
Installation Manual
ADF Modeling Suite 2016

www.scm.com

November 18, 2016

CONTENTS

1 Linux Quickstart Guide 1

2 Introduction 3
2.1 Requirements . 3

3 Installation 7
3.1 Decide which version to install . 7
3.2 Download and install the software . 8
3.3 Set up the environment . 8
3.4 Set up the license . 9
3.5 Set up the scratch space . 13
3.6 Test your installation . 14
3.7 Configure ADFjobs queues and 3rd party software (optional) . 16

4 Compiling ADF from Sources 19
4.1 Unpacking the distribution . 19
4.2 Setting up environment . 19
4.3 Running Install/configure . 20
4.4 Compiling ADF . 20

5 Additional Information and Known Issues 21
5.1 More on running MPI jobs . 21
5.2 More about IBM Platform MPI . 22
5.3 IntelMPI and SLURM . 23
5.4 Corrupted License File . 23
5.5 Windows: running jobs from the command line . 24

6 Appendix A. Environment Variables 25
6.1 More on the SCM_TMPDIR variable . 26

7 Appendix B. Directory Structure of the ADF Package 29
7.1 The bin directory . 29
7.2 The atomicdata directory . 29
7.3 The examples directory . 29
7.4 The source code (adf, band, libtc, Install, ...) . 29
7.5 The Doc directory . 30
7.6 The scripting directory . 30

i

ii

CHAPTER

ONE

LINUX QUICKSTART GUIDE

This quickstart guide is for installing ADF on a Linux desktop/laptop machine. For cluster installations please read
the generic Installation manual (page 7)

Start with downloading ADF2016 for Linux from the main download page
(http://www.scm.com/support/downloads/), and save it in your Downloads folder. You do not need to open the
file.

Now open a terminal (Ctrl+Alt+T usually works, otherwise browse your application menus), and run the commands
below to extract the download into your homefolder. Make sure to replace the adf2016.101.pc64_linux.intelmpi
part to match the name of the file you downloaded (in case of a newer version, or if you downloaded a snapshot or
development version). Try to use copy and paste (right-click with your mouse in the terminal screen to paste) to avoid
mistyping the commands.

cd $HOME
tar -xf $HOME/Downloads/adf2016.101.pc64_linux.intelmpi.tgz

Run the following command to source the adfrc.sh file, do not forget the dot and space at the beginning of the line!
Also make sure to replace 2016.101 with the version you downloaded.

. $HOME/adf2016.101/adfrc.sh

Start up the GUI with this command:

adfjobs &

If this does not open a gui, then use your mouse to select all the text in the terminal window, copy it (right-click and
select copy), and send us an email at support@scm.com with the text. DO NOT PROCEED WITH THE NEXT STEP!

If the ADF GUI started without problems, go back to ther terminal window and run the following command to create
a desktop icon for ADF:

$ADFBIN/create_linux_icon.sh

Finally we can set up our terminal to automatically source the adfrc.sh file when starting. Add the source command
to the .bashrc file with the following command in the terminal window:

echo '. $HOME/adf2016.101/adfrc.sh' >> $HOME/.bashrc

You can also open the .bashrc file in a text editor, and manually paste the part between the quotes on a new line at the
end of the file.

1

http://www.scm.com/support/downloads/
mailto:support@scm.com

Installation Manual, ADF Modeling Suite 2016

2 Chapter 1. Linux Quickstart Guide

CHAPTER

TWO

INTRODUCTION

The Installation Manual describes installation of the ADF program package on the platforms on which it is supported.
For optimal performance, some system specific tuning may be needed. Therefore, it is strongly recommended to also
read Chapter 4 of this document.

The ADF package consists of the following main classes of programs:

• Computational engines: ADF, BAND, COSMO-RS, DFTB, and ReaxFF. Each of the engines has its own (text-
based) input and output and can be used as a standalone program from scripts and the command line. Within
this manual we will use the word ADF for all computational engines.

• Utilities and property programs. These are used primarily for pre- and post-processing data of the computational
engines.

• Graphical user interface, which is used to prepare input for computational engines and to visually present their
results.

You will always install the complete ADF package at once and your license file will determine which of the function-
ality may be used.

The whole ADF package is written with the Unix-like environment in mind. Some knowledge of Unix may or may
not be required depending on the operating system on which you are going to use ADF. It also depends on whether
you are going to use ADF via the GUI only or also from the command line. For example, if you are going to use ADF
from within the GUI on Windows or Mac OS X, then you do not need to know anything about Unix. If you are going
to use ADF from the command line then you will need to know how to write shell scripts and have some knowledge
of the environment variables. If you the one who is going to install the package on a Unix-like system, such as Linux,
then you need to know how to modify shell resource files such as .bashrc.

2.1 Requirements

Hardware and software requirements for the ADF package depend on the platform. The list of supported platforms,
including information on the operating system, parallel environment (MPI), and compilers used is available in the
Download section (http://www.scm.com/support/downloads/) of our web site.

2.1.1 Hardware requirements

Memory

In a parallel calculation, the total amount of memory used by the job is a sum of that used by each process. Starting
from ADF2010, some large chunks of data are placed in the shared memory so the sum rule does not strictly hold. In
principle, it is more correct to count memory per process but since ADF is an MPI program it runs most efficiently
when the number of processes corresponds to the number of physical processors cores. Therefore, all memory amounts
below are per processor core.

3

http://www.scm.com/support/downloads/

Installation Manual, ADF Modeling Suite 2016

The amount of RAM per core needed to run ADF depends greatly on the kind of calculation you perform. For small
calculations, 256 MB will be sufficient, but if there is a lot of memory available ADF may run significantly faster. A
large amount memory also reduces the load on the disks, which may speed up your calculation depending on the I/O
sub-system and the operating system.

The memory requirement increases with the system size. For example, for a molecule containing 100 atoms with a DZ
basis set it may be sufficient to have 256 MB but for a molecule with 1000 atoms up to 8 gigabytes may be required.
Also, if you are going to perform TDDFT, relativistic spin-orbit or analytical frequency calculations then the amount
of memory should be larger. As an indication, an analytical vibrational frequency calculation of a organometallic
complex containing 105 atoms with a TZP basis set uses up to 1GB of RAM per process but it can be done with less,
even though not as efficiently.

Disk

For installation of the package on Linux/Unix you need from about 1GB (without sources) to 3GB (with sources and
compiled objects). The run-time (scratch) disk space requirements greatly depend on what type of calculation you
perform. For the ADF program, it may range from a few megabytes for a small molecule up to a hundred gigabytes
for a large molecule with a large basis set, the amount scaling quadratically with the system size. BAND calculations
typically require a lot more disk space than ADF for a system of a similar size. You may need anywhere from a few to
hundreds of gigabytes of free disk space at run time.

Network

First of all, on the most popular systems (Linux, Mac OS and Windows) a network card must be present in the computer
as its hardware MAC address is used as the computer’s ID for the licensing. Besides that, when using Platform-MPI,
the computer must be connected to a (possibly virtual) network and have a valid IP address. The IP address must not
change while an MPI job is running. The latter is mostly relevant for laptop users.

In order to enable MPI on a standalone Windows computer, one may need to create a dummy network connection by
adding a network “card” called Microsoft Loopback Adapter. This interface will be assigned an IP address from a
private range.

Multi-host parallel performance. As far as performance concerned, a switched Gigabit Ethernet network is typically
sufficient for good parallel performance on up to four nodes. If you are going to use more nodes you may need faster
communication hardware, such as Infiniband, to get good performance. Please note that multi-host execution is not
supported on Windows.

2.1.2 Software requirements

Operating System

The package runs on Windows and on the following Unix variants: Linux (x86-64, PowerPC), Mac OS X.

On the Apple systems the 64-bit ADF version is supported on Mac OS X 10.9 and newer.

The Windows version of ADF is supported on XP with Service Pack 3, Vista, Windows 7 and newer.

Additional libraries

Certain version of ADF will require different libraries to be installed on the system depending on the MPI library used.
For Platform-MPI on Linux, the libxml2 library must be installed.

Graphics

In order to run the the graphical user interface (GUI) the computer needs to have an OpenGL-capable graphics subsys-
tem (hardware, drivers and libraries). Besides that, on Linux the following (or equivalent) packages must be installed:

fontconfig-2.4.1
freetype-2.2.1
libdrm-2.0.2

4 Chapter 2. Introduction

Installation Manual, ADF Modeling Suite 2016

libICE-1.0.1
libSM-1.0.1
libstdc++-4.1.2
libX11-1.0.3
libXau-1.0.1
libXdmcp-1.0.1
libXext-1.0.1
libXft-2.1.10
libXrender-0.9.1
libXScrnSaver-1.1.0 (Ubuntu users may need to install libXss1)
libXt-1.0.2
libXxf86vm-1.0.1
mesa-libGL-6.5.1
mesa-libGLU-6.5.1

The GUI will not able to start without shared libraries provided by these packages.

Compiler

If you have a license for the source code, you can compile the source yourself, with or without your own modifications.

The source consists mainly of Fortran95 code, with some small parts written in C. Some of the Fortran2003 features
are also used so a compiler supporting it is required. You must use object-compatible Fortran and C compilers to
those we are using on the same platform, since some parts of the code are available only as object modules. For all
x86 platforms it is currently Intel Fortran 15 or gFortran 4.8 or newer, for PowerPC it is IBM XL Fortran 15.1. It is
very unlikely that other compilers, or even a different major version of the same compiler, will work with these object
modules. We cannot support compilers different from what we are using ourselves.

To check which compiler to use, check the detailed machine information on the Download section of our web site.

2.1. Requirements 5

Installation Manual, ADF Modeling Suite 2016

6 Chapter 2. Introduction

CHAPTER

THREE

INSTALLATION

Typically installation of the ADF package is simple and straightforward. If you have problems installing it, contact us
for assistance at support@scm.com.

To install the ADF package you have to go through the following steps:

• 1. Decide which version to install (page 7)

• 2. Download and install the software (page 8)

• 3. Set up environment (page 8)

• 4. Set up the license (page 9)

• 5. Set up the scratch space (page 13)

• 6. Test your installation (page 14)

• 7. Configure ADFjobs queues and 3rd party software (optional) (page 16)

Below we discuss each step separately.

3.1 Decide which version to install

Choose the released version or a snapshot. Normally, you will install the released version
from the main download page (http://www.scm.com/support/downloads/). The bug-fixed binaries
(http://www.scm.com/support/downloads/bug-fixes/) contains the most recent bug fixes. You may want to in-
stall a snapshot version if you know that some bugs have been fixed recently. The development snapshots page
(http://www.scm.com/support/downloads/development-snapshots/) contains the latest developments. You will only
want to download it if you need to use the latest functionality not available in ADF2016.

Choose a platform. ADF is available for a number of platforms. A platform is a combination of the processor
architecture, operating system, MPI implementation, and the “bitness” of the address space: 32 or 64. Currently, the
following platforms are officially supported and available from our website:

• Linux:

• x86-64 (64-bit): IntelMPI, OpenMPI, Platform-MPI, SGI MPT, Cray MPI

• Mac OS X Mavericks and later (10.9+, including El Capitan): x86-64 (64-bit)

• Windows: Intel-MPI on both x86 (32-bit) and x64 (64-bit)

• Itanium2 (ia64) is not supported because there is no suitable Fortran2003 compiler for this architecture

32 vs. 64 bits. Generally, if your processor and operating system support 64-bit addressing, you should install the
64-bit version. It allows to run larger calculations than a 32-bit version. There is generally no or very small speed

7

mailto:support@scm.com
http://www.scm.com/support/downloads/
http://www.scm.com/support/downloads/bug-fixes/
http://www.scm.com/support/downloads/development-snapshots/

Installation Manual, ADF Modeling Suite 2016

difference between 32- and 64-bit versions. The 32-bit version should only be installed on 32-bit operating systems.
For Mac OS only a 64-bit version is available.

Choose MPI (on Linux). For the Linux-on-PowerPC users the choice is easy, they have to use an IBM POE version
of ADF. For Linux systems running on AMD Opteron or Intel Xeon processors the choice depends on which MPI
implementations can run on your hardware. Users of SGI should download a version specifically built for their
platform, if available.

Cray XC. Cray users can use the IntelMPI version because it is binary-compatible with Cray MPI shared libraries.
Read the MPICH ABI compatibility section in the Cray documentation for more information.

Platform-MPI vs. IntelMPI: The choice depends on the cluster interconnect used on your system and the batch
system. In general we recommend installing the IntelMPI version on system with Ethernet or Infiniband interconnect
with uDAPL library. If uDAPL is not available but IBverbs or PSM is, then the recommended MPI is Platform-MPI.
Users with a SLURM batch system should always install an IntelMPI version. The Platform-MPI or IntelMPI runtime
environment is distributed with the corresponding ADF version.

GPU acceleration: ADF can use NVidia GPUs for accelerating SCF cycles and frequency calculations. The GPU
should have good double precission performance, compute capability 2.0 and the operating system needs to be Linux.
See the ADF manual on GPU Acceleration for details.

3.2 Download and install the software

All systems: Download an installation package from one of the download pages mentioned above.

Unix and Linux: The installation package is a compressed tar archive. Untar it in the directory of your choice. Please
note that in a cluster environment ADF must be installed on a shared file system accessible from all nodes of the
cluster. The archive contains one directory, adf2016.xxx, which, when installed, will be referred to as $ADFHOME.

Mac OS X: The installation package is a disk image (.dmg) file. To install ADF on Mac OS X, double click on the
downloaded disk image and drag ADF2016.xxx somewhere on your hard disk, such as the Applications directory. Be
sure to read the enclosed ReadMe file for further important details!

Windows: The downloaded file is an executable Microsoft Installer package containing an installation wizard that will
guide you through the installation process. Open the file after downloading. Please note that you need Administrator
privileges to install ADF.

3.3 Set up the environment

Windows users can skip to the next section since for them the environment is modified by the installation wizard.

Mac users may follow the UNIX instructions if they (also) wish to run from the command line. However, read
the ReadMe file inside the dmg file for some important extra details! Alternatively, Mac users can start by double
clicking the ADF2016.xxx application. The ADF2016.xxx application will automatically set the environment, and
start ADFjobs for you. Next, all tasks (GUI or compuational engines) started from this ADFjobs will inherit the proper
environment. In older distributions ADFLaunch was used, it has been replaced by the ADF2016.xxx application.

For users of any Unix-like system the following step is mandatory.

For a single-user installation, the end-user is likely also the person installing ADF. In this case it should be sufficient
to edit the $ADFHOME/adfrc.sh (for bash users) or $ADFHOME/adfrc.csh (for tcsh users) file to set a number of
important environment variables and source the file in your shell resource file (for bash):

. $HOME/adf2016.xxx/adfrc.sh

or (for tcsh)

8 Chapter 3. Installation

Installation Manual, ADF Modeling Suite 2016

source $HOME/adf2016.xxx/adfrc.csh

For a multi-user installation, you can either copy both adfrc.* files to the /etc/profile.d directory (after editing them)
or, if your system supports modules, create a module file for ADF2016. The following environment variables must be
defined in the module file:

• ADFHOME: ADF installation directory

• ADFBIN: should be equal to $ADFHOME/bin

• ADFRESOURCES: should be equal to $ADFHOME/atomicdata

• SCMLICENSE: complete path of the license file, typically $ADFHOME/license.txt

• SCM_TMPDIR: path to the user’s scratch directory, for example, /scratch/$USER. This directory must exist
prior to the first execution of any program from the ADF package by that user. Thus it may be a good idea to
add to the user’s profile a command that creates the directory in case it does not exist. You can also choose to
use the same directory for all users. See Section 2.5 for more details.

A complete list of environment variables is provided in Appendix A.

3.4 Set up the license

Which functionality can be used on each computer is determined by the license file pointed to by the SCMLICENSE
environment variable.

When you start any program from the ADF package (like ADF, BAND, ADFjobs or ADFinput) it will try to install a
license file for you if necessary. To do this, some information is needed:

3.4. Set up the license 9

Installation Manual, ADF Modeling Suite 2016

e-mail: Your e-mail address, this may be used to contact you and send you a license file.

SCM userid (uxxxxx): The same as the download login you should have received.

Password: The download password belonging to the SCM userid

Remember: If checked, the SCM userid and password will be saved on your computer, so you do not have to enter
them again. They are saved in a readable format, so only do this on a computer and account you trust.

Get license without user confirmation: If checked, a license request will automatically be issued
when necessary, without user intervention. The intended use is for running on clusters, or for use in class-
room/workshop situations. It will work only after arranging this with SCM first.

Click OK to request and install a license to run on your current machine. The information will be sent to the SCM
license server.

If a license is available, or can be generated by the license server (for trial users) it will be installed automatically.

10 Chapter 3. Installation

Installation Manual, ADF Modeling Suite 2016

Obviously you will need to have an internet connection with access to the outside world for this to work.

For Non-trial users, license requests are handled manually. After some time (between hours and days) you will be
notified by mail that a license file has been prepared for you.

Run the software again (on the same machine with the same SCM userid), and in many cases the license will au-
tomatically be installed for you. If not, follow the “Manual license installation” instructions (further down on this
page).

Click Cancel when you do not want to request a license to run on the current machine, if your machine has no internet
connection, or if you wish to request and install a license file manually.

A window will appear (either a regular Text editor on your system, or the (License Update Status) appears telling you
a license is needed:

It will show the info that needs to be mailed to SCM to get a license. You can copy that information to your clipboard
by clicking the Copy Info button, or the usual copy tool in your editor.

3.4. Set up the license 11

Installation Manual, ADF Modeling Suite 2016

Next, mail this information to license@scm.com if you indeed wish to request a license for this machine.

After some time (hours-days as the license request is processed manually) you should receive a mail from SCM
containing the license file.

You have receive a new license file via email. Do not make any changes to it, as that will break the license!

Mac users can normally just drop the license file on the ADF2016 application icon.

Other users should save the license file such that $SCMLICENSE points to it. Note the value of SCMLICENSE was
shown in the License Update Status dialogue.

The default location of the license file (for Windows and the default SCMLICENSE value from a adfrc.* file) is set
to $ADFHOME/license.txt, which means you should save the file as license.txt in the ADF installation directory. For
macs the default location is “$HOME/Library/Application Support/SCM/license.txt”.

Unix-like users can generate the license information by running the following command at the shell prompt in a
terminal window:

$ADFBIN/dirac info

Output of this command from all computers on which ADF will be running, including all nodes of a cluster if appli-
cable, must be sent to license@scm.com.

After receiving this information SCM will prepare a license file matching your license conditions and e-mail it to you
with instructions on how to install it.

After receiving your license file you will need to save it so that $SCMLICENSE points to it.

In a multi-user environment, make sure that permissions on the license file allow read access for everyone who is going
to run ADF.

3.4.1 Floating license

Note: floating licenses are not supported on Windows.

If you have a floating license, you will need to follow these instructions below to set it up. The instructions are simple,
but it is important you follow them exactly.

If you do not have a floating license you may skip this section.

Create a floating license directory

Make a new directory, for example FloatADF, to keep track of the running ADF processes.

This FloatADF directory must be:

• in a fixed location (the directory name should not change!)

• shared between / mounted on all nodes where you want to run ADF

• writable by all users that want to run ADF

• FloatADF must not be a subdirectory of $ADFHOME

For example:

cd /usr/share
mkdir FloatADF
chmod 1777 FloatADF

If you also have a floating license for other modules, you need to set up different directories and repeat this procedure
for all these modules (for example FloatBAND, FloatReaxFF, FloatDFTB, ...)

12 Chapter 3. Installation

mailto:license@scm.com
mailto:license@scm.com

Installation Manual, ADF Modeling Suite 2016

In the example, we have given all users read, write and execute permissions to this directory. If you wish to restrict
this for security reasons, you may do so as long as all ADF users will have read, write and search permission for this
directory. You may create an ADF user group for this purpose.

Important: the directory should not be a sub-directory of $ADFHOME as the directory name will change if you
update to a new version! Also, do not put the license.txt file in the FloatADF directory.

The FloatADF directory may not be moved, deleted or renamed for the duration of your license because these
actions will invalidate it!

E-mail us the license information Send the result of the following commands (using again the name FloatADF and
the location /usr/share as an example) to license@scm.com:

cd /usr/share
ls -lid $PWD/FloatADF

Please note that output of the ls command must include the full path of the FloatADF directory.

Together with the output of the ls command above, you also need to send us output of the $ADFBIN/dirac info
command from each computer on which ADF will possibly run, as the license file is still host-locked.

In the case of very large clusters, it is often sufficient if you send us the output of the $ADFBIN/dirac info command
from the head node and 2 or 3 compute nodes. As most compute node names have the same beginning, we can then
add them with a wild card (for example Linuxchem*). It is important when you use this facility, to let us know that
the info you are sending are not all compute nodes. Otherwise the license will only run on these few compute nodes.

3.5 Set up the scratch space

Most programs from the ADF package use disk for temporary data. This data often takes a significant amount of space
and is used frequently. To avoid run-time errors and performance loss you may want to make sure that the file system
used for temporary files is both big and fast. The SCM_TMPDIR environment variable is used to tell the programs
where to put their temporary data. Please note that SCM_TMPDIR should always be set. If it is not set then each
process will create its own directory in the current working directory where is was started.

Please see Section 2.3 and Appendix A on additional information about the SCM_TMPDIR variable.

Using multiple disks

Sometimes, if you have multiple non-RAID disks in your system, you may want to spread scratch files across different
physical disks for better performance. It is possible to request that every ADF MPI-rank creates its files in a different
directory by adding “%d” in $SCM_TMPDIR. If a “%d” string is encountered in the value of SCM_TMPDIR variable
it will be replaced by the MPI rank number of the process at run-time. This means, however, that you may have to
create up to 128 or more (depending on the maximum number of processes in one parallel calculation) symbolic links
on each node where ADF is supposed to run. You should also create a directory matching the SCM_TMPDIR’s value
literally so that any process that does not interpret ‘%d’ could also run.

Example: suppose there are two scratch file systems, /scratch1 and /scratch2 located on two different physical disks
of an 8-core workstation. We want the odd rank numbers to use /scratch2 and the even numbers to use /scratch1. One
way to achieve this is to create an empty /scratch directory and create nine symlinks in it as follows:

ln -s /scratch1 /scratch/%d
ln -s /scratch1 /scratch/0
ln -s /scratch2 /scratch/1
ln -s /scratch1 /scratch/2
ln -s /scratch2 /scratch/3
ln -s /scratch1 /scratch/4
ln -s /scratch2 /scratch/5

3.5. Set up the scratch space 13

mailto:license@scm.com

Installation Manual, ADF Modeling Suite 2016

ln -s /scratch1 /scratch/6
ln -s /scratch2 /scratch/7

After that set SCM_TMPDIR to “/scratch/%d” and the ranks 0, 2, 4, 6 will use /scratch1 while ranks 1, 3, 5, and
7 will use /scratch2. When running ADF on a cluster it is better to combine multiple disks in a RAID 0 (striping)
configuration as you probably do not want to create hundreds of symbolic links on each node.

3.6 Test your installation

This is a very important step and it should never be skipped.

3.6.1 Check the license file

Windows users test their license by double-clicking the makelicinfo.bat file in the ADF installation folder.

Unix users: first check that the license file has been installed correctly by running (at the shell prompt):

$ADFBIN/dirac check

This should produce the output similar to the following:

Checked: /home/testadf/adf2016.xxx/license.txt

License termination date (mm/dd/yyyy): 1/ 8/2016

According to it, you are allowed to run:

ADF version 2016.990
ADFGUI version 2016.990

GUI version 2016.990
REAXFFGUI version 2016.990

BAND version 2016.990
BANDGUI version 2016.990

CRS version 2016.990
DCDFTB version 2016.101
DFTB version 2016.990

DFTBGUI version 2016.990
MOPAC version 2016.990
NBO version 2016.990

NBO6 version 6.000
QNDFTB version 2016.990
REAXFF version 2016.990
Utils version 2016.990

Number of procs you are allowed to use for:

ADF : 1024 procs
BAND : 1024 procs
DFTB : 1024 procs
ReaxFF : 1024 procs

===
SCM User ID: u999999
release: 2016.101
:example.com:
:Linuxmaster.example.com00:11:22:33:44:55:

14 Chapter 3. Installation

Installation Manual, ADF Modeling Suite 2016

:ncores 12:
:CPU Model Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz:
:DMY 1- 7-2016:
:SRCID 3217288:
===

LICENSE INFO READY

If the license check is successful (i.e. you get the “LICENCE INFO READY” message) you can move on. Otherwise
check that the license file has been installed according to instructions in Section 2.5.

3.6.2 Run some basic tests

Verify that you can now run examples provided with ADF and that they give correct results. We recommend that you
consult the Examples document for notes on such comparisons: non-negligible differences do not necessarily indicate
an error. If you have a license for the GUI you can also run a few GUI tutorials as a test.

Note: the example .run files are complete Bourne shell scripts that should be executed as such, they are **not* input
files to be fed into any program. The easiest way to run them is using ADFjobs.

3.6.3 Test the GUI

If the GUI is included in your license, check that you can start any of the GUI modules.

UNIX users:

Enter the following command:

$ADFBIN/adfjobs

An ADFjobs window should appear.

Mac users:

Double click the ADF2016.xxx application to start it. An ADFjobs window should appear.

Windows users:

Double click the ADFjobs icon to start it. An ADFjobs window should appear. If the window does not appear or
appears after a long delay then check the ADF-GUI requirements and check the firewall rules that should allow local
communication.

All users should now be able to start ADFinput via the SCM menu on the top left of the menu bar.

3.6.4 Test parallel execution

It is very important to make sure that computer resources are utilized with the maximum efficiency. Therefore, you
should check that each ADF job uses all processors/cores allocated to it and that the network is not overloaded with
the disk I/O traffic.

Typically, when you submit a parallel job to the batch system you have a possibility to specify how many processors
per node (ppn) to use. If the batch system you are using allows this, then make sure that you request ppn equal to the
number of physical cores on each node. Note that recent AMD processors from the Famliy 15h based on the so-called
“Bulldozer” cores have one floating-point unit (module) per two physical cores. On these Bulldozer architectures and
its successors (Piledriver, Steamroller) ADF will probably perform best when you only run on half the physical cores.
ADF tries to automatically detect the number of floating-point units (half the physical cores), but the user is advised
to check this and otherwise set ppn accordingly.

3.6. Test your installation 15

Installation Manual, ADF Modeling Suite 2016

It is also possible that your batch system does not allow you to specify ppn but instead it always assumes that there
only one processor per node. In this case, you will need to edit the $ADFBIN/start file and add some commands for
processing the hostfile.

In order to check that everything is working as intended, create a reasonably small ADF job and start it, preferrably on
more than one node. After the job has finished, open the job’s .out file and find the table that looks like the following:

Parallel Execution: Process Information
==
Rank Node Name NodeID MyNodeRank NodeMaster

0 compute-0-0 0 0 0
1 compute-0-0 0 1 -1
2 compute-0-0 0 2 -1
3 compute-0-0 0 3 -1
4 compute-0-1 1 0 1
5 compute-0-1 1 1 -1
6 compute-0-1 1 2 -1
7 compute-0-1 1 3 -1

==

Check the names in the “Node Name” column and verify that the number of tasks per node is correct. If it is, then
move on to the next section.

3.6.5 Test parallel performance

If the process allocation to nodes looks as expected then scroll down a bit to the following lines:

Communication costs MPI_COMM_WORLD: 1.026 usec per message, 0.0320 usec per 8-byte item
Communication costs for intra-node: 1.023 usec per message, 0.0318 usec per 8-byte item

Make sure that you get reasonable numbers (100 usec per message) both for intra-node and MPI_COMM_WORLD
communication costs. Otherwise contact your system administrator. If only the MPI_COMM_WORLD value is large
but the intra-node one looks reasonable, this may mean that the network link between machines is very slow and you
may want to run single-node jobs only.

If all seems to be OK then move to the end of the file to the table called “Timing Statistics”. Before the table, there is
a line of text beginning with “Total Used” that might look as follows:

Total Used : CPU= 8064.87 System= 1144.31 Elapsed= 9212.99

This shows how much time (in seconds) was spent in the ADF code (CPU) and in the kernel (System), and how long
did it take for the calculation to complete (Elapsed). Ideally, the system time should be small compared to the CPU
time and the latter should be close to the Elapsed time. The system time will not always be a small number, however,
the sum of the System and CPU times should always give a number very close to the Elapsed time. If this is not the
case then it means that ADF has to spend a lot of time waiting for something. This can be, for example, disk I/O or
network communication.

If you notice that the system time portion is enormously large or that there is a large difference between the
CPU+System and the Elapsed time, then repeat the job with the “PRINT TimingDetail” keyword in the input and
contact the SCM support.

3.7 Configure ADFjobs queues and 3rd party software (optional)

If you would like to use the GUI as a front-end to submit your jobs to queues, you should configure those queues in
ADFjobs. Third party software MOPAC and ffmpeg (export movies) may also be installed separately.

16 Chapter 3. Installation

Installation Manual, ADF Modeling Suite 2016

3.7.1 ADFjobs queues

A video shows how to set up remote queues on Windows (https://www.scm.com/wp-
content/uploads/Videos/RemoteQueuesWithADFJobs.mp4), other platforms are even easier.

ADFjobs can submit and monitor jobs for you on different queues, both locally and remotely. You can use the GUI
on your desktop or laptop for creating, submitting and analyzing your jobs, while running the jobs on remote compute
clusters. In that case you should establish and ssh-agent connection (2.7.2), to enable remote job managing by the
GUI. If you just run local jobs without a queuing system, skip this section.

To set up a new batch queue, select Queue → New... → and choose an example queuing system to starting with (LSF,
PBS, or SGE). Modify the input files such that they correspond to your queue configuration:

• change the Name of the queue

• set the Remote host to the hostname of your cluster

• set Remote user to your username on that cluster

• change the Run command in accordance with your typical queue set up. The $options corresponds to the input
box that can be modified in ADFjobs before submitting, e.g. the time or number of nodes

• you can set what $options defaults to in the Default Options field

• change the Kill, Job status, System status commands, if necessary

• you may define a Prolog or Epilog command

3.7.2 Managing remote jobs

To manage remote jobs, you need automatic authentication with an ssh-agent via an ssh key pair. This is most easily
set up on MacOS or Linux, but is a bit more involved for Windows.

ssh connection on MacOS and Linux

If you don’t have an ssh key pair already, you can generate one in a terminal: ssh-keygen -t rsa Put your pass-word
protected public key on the compute cluster(s) in ~/.ssh/authorized_keys.

Next, you should establish a connection via an ssh-agent. On MacOS an ssh-agent runs by default, and with keychain
you just have to type your password once when you make the first connection.

On various Linux installations ssh-agent is also running by default. If an ssh-agent daemon is not yet running in the
terminal where you will run ADFjobs, start the daemon, e.g. by adding eval $(ssh-agent bash) to your .bashrc. You
need to add your private key to the ssh-agent daemon: ssh-add.

ADFjobs will use SSH to connect to the remote systems, making a new connection for everything it does. This means
that there will be many connections to the remove machine(s). If you arre using OpenSSH (both on the local and the
remote machine), you can instead use one ssh connection and keep it alive, reusing it for many things. This makes
ADFjobs faster, and may avoid complaining system administrators of the remote machines.

To do this, set the environment variable SCM_SSH_MULTIPLEXING to yes (for example via the GUIprefs aplica-
tion).

ssh connection on Windows

PuTTY tools, automatically installed with ADF, can be used to set up an ssh-agent connection. Follow these steps,
using the PuTTY programs located in the binPutty directory in your ADF installation directory.

• Run puttygen.exe and follow the instructions to generate an ssh key pair. Make sure you use a password. Put
the public key on the remote host in ~/.ssh/authorized_keys

• Run pageant.exe and add your private ssh key (right-click on the Pageant icon in the task bar) with your password

3.7. Configure ADFjobs queues and 3rd party software (optional) 17

https://www.scm.com/wp-content/uploads/Videos/RemoteQueuesWithADFJobs.mp4

Installation Manual, ADF Modeling Suite 2016

• Open a Command Prompt and go the Putty directory (e.g. cd C:ADF2016.xxxbinPutty). Run plink user@host
(with correct username and hostname) and type y when prompted to store the key in cache

• In the same Command Prompt, check that you can now connect through the ssh-agent: plink -batch -agent -l
user host uptime

Now you can close the prompt and start using ADFjobs to manage remote jobs. You may test your queue configuration:
Jobs → Generate Test Job and assign it to your new queue (2.7.1) before running the test job.

Centrally defined queues

A system administrator may also define a queue centrally, which may then be picked up by any user automatically via
Dynamic queues. Consult the GUI manual for information on how to set these up in ADFjobs.

MOPAC

MOPAC is included with the ADF distribution. However, it needs to be enabled in your license file. If it is not enabled,
please contact SCM for more information. Note that MOPAC is free for academic users but the MOPAC key has a
limited duration. The MOPAC included with the ADF distribution is just the standard MOPAC from OpenMOPAC,
and is updated frequently.

If you wish to use a MOPAC version different from the one included with the ADF distribution, you can do this by
setting the SCM_MOPAC environment variable, either in your shell startup script or via the SCM → Preferences
command:

• do not set SCM_MOPAC when you want to run the MOPAC included with the ADF pacakage, in most situations
this is the easiest solution

• set SCM_MOPAC to the complete path to the Mopac executable

• set SCM_MOPAC to a command if you want to run MOPAC on a different machine, the command must pass the
arguments and standard input, and should start the mopac.scm script on the other machine (located in $ADFBIN
on that machine)

ffmpeg

The ADFmovie GUI module can make MPEG videos of the system as you see it in the ADFmovie window. This can
be an MD trajectory or vibrational modes, or the course of geometry optimization. For this to work, you need to install
the free ffmpeg program from the FFmpeg website (http://ffmpeg.mplayerhq.hu/) and make sure it can be found in the
path. The simplest way to do this is to copy the ffmpeg executable to $ADFBIN.

18 Chapter 3. Installation

http://ffmpeg.mplayerhq.hu/

CHAPTER

FOUR

COMPILING ADF FROM SOURCES

Compiling ADF from sources by end users is not supported on Windows. The following instructions apply to
Linux/Unix and Mac OS X only. Compiling ADF2016 from sources is supported for ifort version 15.0.6 with MKL,
and IntelMPI on linux.

4.1 Unpacking the distribution

Installing ADF with recompilation in mind is somewhat different from the binary-only installation. The downloaded
source and binary tarballs must be unpacked in the following order (using Platform-MPI on x86_64-linux in this
example):

First sources
tar xzf adf2016.101.src.tgz
Then binaries
tar xzf adf2016.101.pc64_linux.platform_mpi.bin.tgz

The result will be a adf2016.101 directory containing both binaries (for your platform) and sources.

Note that for Mac OS X, the downloading of the binaries is different. Follow the instructions for downloading and
installation of the binaries. Copy the binaries from the downladed disk image to the directory adf2016.101 that was
created from the source code. Depending oin where you have put the binaries it could be something like:

cp -r /Applications/ADF2016.101.app/Contents/MacOS/ADF.app/Contents/Resources/adfhome/* adf2016.101

4.2 Setting up environment

In addition to the standard environment variables discussed in the Section 2.3, you may need to set additional ones
depending on your platform:

• I_MPI_ROOT: this variable must be set if compiling with IntelMPI on linux (the default)

• MPIDIR: may be needed in the case of compiling ADF with non-default MPI, for example openMPI on linux.
The MPIDIR variable is not needed when configuring with Platform-MPI.

• MATHDIR: this should be set to the the MKL root folder. If MKLROOT is defined and MATHDIR is not, then
MKLROOT will be used.

19

Installation Manual, ADF Modeling Suite 2016

4.3 Running Install/configure

After unpacking everything and setting up your environment properly, you need to run the configure script. This
script is located in the $ADFHOME/Install directory, and it must be executed from the $ADFHOME directory. The
script replaces some files in the bin directory with versions specifically targeted for your system. For example, if you
want to install an OpenMPI version of ADF on a platform for which only a Platform-MPI version is available, then
Install/configure will make an $ADFBIN/start script suitable for OpenMPI and overwrite the old one which was made
for Platform-MPI. Further, configure creates the buildinfo file that you will need to compile ADF.

To see what options the configure script supports, use configure -h:

Example:

cd $ADFHOME
Install/configure -h

Configure can set up multiple build targets with different configuration options using the -b flag, but by default it only
creates two targets: release and debug. The easiest way to configure is to use all default options (ifort/MKL/OpenMPI
on OSX, ifort/MKL/IntelMPI on linux):

cd $ADFHOME
Install/configure

If a different MPI version is needed (for example platform_mpi), simply run:

cd $ADFHOME
Install/configure -p platform_mpi

4.4 Compiling ADF

Next, you need to compile the sources by executing foray located in $ADFBIN. Foray supports parallel compilation
to make things faster, use -j N to tell foray you want it to use N processes (for example: -j 4 on a quadcore machine):

cd $ADFHOME
bin/foray -j 4

After a while, depending on the speed of your computer, everything should be ready to use, just as if you had installed
the precompiled executables but now with your modifications included. Use bin/foray -h to get a list of all foray
options.

20 Chapter 4. Compiling ADF from Sources

CHAPTER

FIVE

ADDITIONAL INFORMATION AND KNOWN ISSUES

5.1 More on running MPI jobs

MPI (Message Passing Interface) is a standard describing how to pass messages between programs running on the
same or different machines.

MPI is a formal standard and it is actively supported by all major vendors. Some vendors have highly-optimized MPI
libraries available on their systems. There are also a couple of open-source implementations of the MPI standard, such
as MPICH and OpenMPI. There are also numerous commercial MPI implementations that support a wide range of
systems and interconnects, for example, Platform-MPI and IntelMPI.

Support for a particular MPI implementation in ADF can be considered at three levels: the source code, the configure
script, and pre-compiled binaries. At each level different MPI implementations may be supported.

The ADF source code is not implementation-specific and thus theoretically it supports any MPI library. Many popular
MPI implementations are supported at the level of the configure script, but depending on your local setup you may
need to make some modifications in the buildinfo file after running configure. For example on 64-bit Linux Intel MPI
and Platform-MPI should work directly, but using OpenMPI will most likely require manual changes to correct the
include and linker paths to the OpenMPI libraries of your system. The configure script will also try to generate an
appropriate $ADFBIN/start script, but this might also need modification when using different MPI libraries. In general
it is best to use the same MPI version used by SCM for the precompiled binaries.

When choosing an MPI implementation for pre-compiled binaries, SCM considers many factors including (but not
limited to) the re-distribution policy, performance, and built-in support for modern interconnects. IntelMPI is currently
the standard MPI implementation supported by SCM because it has the most favorable combination of these factors
at this moment. For platforms where IntelMPI is supported its runtime is distributed with ADF (Windows, Linux).
Platform-MPI builds are also available for linux, but should only be used in case of problems with IntelMPI. A
different MPI implementation will be standard on a platform where Platform-MPI is not available. It may or may not
be distributed with ADF. For example, SGI MPT is standard on SGI machines and OpenMPI is standard on Mac OS
X platforms, but only the latter is distributed together with ADF.

When pre-compiled binaries do not work on your computer(s) due to incompatibility of the standard MPI library with
your soft- and/or hardware, the SCM staff will be glad to assist you in compiling ADF with the MPI implementation
supported on your machine(s).

If you are going to use an MPI version of the ADF package, and it is not IntelMPI, Platform-MPI or OpenMPI, you
will need to determine if the corresponding MPI run-time environment is already installed on your machine. If not, you
will need to install it separately from ADF. As it has been already mentioned, IntelMPI, Platform-MPI and OpenMPI
are bundled with the corresponding version of ADF so you don’t need to worry about installing them separately.

Running with MPI on more than one node

When running on more than one machine (for example on a cluster without a batch system) you need to specify a
list of hosts on which mpirun needs to spawn processes. In principle, this is implementation-specific and may be not
required if the MPI is tightly integrated with your operating and/or batch system. For MPICH1 and Platform-MPI,

21

Installation Manual, ADF Modeling Suite 2016

you can do this by preparing a file containing hostnames of the nodes (one per line) you will use in your parallel job.
Then you set the SCM_MACHINEFILE environment variable pointing to the file.

When you submit a parallel job to a batch system the job scheduler usually provides a list of nodes allocated to the
job. The $ADFBIN/start shell script has some logic to extract this information from the batch system and pass it to
the MPI’s launcher command (typically mpirun). In some cases, depending on your cluster configuration, this logic
may fail. If this happens, you should examine the $ADFBIN/start file and edit the relevant portion of it. For example,
you may need to add commands that process the batch system-provided nodelist or change mpirun’s command-line
options or even replace the mpirun command altogether.

5.2 More about IBM Platform MPI

The use of Platform MPI is governed by our standard License Terms.

As it has been already mentioned, Platform MPI is currently one of the standard MPI implementations on some
systems, namely on Intel-based Linux machines. We are using the Community Edition.

For more information about Platform MPI, including the User’s Guide please visit the MPI page at IBM (http://www-
03.ibm.com/systems/platformcomputing/products/mpi/). Platform MPI is distributed with the Platform-MPI versions
of ADF and a complete Platform-MPI directory tree is found in $ADFBIN/platform_mpi. Using Platform-MPI with
ADF does not require any additional fees. In addition to TCP/IP and shared memory supported by every MPI im-
plementation, Platform-MPI also supports, without recompilation, all well-known interconnects such as Infiniband
and Myrinet. The best available interconnect is chosen automatically at run time and this can also be modified using
mpirun command-line switches in the $ADFBIN/start script.

A few words about the mpirun commands found in the start script. If you look inside the $ADFBIN/start file on Linux,
you will likely see three mpirun commands. They differ in the way the list of nodes is specified, if specified at all. The
mpirun command with a -lsb_hosts switch is used under the LSF batch system. In employs the Platform-MPI’s tight
integration with LSF and lets it pick up the job configuration directly from the batch system.

The mpirun command with a -hostfile switch is used for multi-node interactive jobs and for all parallel jobs started
under PBS or SGE batch systems. In the case of a batch system, the hostfile provided by the scheduler is passed to
the mpirun command as-is, that is without modifications. The latter can be a problem if the format of the hostfile
is different from that supported by Platform-MPI, in which case it should be modified accordingly. Please see the
Platform-MPI User’s Guide for information about supported hostfile formats.

Finally, the simplest form of the mpirun command is used for single-node jobs when the calculation is performed on
the localhost. In this case the NSCM environment variable determines how many parallel processes will be started.
Please note that if “$NSCM” is not equal to “1” (digit one) then the exact value of the NSCM variable has no effect
when the job is started under any of the batch systems or with a hostfile. In this case the number of parallel processes
to start is determined by the contents of the hostfile.

Remote shell command under Platform-MPI

One important point about Platform-MPI is that it needs a remote shell command, such as ssh, to start tasks on compute
nodes. By default ssh is used but this can be changed using the MPI_REMSH environment variable. For example,
executing the following from the bash prompt will make mpirun use rsh instead of ssh:

export MPI_REMSH=rsh

As usual, if you want to make the change permanent, you need to add this command to a shell resource file.

There are cases when a Linux cluster is configured in such a way that both ssh and rsh communication from/to/between
compute nodes is disabled. One of the most common examples is TORQUE with the MAUI scheduler. In this case,
there is a remote shell replacement utility called pbsdsh. This utility checks that it is executed under PBS and, if
yes, allows you to start remote programs only on the nodes allocated to that particular job. In principle, this is all
that mpirun needs. The only problem is that pbsdsh uses different command-line options. To solve this, we provide

22 Chapter 5. Additional Information and Known Issues

http://www-03.ibm.com/systems/platformcomputing/products/mpi/

Installation Manual, ADF Modeling Suite 2016

in $ADFBIN a script called torque_ssh. To make Platform-MPI always use torque_ssh instead of ssh simply set
MPI_REMSH in the shell resource file as follows (after ADFBIN has been defined):

export MPI_REMSH=$ADFBIN/torque_ssh

Known Platform-MPI issue: libibverbs error message

Sometimes Platform-MPI stops with the following (or similar) error message

libibverbs: Fatal: couldn't open sysfs class 'infiniband_verbs'.

This occurs, for example, on GigE-connected ROCKS clusters with OpenMPI installed. The error is caused by the
fact that there are Infiniband libraries installed without corresponding kernel drivers and/or hardware. In this case, one
has to enforce the use of TCP by Platform-MPI, which can be done using one of the methods below:

• edit the $ADFBIN/start script and add a -TCP option to all mpirun commands: :: $ADF-
BIN/platform_mpi/bin/mpirun.mpich -TCP ...

• or set the MPIRUN_OPTIONS environment variable in your shell resource file (for example, ~/.bash_profile):
:: export MPIRUN_OPTIONS=-TCP

• or set the MPI_IC_ORDER environment variable in your shell resource file (for example, ~/.bash_profile): ::
export MPI_IC_ORDER=”TCP”

Any of these options will make sure all other interconnects but TCP are ignored.

5.3 IntelMPI and SLURM

To get IntelMPI work under SLURM one needs to edit the $ADFBIN/start script and change the value of the
I_MPI_PMI_LIBRARY environment variable to point to a correct libpmi library from SLURM.

5.4 Corrupted License File

You may find that, after having installed the license file, the program still does not run and prints a message “LICENSE
CORRUPT”. There are a few possible causes. To explain how this error may come about, and how you overcome it, a
few words on license files.

Each license file consists of pairs of lines. The first of each pair is text that states in a human-readable format a couple
of typical aspects: A ‘feature’ that you are allowed to use (for instance ‘ADF’), the expiration date, a (maximum)
release (version) number of the software and so on. The second line contains the same information in encrypted
format: a long string of characters that appear to make little sense. The program reads the license file and checks,
with its internal encrypting formulas, that the two lines match. If not, it stops and prints a “LICENSE CORRUPT”
message.

So, there are two common reasons why this may happen:

You can use the fixlic utility to try to fix this automatically. Please be aware that the fixlic utility will try to fix the file
pointed to by the $SCMLICENSE environment variable and replace it with the fixed copy. Thus, you need to make a
backup of your license file first and you need to have write permissions for it.

cp $SCMLICENSE $SCMLICENSE.backup
$ADFBIN/fixlic

5.3. IntelMPI and SLURM 23

Installation Manual, ADF Modeling Suite 2016

5.5 Windows: running jobs from the command line

In order to run ADF or any other program from the package without the GUI, navigate to the ADF installation directory
and double click the adf_command_file.bat file. It will start a Windows command interpreter and set up the environ-
ment specific for that installation of ADF. Once it has started, cd to your jobs directory by entering the following
commands at the prompt:

C:
cd \ADF_DATA

Then, run your job as follows (assuming the job is called h2o):

sh h2o.job

You can also prepare a job from a .adf file and run it using only two commands:

sh adfprep -t h2o.adf -j h2o h2o.job
sh h2o.job

Please note that you do need to use sh in the commands above because both h2o.job and adfprep are shell scripts and,
thus, they must be interpreted by a shell.

24 Chapter 5. Additional Information and Known Issues

CHAPTER

SIX

APPENDIX A. ENVIRONMENT VARIABLES

As of the 2016.102 version, if you start the MacOSX ADF-GUI application the environment defined by your shell
startup scripts is ignored. Instead the bundled ADF is used, and environment variables may be defined in a file
$HOME/.scmenv.

The following environment varables must always be set for all ADF versions.

ADFHOME: full path of the ADF installation directory, for example, $HOME/adf2016.01.

ADFBIN: full path ADF directory with binaries, typically set to $ADFHOME/bin.

ADFRESOURCES: full path of the directory with the ADF database (basis sets and so on), typically set to
$ADFHOME/atomicdata

SCMLICENSE: full path-name of the license file, for example $ADFHOME/license.txt.

SCM_DOMAINCHECK: set to yes if you have a license based on your domain info (DNS). If it is defined but no
proper DNS sever is available, delays will often occur.

SCM_TMPDIR: full path of the directory where all processes will create their temporary files. See also Section 2.5
and the special section on SCM_TMPDIR below.

The following environment variable may be required at run-time by a parallel version.

NSCM: The number of processes to be used in a particular calculation. This variable should only be set per job. Do
not add any NSCM definitions to your shell resource files. Please note that the NSCM value is typically ignored in job
submitted through a batch system because then the number of processors is determined by the batch job’s properties.

SCM_MACHINEFILE full path-name of the file containing a list nodes to use for a job; Important: this variable
should only be set if multiple computers are used without any batch system and then it should be set on the per-job
basis. The file pointed to by the variable must already exist and it must contain a list of nodes on which a particular
job is about to be executed, possibly with their processor count.

SCM_USE_LOCAL_IMPI this applies only to IntelMPI distributions. Setting this environment variable to not be
empty will disable the IntelMPI runtime environment shipped with the adf distribution, allowing the use of a local
IntelMPI installation. The environment must be properly set up on the machine, meaning I_MPI_ROOT must be set,
and mpirun should be in the PATH, and the libraries must be in LD_LIBRARY_PATH.

The following environment variables are relevant for the GUI modules.

SCM_ERROR_MAIL: e-mail address for error reports

SCM_GUIRC: location of the preferences file, by default $HOME/.scm_guirc

SCM_GUIPREFSDIR: location of the preferences folder, by default $HOME/.scm_gui/ (available since
ADF2013.01b)

SCM_TPLDIR: location of the templates directory, by default no extra templates are loaded

SCM_STRUCTURES: location of the structures directory, by default no extra structures are loaded

25

Installation Manual, ADF Modeling Suite 2016

SCM_RESULTDIR: location of the results directory, by default the current directory used

DISPLAY: specifies the X-window display to use and is required for all X11 programs on Linux/Unix and Mac OS
X. On MaC OS X you should typically not set it as it will be set automatically. Setting it will break this.

SCM_MOPAC: command to start MOPAC, by default the $ADFBIN/mopac.scm shell script will be used

SCM_QUEUES: path to the dynamic queues directory, by default ADFjobs will search the remote $HOME/.scmgui
file The following environment variables are relevant for source distributions only, and only at the configure time.

MPIDIR and MATHDIR: see Section 3.2 The following environment variables may be set to modify other aspects
of ADF execution. All of them are optional and some are used for debugging only.

SCM_GPUENABLED Envrionment flag to turn GPU acceleration on or off. Only works for the CUDA-enabled
binaries. Setting this variable to TRUE turns GPU acceleration on, setting it to FALSE turns it off. If the input
contains the keyblock GPUENABLED, a FALSE in the environment variable will be ignored.

SCM_IOBUFFERSIZE Most programs within the ADF package use the KF I/O library. This library has a built-in
caching mechanism that keeps parts of the files in memory. This allows to reduce the amount of the disk I/O signifi-
cantly. The default buffer size depends on the platform and is typically set to 64 megabytes, which should be sufficient
for running small jobs without much disk I/O. In some cases you can have a major performance improvement by
making this buffer much larger, for example 512MB. You can do this by setting the SCM_IOBUFFERSIZE environ-
ment variable to a number corresponding to the buffer size in megabytes. Please try for yourself, with your typical
calculation on your production machine to find out the optimal value for your situation.

SCM_VECTORLENGTH Almost all programs within the ADF package use numerical integration, and this is nor-
mally the most time-consuming part of the code. Numerical integration involves summing together results for each
‘integration point’. The best performance is achieved when handling a number of points at the same time. The number
of integration points handled together is called the block length or the vector length. If the block length is too small,
you will have a significant overhead and the programs may become very slow. If the block length is too large, lots
of data will not fit in the processor cache and again the program will not run at the maximum speed. The optimal
block length is somewhere in between, ranging from 32 to 4096 depending on your hardware. Sometimes it pays off
to set the block length explicitly NOT to a power of 2 to avoid memory bank conflicts. Again, try it yourself with your
typical calculation on your production machine to find out the optimal value for your situation. On most machines, the
default 128 is a good value.

SCM_SHAR_EXCEPTIONS: setting this variable to “*” disables the use of shared arrays.

SCM_DEBUG: setting this to a non-empty string will cause each MPI rank to print values of relevant environment
variables and some messages about copying files to/from SCM_TMPDIR.

SCM_NOMEMCHECK: setting this to a non-empty string disables checks on memory allocation failures. The
usefulness of this variable is questionable.**SCM_NODOMAINCHECK**: setting this to a non-empty string dis-
ables DNS requests when verifying the license. Use this variable if you experience long delays at the start of each
calculation.

SCM_TRACETIMER: setting this to a non-empty string will produce additional output on entry/exit to/from internal
timers.

SCM_DEBUG_ALL: setting this to yes is equivalent to specifying DEBUG $ALL in the input

6.1 More on the SCM_TMPDIR variable

Below we will explain in more detail how does the SCM_TMPDIR environment work. Every parallel job consists
of one master and one or more slave tasks. Master and slaves behave a bit differently with respect to their scratch
directories.

Slave processes

26 Chapter 6. Appendix A. Environment Variables

Installation Manual, ADF Modeling Suite 2016

Slave processes will always create a directory for their scratch files in $SCM_TMPDIR and chdir to it to avoid any risk
that shared files are updated by more that one process at the same time. For efficiency reasons, that directory should
reside on a local disk unless you are using very, very fast shared file system for large files. You need write access to
that directory, and the file system should have enough free space. Please note that the SCM_TMPDIR environment
variable will be passed from the master to slaves. After the job is finished, slave processes will delete their scratch
directories. This can disabled by setting the SCM_DEBUG environment variable to any text, for example, to “yes”.
In this case the scratch directory and all its contects will be left intact. This directory will also be left behind when
a job has crashed or has been killed. Each slave writes its text output to a file called KidOutput located in its scratch
directory. In case of an error this file will likely contain some sensible error message. If an error occurs and a slave
process exits in a cotrollable way then in order to avoid losing the file ADF will copy the file to the directory, from
which the job was started, as KidOutput__#, where # is the process’ rank.

Master process or serial runs

The master process (which is the only process in a serial run) will also create its temporary files in its own sub-
directory of $SCM_TMPDIR. There are some exceptions. Some files, such as logfile and TAPE13, will be created
in the directory where ADF was started because they are not performance-critical but are convenient to have in the
current directory for different reasons. For example, logfile is nice to have in the current directory in order to follow
the calculation progress and the TAPE13 is an emergency restart file that can be used if ADF crashes or is killed. At
the end of a calculation, the master will copy all result files from its scratch directory to the directory where it was
started.

6.1. More on the SCM_TMPDIR variable 27

Installation Manual, ADF Modeling Suite 2016

28 Chapter 6. Appendix A. Environment Variables

CHAPTER

SEVEN

APPENDIX B. DIRECTORY STRUCTURE OF THE ADF PACKAGE

Below is the list of major parts of the ADF package.

7.1 The bin directory

When the package is installed, the executable files are placed in $ADFHOME/bin. The binary executable file is usually
called ‘adf.exe’, ‘band.exe’, and so on. On Windows it is adf.3.exe, band.3.exe, etc. There will also be files called just
‘adf’ or ‘band’. The latter are shell scripts that execute the corresponding binaries.

You should use the script files, rather than the executables directly. The script files take care of several convenient
features (like the BASIS key described in the ADF User’s Guide) and provide a correct environment for running in
parallel. See also the sample run scripts and the Examples document.

The $ADFBIN/start script takes care of setting up the environment and starting the binaries. If necessary, it parses the
information provided by a batch system and sets up a machinefile (or an appfile) and runs tasks in parallel. Edit the
file if you need to customize the way MPI programs are started.

7.2 The atomicdata directory

The directory atomicdata/ contains a large amount of data needed by programs from the ADF package at run time. For
example, it contains basis sets for all atoms. Generally you should not modify any of the files in this directory.

The basis sets are described in detail in the ADF manual and BAND manual

7.3 The examples directory

The directory examples/ contains sample script and output files. The files with extension .run are shell scripts that also
contain embedded input. Thus, these files should be executed, and not given as input to ADF.

The example calculations are documented in the ADF Examples documentation, and BAND Examples documention.

7.4 The source code (adf, band, libtc, Install, ...)

The source code files found in the program and library directories and subdirectories thereof have extensions .d, .d90,
.dmod* or .cd and need to be pre-processed by the parser (scu) before compilation. The parser produces files with
a suffix .f, .f90 or .c containing plain FORTAN or C code. These files are placed in the FFILES directory in each

29

Installation Manual, ADF Modeling Suite 2016

program’s or library main directory at the compile-time. Other source files (used by the parser) are include files (files
with extension .fh or .h) and files that define configuration parameters (the file “settings”).

Parsing and compilation are controlled by $ADFBIN/yam.

The Install directory contains a configure script, some data files which provide generic input for configure (start,
starttcl, and some more), a portable preprocessor cpp (based on Mouse cpp), the adf preprocessor (adfparser) and files
that will be addressed by the $ADFBIN/yam command.

Apart from a few more files that are of little importance in the installation, you’ll find in Install/ a number of subdirec-
tories with names like pentium_linux_ifc, etc.: they contain precompiled binaries for supported platforms.

7.5 The Doc directory

All the user documentation for ADF is present in html format in $ADFBIN/Doc. Documentation is also available on
the SCM website (http://www.scm.com/support)

7.6 The scripting directory

This directory contains some useful scripts that are part of the ADF package but are distributed under the GNU General
Public License.

30 Chapter 7. Appendix B. Directory Structure of the ADF Package

http://www.scm.com/support

	Linux Quickstart Guide
	Introduction
	Requirements

	Installation
	Decide which version to install
	Download and install the software
	Set up the environment
	Set up the license
	Set up the scratch space
	Test your installation
	Configure ADFjobs queues and 3rd party software (optional)

	Compiling ADF from Sources
	Unpacking the distribution
	Setting up environment
	Running Install/configure
	Compiling ADF

	Additional Information and Known Issues
	More on running MPI jobs
	More about IBM Platform MPI
	IntelMPI and SLURM
	Corrupted License File
	Windows: running jobs from the command line

	Appendix A. Environment Variables
	More on the SCM_TMPDIR variable

	Appendix B. Directory Structure of the ADF Package
	The bin directory
	The atomicdata directory
	The examples directory
	The source code (adf, band, libtc, Install, ...)
	The Doc directory
	The scripting directory

