob-3-1
Periodic kSpace=5

EndEngine

EOF

Note: the elastic tensor is also printed to standard output.

echo ""
echo "Extract the elastic tensor of Diamond from the rkf file:"
$ADFBIN/adfreport Diamond.results/dftb.rkf -r "AMSResults%ElasticTensor#12.4f##6"

echo ""
echo "Extract the elastic tensor of Boron-Nitride from the rkf file:"
$ADFBIN/adfreport BN_sheet.results/dftb.rkf -r "AMSResults%ElasticTensor#12.4f##3"

echo ""
echo "Extract the elastic tensor of Polyoxyethylene from the rkf file:"
$ADFBIN/adfreport Polyoxyethylene.results/dftb.rkf -r "AMSResults%ElasticTensor#12.4f#
→˓#1"

7.5. PES point properties 89

AMS Manual, ADF Modeling Suite 2018

90 Chapter 7. Examples

CHAPTER

EIGHT

APPENDICES

8.1 Environment variables

The behaviour of AMS can be modified through a number of environment variables.

AMS_JOBNAME Sets the name of a job. This name is used to determine the name of the results folder AMS creates,
which is $AMS_JOBNAME.results or ams.results if this environment variable is not set.

AMS_RESULTSDIR If this environment variable is set, instead of creating a new results folder, AMS will use the set
directory as the results folder. Not that the directory set here will not be created by AMS and therefore has to
exist before starting AMS. Note that this environment variable can be used to prevent AMS from creating result
folders, by setting AMS_RESULTSDIR=.. This reproduces the pre-AMS behaviour of putting all result files
into the directory from which a job is started.

AMS_SWITCH_LOGFILE_AND_STDOUT If this environment variable is set, AMS will redirect what is normally
printed on standard output to a file (ams.out) in the results directory. Instead the contents of the log file
(ams.log) will be printed to standard output while a job is running, allowing users to easily monitor the jobs
progress. Note that the log file will still be created normally as if this environment variable was not set. This
environment variable is just a convenience feature for users that would always redirect their output into a file
and then use tail -f on the log file to monitor the running calculation.

8.2 Extended XYZ file format

The .xyz file format is a simple text based format for molecular geometries. .xyz files have the number of atoms in
the first line, followed by a comment line, followed by one line per atom, specifying the element as well as the x, y,
and z coordinates of this atom.

However, the standard .xyz file format does not include lattice vectors. AMS therefore uses an extended .xyz file
format which is also suitable for periodic systems. In this extended format the lattice vectors are specified at the end
of the .xyz file via the keys VEC1, VEC2 and VEC3. For 1D periodic systems (chains) only VEC1 is needed. For 2D
periodic systems (slabs) only VEC1 and VEC2 are needed. An example extended .xyz for graphene looks like this:

2

C 0.0 0.0 0.0
C 1.23 0.71014 0.0
VEC1 2.46 0.0 0.0
VEC2 1.23 2.13042 0.0

Note that the extended .xyz format is also understood by the AMS GUI for importing and exporting geometries
from/to .xyz files.

91

AMS Manual, ADF Modeling Suite 2018

8.3 Developer options

Print
Timers [None | Normal | Detail | TooMuchDetail]

End

Print

Type Block

Description This block controls the printing of additional information to stdout.

Timers

Type Multiple Choice

Default value None

Options [None, Normal, Detail, TooMuchDetail]

Description Printing timing details to see how much time is spend in which part of the code.

EngineDebugging
ForceContinousPES [True | False]
IgnoreGradientsRequest [True | False]
IgnoreStressTensorRequest [True | False]

End

EngineDebugging

Type Block

Description This block contains some options useful for debugging the computational engines.

ForceContinousPES

Type Bool

Default value False

Description If this option is set, the engine will always run in contiuous PES mode. For many
engines this disables the use of symmetry, as this one always leads to a discontinuous PES
around the symmetric points: Basically there is jump in the PES at the point where the
symmetry detection starts classifying the system as symmetric. Normally the continuous
PES mode of the engine (often disabling the symmetry) is only used when doing numerical
derivatives, but this flag forces the engine to continously run in this mode.

IgnoreGradientsRequest

Type Bool

Default value False

Description If this option is set, the engine will not do analytical gradients if asked for it, so that
gradients will have to be evaluated numerically by AMS.

IgnoreStressTensorRequest

Type Bool

Default value False

Description If this option is set, the engine will not calculate an analytical stress tensor if asked
for it, so that the stress tensor will have to be evaluated numerically by AMS.

92 Chapter 8. Appendices

CHAPTER

NINE

REQUIRED CITATIONS

When you publish results in the scientific literature that were obtained through the AMS driver program, you are
required to include a reference to the program package with the appropriate release number:

AMS 2018, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
Optionally, you may add the following list of authors and contributors: R. Rüger, M. Franchini, T. Trnka, A. Yakovlev,
P. Philipsen, T. Soini

Note that the engine used for a particular calculation might require you to include other references. Please refer to the
specific engine manuals (page 45) for required citations.

93

http://www.scm.com

AMS Manual, ADF Modeling Suite 2018

94 Chapter 9. Required citations

CHAPTER

TEN

REFERENCES

1. L. Versluis and T. Ziegler, The determination of Molecular Structure by Density Functional Theory, Journal of
Chemical Physics 88, 322 (1988) (https://doi.org/10.1063/1.454603)

2. L. Versluis, The determination of molecular structures by the HFS method, PhD thesis, University of Calgary,
1989

3. L. Fan and T. Ziegler, Optimization of molecular structures by self consistent and non-local density functional
theory, Journal of Chemical Physics 95, 7401 (1991) (https://doi.org/10.1063/1.461366)

4. M. Swart and F.M. Bickelhaupt, Optimization of strong and weak coordinates, International Journal of Quantum
Chemistry 106, 2536 (2006) (https://doi.org/10.1002/qua.21049)

5. E. Bitzek, P. Koskinen, F. Gähler, M. Moseler and P. Gumbsch, Structural Relaxation Made Simple, Physical
Review Letters 97, 170201 (2006) (https://doi.org/10.1103/PhysRevLett.97.170201)

95

https://doi.org/10.1063/1.454603
https://doi.org/10.1063/1.454603
https://doi.org/10.1063/1.461366
https://doi.org/10.1002/qua.21049
https://doi.org/10.1002/qua.21049
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.97.170201

AMS Manual, ADF Modeling Suite 2018

96 Chapter 10. References

CHAPTER

ELEVEN

KEYWORDS

11.1 Links to manual entries

• ElasticTensor (page 40)
• EngineDebugging (page 92)
• GeometryOptimization (page 12)
• LoadSystem (page 8)
• MolecularDynamics (page 27)
• NumericalPhonons (page 41)
• Print (page 92)
• Properties (page 37)
• System (page 5)
• TransitionStateSearch (page 23)

11.2 Summary of all keywords

Constraints

Type Block

Description The Constraints block allows geometry optimizations and potential energy surface
scans with constraints. The constraints do not have to be satisfied at the start of the calcula-
tion.

Angle

Type String

Recurring True

Description Fix the angle between three atoms. Three atom indices followed by an angle in
degrees.

Atom

Type Integer

Recurring True

Description Fix the position of an atom. Just one integer referring to the index of the atom in
the [System%Atoms] block.

Block

Type String

97

AMS Manual, ADF Modeling Suite 2018

Recurring True

Description Name of the block to contstrain as specified in the atom tag within the Sys-
tem%Atoms block.

BlockAtoms

Type Integer List

Recurring True

Description List of atom indices for a block constraint, where the internal degrees of freedom
are frozen.

Coordinate

Type String

Recurring True

Description Fix a particular coordinate of an atom. Atom index followed by (x|y|z).

Dihedral

Type String

Recurring True

Description Fix the dihedral angle between four atoms. Four atom indices followed by an angle
in degrees.

Distance

Type String

Recurring True

Description Fix the distance between two atoms. Two atom indices followed by the distance in
Angstrom.

ElasticTensor

Type Block

Description Options for numerical evaluation of the elastic tensor.

MaxGradientForGeoOpt

Type Float

Default value 0.0001

Unit Hartree/Angstrom

Description Maximum nuclear gradient for the relaxation of the internal degrees of freedom of
strained systems.

Parallel

Type Block

Description The evaluation of the elastic tensor via numerical differentiation is an embarrass-
ingly parallel problem. Double parallelization allows to split the available processor cores
into groups working through all the available tasks in parallel, resulting in a better parallel
performance. The keys in this block determine how to split the available processor cores into
parallelly working groups.

nCoresPerGroup

98 Chapter 11. Keywords

AMS Manual, ADF Modeling Suite 2018

Type Integer

Description Number of cores in each parallelly working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

StrainStepSize

Type Float

Default value 0.001

Description Step size (relative) of strain deformations used for computing the elastic tensor
numerically.

Engine

Type Block

Description The input for the computational engine. The header of the block determines the type of
the engine.

EngineDebugging

Type Block

Description This block contains some options useful for debugging the computational engines.

ForceContinousPES

Type Bool

Default value False

Description If this option is set, the engine will always run in contiuous PES mode. For many
engines this disables the use of symmetry, as this one always leads to a discontinuous PES
around the symmetric points: Basically there is jump in the PES at the point where the
symmetry detection starts classifying the system as symmetric. Normally the continuous
PES mode of the engine (often disabling the symmetry) is only used when doing numerical
derivatives, but this flag forces the engine to continously run in this mode.

IgnoreGradientsRequest

Type Bool

Default value False

Description If this option is set, the engine will not do analytical gradients if asked for it, so that
gradients will have to be evaluated numerically by AMS.

IgnoreStressTensorRequest

Type Bool

Default value False

11.2. Summary of all keywords 99

AMS Manual, ADF Modeling Suite 2018

Description If this option is set, the engine will not calculate an analytical stress tensor if asked
for it, so that the stress tensor will have to be evaluated numerically by AMS.

EngineRestart

Type String

Description The path to the file from which to restart the engine.

GeometryOptimization

Type Block

Description Configures details of the geometry optimization and transition state searches.

CalcPropertiesOnlyIfConverged

Type Bool

Default value True

Description Compute the properties requested in the ‘Properties’ block, e.g. Frequencies or
Phonons, only if the optimization (or transition state search) converged. If False, the proper-
ties will be computed even if the optimization did not converge.

ConjugateGradients

Type Block

Description Configures details of the conjugate gradients geometry optimizer.

Step

Type Block

Description

MinRadius

Type Float

Default value 0.0

Description

TrustRadius

Type Float

Default value 0.2

Description Initial value of the trust radius.

Convergence

Type Block

Description Convergence is monitored for two items: the energy and the Cartesian gradients.
Convergence criteria can be specified separately for each of these items.

Energy

Type Float

Default value 1e-05

Unit Hartree

Description The criterion for changes in the energy.

100 Chapter 11. Keywords

AMS Manual, ADF Modeling Suite 2018

Gradients

Type Float

Default value 0.001

Unit Hartree/Angstrom

Description The criterion for changes in the gradients.

Step

Type Float

Default value 0.001

Unit Angstrom

Description The maximum Cartesian step allowed for a converged geometry.

CoordinateType

Type Multiple Choice

Default value Auto

Options [Auto, Delocalized, Cartesian]

Description Select the type of coordinates in which to perform the optimization. If ‘Auto’, de-
localized coordinates will be used for molecular systems, while cartesian coordinates will be
used for periodic systems. Optimization in delocalized coordinates [Delocalized] can only
be used for geometry optimizations or transition state searches of molecular systems with the
Quasi-Newton method. The experimental SCMGO optimizer supports [Delocalized] coordi-
nates for both molecular and periodic systems.

FIRE

Type Block

Description This block configures the details of the FIRE optimizer. The keywords name corre-
spond the the symbols used in the article describing the method, see PRL 97, 170201 (2006).

NMin

Type Integer

Default value 5

Description Number of steps after stopping before increasing the time step again.

alphaStart

Type Float

Default value 0.1

Description Steering coefficient.

dtMax

Type Float

Default value 1.25

Unit Femtoseconds

Description Maximum time step used for the integration.

dtStart

11.2. Summary of all keywords 101

AMS Manual, ADF Modeling Suite 2018

Type Float

Default value 0.25

Unit Femtoseconds

Description Initial time step for the integration.

fAlpha

Type Float

Default value 0.99

Description Reduction factor for the steering coefficient.

fDec

Type Float

Default value 0.5

Description Reduction factor for reducing the time step in case of uphill movement.

fInc

Type Float

Default value 1.1

Description Growth factor for the integration time step.

strainMass

Type Float

Default value 0.5

Description Ficticious relative mass of the lattice degrees of freedom. This controls the
stiffness of the lattice degrees of freedom relative to the atomic degrees of freedom, with
smaller values resulting in a more aggressive optimization of the lattice.

InitialHessian

Type Block

Description Options for initial model Hessian when optimizing systems with either the Quasi-
Newton or the SCMGO method.

File

Type String

Description KF file containing the initial Hessian. This can be used to load a Hessian cal-
culated in a previously with the [Properties%Hessian] keyword.

Type

Type Multiple Choice

Default value Auto

Options [Auto, UnitMatrix, Swart, FromFile]

Description Selects the type of the initial model Hessian, or load the Hessian from the results
of a previous calulation.

KeepIntermediateResults

Type Bool

102 Chapter 11. Keywords

AMS Manual, ADF Modeling Suite 2018

Default value False

Description Whether the full engine result files of all intermediate steps are stored on disk. By
default only the last step is kept, and only if the geometry optimization converged. This can
easily lead to huge amounts of data being stored on disk, but it can sometimes be conve-
nient to closely monitor a tricky optimization, e.g. excited state optimizations going through
conical intersections, etc. ...

MaxIterations

Type Integer

Description The maximum number of geometry iterations allowed to converge to the desired
structure.

Method

Type Multiple Choice

Default value Auto

Options [Auto, Quasi-Newton, SCMGO, FIRE, ConjugateGradients]

Description Select the optimization algorithm employed for the geometry relaxation. Currently
supported are: the Hessian-based Quasi-Newton-type BFGS algorithm, the experimental
SCMGO optimizer, the fast inertial relaxation method (FIRE), and the conjugate gradients
method. The default is to choose an appropriate method automatically based on the engine’s
speed, the system size and the supported optimization options.

OptimizeLattice

Type Bool

Default value False

Description Whether to also optimize the lattice for periodic structures. This is currently only
supported with the Quasi-Newton and SCMGO optimizers.

Pressure

Type Float

Default value 0.0

Description Optimize the structure under pressure (this will only have an effect if you are opti-
mizing the lattice vectors). Currently only working in combination with the Quasi-Newton
optimizer. For phase transitions you may consider disabling or breaking the symmetry.

PressureUnit

Type Multiple Choice

Default value GPa

Options [a.u., Pascal, GPa, atm, bar, kbar]

Description The unit for pressure to be used for optimizations under pressure

Quasi-Newton

Type Block

Description Configures details of the Quasi-Newton geometry optimizer.

MaxGDIISVectors

Type Integer

11.2. Summary of all keywords 103

AMS Manual, ADF Modeling Suite 2018

Default value 0

Description Sets the maximum number of GDIIS vectors. Setting this to a number >0 en-
ables the GDIIS method.

Step

Type Block

Description

TrustRadius

Type Float

Default value 0.2

Description Initial value of the trust radius.

SCMGO

Type Block

Description Configures details SCMGO.

ContractPrimitives

Type Bool

Default value True

Description Form non-redundant linear combinations of primitive coordinates sharing the
same central atom

NumericalBMatrix

Type Bool

Default value False

Description Calculation of the B-matrix, i.e. Jacobian of internal coordinates in terms of
numerical differentiations

Step

Type Block

Description

TrustRadius

Type Float

Default value 0.2

Description Initial value of the trust radius.

VariableTrustRadius

Type Bool

Default value True

Description Whether or not the trust radius can be updated during the optimization.

logSCMGO

Type Bool

Default value False

104 Chapter 11. Keywords

AMS Manual, ADF Modeling Suite 2018

Description Verbose output of SCMGO internal data

testSCMGO

Type Bool

Default value False

Description Run SCMGO in test mode.

LoadEngine

Type String

Description The path to the file from which to load the engine configuration. Replaces the Engine
block.

LoadSystem

Type Block

Description Block that controls reading the chemical system from a KF file instead of the [System]
block.

File

Type String

Description The path of the KF file from which to load the system.

Section

Type String

Default value Molecule

Description The section on the KF file from which to load the system.

MolecularDynamics

Type Block

Description Configures molecular dynamics (with the velocity-Verlet algorithm) with and without
thermostats. This block allows to specify the details of the molecular dynamics calculation.

Barostat

Type Block

Description This block allows to specify the use of a barostat during the simulation.

Duration

Type Integer List

Description Specifies how many steps should a transition from a particular pressure to the
next one in sequence take.

Equal

Type Multiple Choice

Default value None

Options [None, XYZ, XY, YZ, XZ]

Description Enforce equal scaling of the selected set of dimensions. They will be barostatted
as one dimension according to the average pressure over the components.

Pressure

11.2. Summary of all keywords 105

AMS Manual, ADF Modeling Suite 2018

Type Float List

Unit Pascal

Description Specifies the target pressure.

Scale

Type Multiple Choice

Default value XYZ

Options [XYZ, Shape, X, Y, Z, XY, YZ, XZ]

Description Dimensions that should be scaled by the barostat to maintain pressure. Selecting
Shape means that all three dimensions and also all the cell angles are allowed to change.

Tau

Type Float

Unit Femtoseconds

Description Specifies the time constant of the barostat.

Type

Type Multiple Choice

Default value None

Options [None, Berendsen, MTK]

Description Selects the type of the barostat.

CalcPressure

Type Bool

Default value False

Description Calculate the pressure in periodic systems. This may be computationally expensive
for some engines that require numerical differentiation. Some other engines can calculate the
pressure for negligible additional cost and will always do so, even if this option is disabled.

Checkpoint

Type Block

Description Sets the frequency for storing the entire MD state necessary for restarting the cal-
culation.

Frequency

Type Integer

Description Write the MD state and engine-specific data to the respective .rkf files once
every N steps. The default is the total number of steps divided by 4.

InitialVelocities

Type Block

Description Sets the frequency for printing to stdout and storing the molecular configuration on
the .rkf file.

File

Type String

106 Chapter 11. Keywords

AMS Manual, ADF Modeling Suite 2018

Description AMS RKF file containing the initial velocities.

Temperature

Type Float

Unit Kelvin

Description Sets the temperature for the Maxwell-Boltzmann distribution when the type
of the initial velocities is set to random, in which case specifying this key is mandatory.
ADFinput will use the thermostat temperature as default.

Type

Type Multiple Choice

Default value Zero

Options [Zero, Random, FromFile, Input]

Description Specifies the initial velocities to assign to the atoms. Three methods to assign
velocities are available. Zero: All atom are at rest at the beginning of the calculation. Ran-
dom: Initial atom velocities follow a Maxwell-Boltzmann distribution for the temperature
given by the [MolecularDynamics%InitialVelocities%Temperature] keyword. FromFile:
Load the velocities from a previous ams result file. Input: Atom’s velocities are set to the
values specified in the key [MolecularDynamics%InitialVelocities%Values].

Values

Type Non-standard block

Description This block specifies the velocity of each atom when [MolecularDynam-
ics%InitialVelocities%Type] is set to Input. Each row must contain three floating point
values (corresponding to the x,y,z component of the velocity vector) and a number of
rows equal to the number of atoms must be present, given in the same order as the [Sys-
tem%Atoms] block.

NSteps

Type Integer

Default value 1000

Description The number of steps to be taken in the MD simulation.

Preserve

Type Block

Description Periodically remove numerical drift accumulated during the simulation to preserve
different whole-system parameters.

AngularMomentum

Type Bool

Default value True

Description Remove overall angular momentum of the system. This option is ignored for
3D-periodic systems.

CenterOfMass

Type Bool

Default value False

11.2. Summary of all keywords 107

AMS Manual, ADF Modeling Suite 2018

Description Translate the system to keep its center of mass at the coordinate origin. This
option is not very useful for 3D-periodic systems.

Momentum

Type Bool

Default value True

Description Remove overall (linear) momentum of the system.

Print

Type Block

Description This block controls the printing of additional information to stdout.

System

Type Bool

Default value False

Description Print the chemical system before and after the simulation.

Velocities

Type Bool

Default value False

Description Print the atomic velocities before and after the simulation.

Restart

Type String

Description The path to the ams.rkf file from which to restart the simulation.

Thermostat

Type Block

Recurring True

Description This block allows to specify the use of a thermostat during the simulation. Depend-
ing on the selected thermostat type, different additional options may be needed to character-
ize the specific thermostat’ behavior.

BerendsenApply

Type Multiple Choice

Default value Global

Options [Local, Global]

Description Select how to apply the scaling correction for the Berendsen thermostat: - per-
atom-velocity (Local) - on the molecular system as a whole (Global).

ChainLength

Type Integer

Default value 10

Description Number of individual thermostats forming the NHC thermostat

Duration

108 Chapter 11. Keywords

AMS Manual, ADF Modeling Suite 2018

Type Integer List

Description Specifies how many steps should a transition from a particular temperature to
the next one in sequence take.

FirstAtom

Type Integer

Default value 1

Description Index of the first atom to be thermostatted

LastAtom

Type Integer

Default value 0

Description Index of the last atom to be thermostatted. A value of zero means the last atom
in the system.

ScaleFrequency

Type Integer

Description Optional parameter used only by the Scale thermostat. If specified, the thermo-
stat will be applied every N steps, using that step’s ensemble temperature and the specified
thermostat temperature to compute the scaling factor. If not specified, the thermostat will
be applied at every step, using the mean temperature of the ensemble and the specified
thermostat temperature to compute the scaling factor.

Tau

Type Float

Unit Femtoseconds

Description The time constant of the thermostat. Mandatory in case the Berendsen or NHC
thermostat is used.

Temperature

Type Float List

Unit Kelvin

Description The target temperature of the thermostat. This key is mandatory for the Scale
and Berendsen thermostats.

Type

Type Multiple Choice

Default value None

Options [None, Scale, Berendsen, NHC]

Description Selects the type of the thermostat.

TimeStep

Type Float

Default value 0.25

Unit Femtoseconds

Description The time difference per step.

11.2. Summary of all keywords 109

AMS Manual, ADF Modeling Suite 2018

Trajectory

Type Block

Description Sets the frequency for printing to stdout and storing the molecular configuration on
the .rkf file.

SamplingFreq

Type Integer

Description Write the the molecular geometry (and possibly other properties) to the .rkf file
once every N steps. The default is the total number of steps divided by 1000.

NumericalDifferentiation

Type Block

Description Define options for numerical differentiations, that is the numerical calculation of gra-
dients, Hessian and the stress tensor for periodic systems.

NuclearStepSize

Type Float

Default value 0.0001

Unit Bohr

Description Step size for numerical nuclear gradient calculation.

Parallel

Type Block

Description Numerical differentiation is an embarrassingly parallel problem. Double paral-
lelization allows to split the available processor cores into groups working through all the
available tasks in parallel, resulting in a better parallel performance. The keys in this block
determine how to split the available processor cores into parallelly working groups.

nCoresPerGroup

Type Integer

Description Number of cores in each parallelly working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

StrainStepSize

Type Float

Default value 0.001

Description Step size (relative) for numerical stress tensor calculation.

110 Chapter 11. Keywords

AMS Manual, ADF Modeling Suite 2018

NumericalPhonons

Type Block

Description Configures details of a numerical phonons calculation.

DoubleSided

Type Bool

Default value True

Description By default a two-sided (or quadratic) numerical differentiation of the nuclear gra-
dients is used. Using a single-sided (or linear) numerical differentiation is computationally
faster but much less accurate. Note: In older versions of the program only the single-sided
option was available.

Interpolation

Type Integer

Default value 100

Description Use interpolation to generate smooth phonon plots.

NDosEnergies

Type Integer

Default value 1000

Description Nr. of energies used to calculate the phonon DOS used to integrate thermodynamic
properties. For fast compute engines this may become time limiting and smaller values can
be tried.

Parallel

Type Block

Description Computing the phonons via numerical differentiation is an embarrassingly parallel
problem. Double parallelization allows to split the available processor cores into groups
working through all the available tasks in parallel, resulting in a better parallel performance.
The keys in this block determine how to split the available processor cores into parallelly
working groups. Keep in mind that the displacements for a phonon calculation are done on a
super-cell system, so that every task requires more memory than the central point calculated
using the primitive cell.

nCoresPerGroup

Type Integer

Description Number of cores in each parallelly working group.

nGroups

Type Integer

Description Total number of processor groups. This is the number of tasks that will be
executed in parallel.

nNodesPerGroup

Type Integer

Description Number of nodes in each group. This option should only be used on homoge-
neous compute clusters, where all used compute nodes have the same number of processor
cores.

11.2. Summary of all keywords 111

AMS Manual, ADF Modeling Suite 2018

StepSize

Type Float

Default value 0.04

Unit Angstrom

Description Step size to be taken to obtain the force constants (second derivative) from the
analytical gradients numerically.

SuperCell

Type Non-standard block

Description Used for the phonon run. The super lattice is expressed in the lattice vectors. Most
people will find a diagonal matrix easiest to understand.

UseSymmetry

Type Bool

Default value True

Description Whether or not to exploit the symmetry of the system in the phonon calculation.

PESScan

Type Block

Description Configures the details of the potential energy surface scanning task.

CalcPropertiesAtPESPoints

Type Bool

Default value False

Description Whether to perform an additional calculation with properties on all the sampled
points of the PES. If this option is enabled AMS will produce a separate engine output file
for every sampled PES point.

FillUnconvergedGaps

Type Bool

Default value True

Description After the initial pass over the PES, restart the unconverged points from converged
neighbouring points.

ScanCoordinate

Type Block

Recurring True

Description Specifies a coordinate along which the potential energy surface is scanned. If this
block contains multiple entries, these coordinates will be varied and scanned together as if
they were one.

Angle

Type String

Recurring True

Description Scan the angle between three atoms. Three atom indices followed by two real
numbers delimiting the transit range in degrees.

112 Chapter 11. Keywords

AMS Manual, ADF Modeling Suite 2018

Coordinate

Type String

Recurring True

Description Scan a particular coordinate of an atom. Atom index followed by (x|y|z) fol-
lowed by two real numbers delimiting the transit range.

Dihedral

Type String

Recurring True

Description Scan the dihedral angle between four atoms. Four atom indices followed by
two real numbers delimiting the transit angle in degrees.

Distance

Type String

Recurring True

Description Scan the distance between two atoms. Two atom indices followed by two real
numbers delimiting the transit distance in Angstrom.

nPoints

Type Integer

Default value 10

Description The number of points along the scanned coordinate. Must be greater or equal 2.

Print

Type Block

Description This block controls the printing of additional information to stdout.

Timers

Type Multiple Choice

Default value None

Options [None, Normal, Detail, TooMuchDetail]

Description Printing timing details to see how much time is spend in which part of the code.

Properties

Type Block

Description Configures which AMS level properties to calculate for SinglePoint calculations or
other important geometries (e.g. at the end of an optimization).

ElasticTensor

Type Bool

Default value False

Description Whether or not to calculate the elastic tensor.

Gradients

Type Bool

11.2. Summary of all keywords 113

AMS Manual, ADF Modeling Suite 2018

Default value False

Description Whether or not to calculate the gradients.

Hessian

Type Bool

Default value False

Description Whether or not to calculate the Hessian.

NormalModes

Type Bool

Default value False

Description Whether or not to calculate the normal modes of vibration (and of molecules the
corresponding Ir intensities.)

Other

Type Bool

Default value True

Description Other (engine specific) properties. Details are configured in the engine block.

Phonons

Type Bool

Default value False

Description Whether or not to calculate the phonons for periodic systems.

SelectedAtomsForHessian

Type Integer List

Description Compute the Hessian matrix elements only for the atoms defined in this list (index).
If not specified, the Hessian will be computed for all atoms.

StressTensor

Type Bool

Default value False

Description Whether or not to calculate the stress tensor.

Symmetry

Type Block

Description Specifying details about the details of symmetry detection and usage.

Tolerance

Type Float

Default value 1e-07

Description Tolerance used to detect symmetry in the system.

System

Type Block

Description Specification of the chemical system.

114 Chapter 11. Keywords

AMS Manual, ADF Modeling Suite 2018

AtomMasses

Type Non-standard block

Description User defined atomic masses.

Atoms

Type Non-standard block

Description The atom types and coordinates. Unit can be specified in the header. Default unit
is Angstrom.

BondOrders

Type Non-standard block

Description Defined bond orders. May by used by MM engines.

Charge

Type Float

Default value 0.0

Description The system’s total charge in atomic units (only for non-periodic systems).

FractionalCoords

Type Bool

Default value False

Description Whether the atomic coordinates in the Atoms block are given in fractional coordi-
nates of the lattice vectors. Requires the presence of the Lattice block.

GeometryFile

Type String

Description Read geometry from an file instead of Atoms and Lattice and blocks. Supported
formats: .xyz

Lattice

Type Non-standard block

Description Up to three lattice vectors. Unit can be specified in the header. Default unit is
Angstrom.

LatticeStrain

Type Float List

Description Deform the input system by the specified strain. The strain elements are in Voigt
notation, so one should specify 6 numbers for 3D periodic system (order: xx,yy,zz,yz,xz,xy),
3 numbers for 2D periodic systems (order: xx,yy,xy) or 1 number for 1D periodic systems.

RandomizeCoordinates

Type Float

Default value 0.0

Unit Angstrom

Description Apply a random noise to the atomic coordinates. This can be useful if you want to
deviate from an ideal symmetric geometry.

11.2. Summary of all keywords 115

AMS Manual, ADF Modeling Suite 2018

RandomizeStrain

Type Float

Default value 0.0

Description Apply a random strain to the system. This can be useful if you want to deviate
from an ideal symmetric geometry, for example if you look for a phase change due to high
pressure.

SuperCell

Type Integer List

Description Create a supercell of the input system (only possible for periodic systems). The
integer numbers represent the diagonal elements of the supercell transformation; you should
specify as many numbers as lattice vectors (i.e. 1 number for 1D, 2 numbers for 2D and 3
numbers for 3D periodic systems).

Task

Type Multiple Choice

Options [SinglePoint, GeometryOptimization, TransitionStateSearch, PESScan, MolecularDynam-
ics, Idle, SteepestDescent, ModeTracking, ScanFreq, TestEngine, TestSymmetry]

Description This key is used to specify the computational task to perform.

TransitionStateSearch

Type Block

Description Configures some details of the transition state search.

ModeToFollow

Type Integer

Default value 1

Description In case of Transition State Search, here you can specify the index of the normal
mode to follow (1 is the mode with the lowest frequency).

UseSymmetry

Type Bool

Default value True

Description Whether to use the system’s symmetry at the application level.

116 Chapter 11. Keywords

INDEX

A
ADF, 45
AMS input file, 51
ams.rkf, 4
AMS_JOBNAME, 91
AMS_RESULTSDIR, 91
AMS_SWITCH_LOGFILE_AND_STDOUT, 91
Applications, 9
Atomic Masses, 8
Available engines, 45

B
BAND, 45
Barostats, 33
Block contraints, 15
Bulk modulus, 39

C
Cell optimization, 13
Charge, 8
Compute clusters, 57
Conjugate gradients (geometry optimizer), 21
Constrained optimization, 14
Constraints, 14

D
Developer options, 91
DFTB, 45
Double parallelism, 54

E
Elastic properties, 39
Elastic tensor, 39
Engine input, 45
Engine output files, 4
Engines, 43
Environment variables, 91
External engines, 45

F
FIRE (geometry optimizer), 19

Fixed atoms, 14
Forces, 37
Fractional coordinates, 6

G
Geometry constraints, 14
Geometry convergence, 12
Geometry optimization, 11
Geometry optimization methods, 15
Geometry relaxation, 11

H
Hessian, 38

I
Infrared spectroscopy, 38
Initial Hessian, 17
Input file syntax, 51
Interface to external programs, 45
IR spectrum, 38
Isotopes, 8

J
Job name, 91

L
Lattice optimization, 13
Lattice Vectors, 6
Lattice vibrations, 41
Lennard-Jones potential, 49
Linear Transit, 23

M
Molecular dynamics, 27
Molecular dynamics checkpoint, 35
Molecular vibrations, 38
MOPAC, 45

N
Normal modes of vibration, 38
Nuclear gradients, 37

117

AMS Manual, ADF Modeling Suite 2018

P
PES point properties, 36
PES Scan, 23
Phonons, 41
PLAMS, 58
Pressure (geometry optimization), 13
Pressure (molecular dynamics), 34
Python, 58

Q
Quasi-Newton (geometry optimizer), 16

R
ReaxFF, 45
Restart (Geometry), 8
Restart (molecular dynamics), 29
Results directory, 57
Run types, 9

S
Scan coordinate, 24
SCM_TMPDIR, 58
SCMGO (geometry optimizer), 18
Scratch directory, 58
Scripting, 58
Shear modulus, 39
Single point calculation, 11
Starting directory, 57
Stress tensor, 38
Structure relaxation, 11
Super Cell, 7

T
Task farming, 54
Tasks, 9
Temperature (molecular dynamics), 34
Temporary directory, 58
Thermostat, 31
Trajectory sampling, 34
Transition state search, 22
Two-level parallelism, 54

U
UFF, 45

V
Vibrations, 38

X
XYZ file format, 91

Y
Young modulus, 39

118 Index

	General
	Overview
	Motivation and progress
	Input, execution and output

	System definition
	System geometry
	Additional system properties
	Restoring a system from disk

	Exploring the PES: Tasks
	Single point calculations
	Geometry optimization
	Constrained optimization
	Optimization methods
	Quasi-Newton
	SCMGO
	FIRE
	Conjugate gradients

	Troubleshooting

	Transition state search
	PES scan
	Troubleshooting

	Molecular dynamics
	General
	(Re-)Starting a simulation
	Thermostats and barostats
	Temperature and pressure regimes

	Trajectory sampling and output

	PES point properties
	Nuclear gradients and stress tensor
	Hessian and normal modes of vibration
	Elastic tensor
	Phonons

	Engines
	Available engines
	External programs as engines
	Toy engines

	Technical topics
	Input syntax
	General remarks on input structure and parsing
	Keys
	Blocks
	Units

	Double parallelism
	Running AMS on compute clusters
	Python interface

	Examples
	Geometry optimization
	Example: Simple geometry optimization
	Example: Two-stage geometry optimization with initial Hessian
	Example: Periodic lattice optimization under pressure
	Example: Constrained optimizations

	Transition state search
	Example: TS search starting from initial Hessian
	Example: PES scan and TS search for H2 on graphene

	PES scan
	Example: Linear transit
	Example: 2D PES scan

	Molecular dynamics
	Example: Simple MD for H2
	Example: MD for a box of water

	PES point properties
	Example: Phonons for graphene
	Example: Phonons with isotopes
	Example: Elastic tensor

	Appendices
	Environment variables
	Extended XYZ file format
	Developer options

	Required citations
	References
	Keywords
	Links to manual entries
	Summary of all keywords

	Index

